Skip to main content

Part of the book series: Monographs in Evolutionary Biology ((MEBI))

Abstract

This project began in 1968, when the impact of amino acid sequencing and protein crystallography had revealed a flood of data with great impact on evolutionary theory. These facts allowed the following important conclusions:

  1. 1.

    The conformation of the same protein from different species is carefully conserved throughout evolution.

  2. 2.

    Internal amino acid residues that clearly contribute to that conformation are generally, but not invariably, conserved.

  3. 3.

    Surface amino acids are more variable, except for those that clearly contribute to the catalytic activity. This encouraged the concept of “neutral mutations.”

  4. 4.

    Evolutionary trees can be constructed from a matrix of species differences, either overall or by translating back to DNA sequences via the known genetic code or by assuming “invariant” and “variable” regions. These evolutionary trees can be made to bear a satisfying resemblance to the known fossil record.

  5. 5.

    The rate of sequence variation appears to correlate with time rather than with the assumed number of generations between species. This led to the “neutral drift” theory of Kimura (1969).

  6. 6.

    Protein families with similar functions, such as myoglobin and hemoglobin, or the pancreatic serine proteases, also have almost superimposable conformations. Divergence from a common ancestor via gene duplication was clearly implied.

  7. 7.

    Sequence variations between these similar proteins in the same individual follow the same pattern as species differences for a single protein. Hence, evolutionary trees implying distance from a common ancestor could be constructed.

  8. 8.

    Specificity differences between chymotrypsin, trypsin, and elastase appeared to require only one or two amino acid changes, respectively, with no significant conformational change in the specificity sites (Hartley and Shotton, 1971).

  9. 9.

    Convergent evolution to a common enzyme mechanism from two completely different protein ancestors was obvious from the structures of chymotrypsin and subtilisin (Kraut et al., 1971).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altosaar, I., and Hartley, B. S., 1976, Comparison of ribitol dehydrogenase from E. coli C and K. aerogenes, in: Proceedings 10th International Congress of Biochemistry, p. 200, Abstract 04-6-319.

    Google Scholar 

  • Awad, W. M., Soto, A. R., Siegel, S., Skiba, W. E., Bernstrom, G. G., and Ochoa, M. S., 1972, The proteolytic enzymes of the K-1 strain of Streptomyces griseus, J. Biol. Chem. 247:4144–4145.

    PubMed  CAS  Google Scholar 

  • Burleigh, B. D., Rigby, P. W. J., and Hartley, B. S., 1974, A comparison of wild-type and mutant ribitol dehydrogenases from K. aerogenes, Biochem. J. 143:341–352.

    PubMed  CAS  Google Scholar 

  • Charnetzky, W. T., and Mortlock, R. P., 1974a, Ribitol catabolic pathway in Klebsiella aerogenes, J. Bacteriol. 119:162–169.

    PubMed  CAS  Google Scholar 

  • Charnetzky, W. T., and Mortlock, R. P., 1974b, d-Arabitol catabolic pathway in Klebsiella aerogenes, J. Bacteriol. 119:170–175.

    PubMed  CAS  Google Scholar 

  • Charnetzky, W. T., and Mortlock, R. P., 1974c, Close genetic linkage of the determinants of the ribitol and d-arabitol catabolic pathways in K. aerogenes, J. Bacteriol. 119:176–182.

    PubMed  CAS  Google Scholar 

  • Dothie, J. M., Giglio, J. R., Moore, C. H., Taylor, S. S., and Hartley, B. S., 1984, Ribitol dehydrogenase from K. aerogenes: Sequences and properties of wild-type and mutant strains, Biochem J. (submitted).

    Google Scholar 

  • Folk, W. R., and Berg, P., 1971, Duplication of the structural gene for glycyl-transfer RNA synthetase in Escherichia coli, J. Mol. Biol. 58:595–610.

    Article  PubMed  CAS  Google Scholar 

  • Hartley, B. S., 1966, Enzymes are proteins, Adv. Sci. 1966(May):47-54.

