Skip to main content

Production of Human Monoclonal Antibodies

  • Chapter
Monoclonal Antibodies and Functional Cell Lines

Abstract

The need to obtain human monoclonal antibodies has not been overshadowed by the immense success of mouse monoclonal antibody technology. Human monoclonal antibodies will be less antigenic for human in vivo studies and therapy; they will be more likely to recognize antigenic subtleties not easily detected by xenogeneic antibodies, and they will have less rapid catabolism in vivo. The study of human B-cell differentiation and development will be furthered by the availability of human hybridomas. These hybridomas also will be useful to dissect the human humoral immune response in autoimmune disease, cancer, and allergy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldo-Benson, M., and Scheiderer, L., 1983, Long term growth of lines of murine dinitrophenyl-specific B lymphocytes in vitro, J. Exp. Med. 157:342–347.

    Article  Google Scholar 

  • Bengtsson, B. O., Nabholz, M., Kennett, R. H., and Bodmer, W. F., 1975, A genetic and karyotypic analysis of crosses between lymphocytes and D98/AH-2, Somatic Cell Genet. 1:41–64.

    Article  Google Scholar 

  • Boylston, A. W., Gardner, B., Anderson, R. L., and Hughes-Jones, W. C., 1980, Production of human IgM anti-D in tissue culture by EB-virus transformed lymphocytes, Scand. J. Immunol. 12:355–358.

    Article  Google Scholar 

  • Brahe, C., and Serra, A., 1981, A simple method for fusing human lymphocytes with rodent cells in monolayer by polyethylene glycol, Somatic Cell Genet. 7:109–115.

    Article  Google Scholar 

  • Brown, N. A., and Miller, G., 1982, Immunoglobulin expression by human B lymphocytes clonally transformed by Epstein-Barr virus, J. Immunol. 128:24–29.

    Google Scholar 

  • Burk, K. M., Drewinko, B., Trujillo, J. M., and Ahearn, M. J., 1978, Establishment of a human plasma cell line in vitro, Cancer Res. 38:2508–2513.

    Google Scholar 

  • Butler, J. L., Lane, H. C., and Fauci, A. S., 1983a, Delineation of optimal conditions for producing mouse/human heterohybridomas from human peripheral blood B cells of immunized subjects, J. Immunol. 130:165–168.

    Google Scholar 

  • Butler, J. L., Muraguchi, A., Lane, H. C., and Fauci, A. S., 1983b, Development of a human T-T cell hybridoma secreting B cell growth factor, J. Exp. Med. 157:60–68.

    Article  Google Scholar 

  • Buttin, G., LeGuern, G., Phalente, L., Lin, E. C. C., Medrano, L., and Cazenave, P. A., 1978, Production of hybrid lines secreting monoclonal anti-idiotypic antibodies by cell fusion on membrane filters, in: Lymphocyte Hybridomas (F. Melchers, M. Potter, and N. I. Warner, eds.), Springer-Verlag, Berlin, pp. 27–36.

    Google Scholar 

  • Callard, R., McCaughan, G., Babbage, J., and Souhami, R., 1982, Specific in vitro antibody responses by human blood lymphocytes: Apparent nonresponsiveness of PBL is due to a lack of recirculating memory B cells, J. Immunol. 129:153–156.

    Google Scholar 

  • Cavagnaro, J., and Osband, M., 1983, Successful in vitro primary immunization of human peripheral blood mononuclear cells and its role in the development of human derived monoclonal antibodies, Biotechniques 1:31–36.

    Google Scholar 

  • Chiorazzi, N., Wasserman, R. L., and Kunkel, H. G., 1982, Use of Epstein-Barr virus transformed B cell lines for the generation of immunoglobulin-producing human B cell hybridomas, J. Exp. Med. 156:930–935.

    Article  Google Scholar 

  • Cote, R. J., Morrissey, D. M., Houghton, A. N., Beattie, Jr., E. J., Oettgen, H. F., and Old, L. J., 1983, Generation of human monoclonal antibodies reactive with cellular antigens, Proc. Natl. Acad. Sci. USA 80:2026–2030.

    Article  Google Scholar 

  • Cotton, R. G. H., and Milstein, C., 1973, Fusion of two immunoglobulin producing myeloma cells, Nature 244:42–43.

    Article  Google Scholar 

  • Crawford, D. H., Barlow, M. J., Harrison, J. F., Winger, L., and Huehns, E. R., 1983a, Production of human monoclonal antibody to rhesus D antigen, Lancet 1983 (February 19):386–388.

    Article  Google Scholar 

  • Crawford, D., Callard, R. E., Muggeridge, M. I., Mitchell, D. M., Zanders, E. D., and Beverley, P. C. L., 1983b, Production of human monoclonal antibody to X31 influenza virus nucleoprotein, J. Gen. Virol. 64:697–700.

    Article  Google Scholar 

  • Croce, C. M., Shander, M., Martinis, J., Cicurel, L., D’Ancona, G. G., Dolby, T. W., and Koprowski, H., 1979, Chromosomal location of the genes for human immunoglobulin heavy chains, Proc. Natl. Acad. Sci. USA 76:3416–3419.

    Article  Google