    Google Scholar 

  • Hartley, B. S., 1974, Enzyme families, in: Evolution in the Microbial World (M. J. Carlile and J. J. Skehel, eds.), Elsevier, Amsterdam, pp. 151–182.

    Google Scholar 

  • Hartley, B. S., and Shotton, D. M., 1971, Pancreatic elastase, in: The Enzymes, Vol. 3, 3rd ed. (P. D. Boyer, ed.), Academic Press, New York, pp. 323–373.

    Google Scholar 

  • Hartley, B. S., Burleigh, B. D., Midwinter, G. G., Moore, C. H., Morris, H. R., Rigby, P. W. J., Smith, M. J., and Taylor, S. S., 1972, Where do new enzymes come from?, in: Enzymes: Structure and Function (J. Drenth, R. A. Oosterbaan, and C. Veeger, eds.), North-Holland, Amsterdam, pp. 151–176.

    Google Scholar 

  • Hartley, B. S., Altosaar, I., Dothie, J. M., and Neuberger, M. S., 1976, Experimental evolution of a xylitol dehydrogenase, in: Proceedings of the Third John Innes Symposium (R. Markham and R. W. Home, eds.), North-Holland, Amsterdam, pp. 191–200.

    Google Scholar 

  • Herbert, D., Ellsworth, R., and Telling, R. C., 1956, The continuous culture of bacteria: A theoretical and experimental study, J. Gen. Microbiol. 14:601–622.

    PubMed  CAS  Google Scholar 

  • Herbert, D., Phipps, P. J., and Tempest, D. W., 1965, The chemostat design and instrumentation, Lab. Practice 14:1150–1161.

    CAS  Google Scholar 

  • Hill, C. W., Foulds, J., Soll, L., and Berg, P., 1969, Instability of a missense suppressor resulting from a duplication of genetic material, J. Mol. Biol. 39:563–581.

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi, T., Horiuchi, S., and Novick, A., 1963, The genetic basis of hypersynthesis of β-galactosidase, Genetics 48:157–169.

    PubMed  CAS  Google Scholar 

  • Kimura, M., 1969, The rate of molecular evolution considered from the standpoint of molecular genetics, Proc. Natl. Acad. Sci. USA 63:1181–1183.

    Article  PubMed  CAS  Google Scholar 

  • Kraut, J., Robertus, J. D., Birktoft, J. J., Alden, R. A., Wilcox, P. E., and Powers, J. C., 1971, The aromatic binding site in subtilisin BPN’ and its resemblance to chymotrypsin, Cold Spring Harbor Symp. Quant. Biol. 36:117–124.

    Article  CAS  Google Scholar 

  • Lerner, S. A., Wu, T. T., and Lin, E. C. C., 1964, Evolution of catabolic pathway in bacteria, Science 146:1313–1315.

    Article  PubMed  CAS  Google Scholar 

  • McLachlan, R. D., and Shotton, D. M., 1971, Structural similarities between α-lytic protease of Myxobacter 495 and elastase, Nature New Biol. 229:202–205.

    Article  PubMed  CAS  Google Scholar 

  • Morris, H. R., Williams, D. H., Midwinter, G. G., and Hartley, B. S., 1974, A mass-spectrometric sequence study of the enzyme ribitol dehydrogenase from Klebsiella aerogenes, Biochem. J. 141:701–713.

    PubMed  CAS  Google Scholar 

  • Mortlock, R. P., Fossitt, D. D., and Wood, W. A., 1965, A basis for utilization of unnatural pentoses and pentitols by Aerobacter aerogenes, Proc. Natl. Acad. Sci. USA 54:572–579.

    Article  PubMed  CAS  Google Scholar 

  • Muller-Hill, B., Fanning, T., Geisler, N., Gho, D., Kania, J., Kathmaan, P., Meissner, H., Schlotmann, M., Schmitz, A., Triesch, I., and Beyruther, K., 1975, The active sites of lac repressor, in: Protein—Ligand Interactions (H. Sund and G. Blauer, eds.), Walter de Gruyter, Berlin, pp. 211–224.

    Google Scholar 

  • Pechurkin, N. S., 1969, Continuous cultivation of microorganisms as a means of their autoselection by growth rate in set conditions, in: Continuous Culture of Microorganisms (I. Malek, K. Beran, Z. Fencl, V. Munk, J. Ricica, and H. Smrckova, eds.), Academic Press, London, pp. 315–322.

    Google Scholar 

  • Powell, E. O., 1965, Theory of the chemostat, Lab. Practice 14:1145–1149.

    CAS  Google Scholar 

  • Reiner, A. M., 1975, Genes for ribitol and d-arabitol metabolism in E. coli: Their loci in C strains and absence in K-12 and B strains, J. Bacteriol. 123:530–536.

    PubMed  CAS  Google Scholar 

  • Rigby, P. W. J., 1971, An Experimental Approach to Enzyme Evolution, Ph.D. Thesis, University of Cambridge.

    Google Scholar 

  • Rigby, P. W. J., Burleigh, B. D., and Hartley, B. S., 1974, Gene duplication in experimental enzyme evolution, Nature 251:200–204.

    Article  PubMed  CAS  Google Scholar 

  • Rigby, P. W. J., Gething, M. J., and Hartley, B. S., 1976, Construction of intergeneric hybrids using bacteriophage P1CM: Transfer of the K. aerogenes ribitol dehydrogenase gene to E. coli, J. Bacteriol. 125:728–738.

    PubMed  CAS  Google Scholar 

  • Rosner, J. L., 1972, Formation, induction and curing of bacteriophage P1 lysogens, Virology 48:679–689.

    Article  PubMed  CAS  Google Scholar 

  • Russell, R. L., Abelson, J. N., Landy, A., Gefter, M. L., Brenner, S., and Smith, J. D., 1970, Duplicate genes for tyrosine tRNA in E. coli, J. Mol. Biol. 47:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Scangos, G. A., and Reiner, A. M., 1978, Ribitol and d-arabitol catabolism in Escherichia coli, J. Bacteriol. 134:492–500.

    PubMed  CAS  Google Scholar 

  • Streicher, S. L., Bender, R. A., and Magasanik, B., 1971, Transduction of the nitrogen-fixation genes in Klebsiella pneumoniae, J. Bacteriol. 121:320–331.

    Google Scholar 

  • Taylor, S. S., Rigby, P. W. J., and Hartley, B. S., 1974, Ribitol dehydrogenase from K. aerogenes: Purification and subunit structure, Biochem. J. 141:693–700.

    PubMed  CAS  Google Scholar 

  • Tempest, D. W., 1970, The continuous cultivation of micro-organisms: 1. Theory of the chemostat, in: Methods in Microbiology, Vol. 2 (J. R. Norris and D. W. Ribbons, eds.), Academic Press, London, pp. 259–276.

    Google Scholar 

  • Wright, C. S., Alden, R. A., and Kraut, J., 1969, Structure of subtilisin BPN’ at 2.5 Å resolution, Nature 221:235–242.

    Article  PubMed  CAS  Google Scholar 

  • Wu, T. T., Lin, E. C. C., and Tanaka, S., 1968, Mutants of Aerobacter aerogenes capable of using xylitol as a novel carbon source, J. Bacteriol. 96:447–456.

    PubMed  CAS  Google Scholar 

  • Zabin, I., and Fowler, A. V., 1980, β-Galactosidase, the lactosepermease protein, and thiogalactoside transacetylase, in: The Operon (J. H. Miller and W. S. Reznikoff, eds.), Cold Spring Harbor Laboratory, New York, pp. 89–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Hartley, B.S. (1984). Experimental Evolution of Ribitol Dehydrogenase. In: Mortlock, R.P. (eds) Microorganisms as Model Systems for Studying Evolution. Monographs in Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4844-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4844-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4846-7

  • Online ISBN: 978-1-4684-4844-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics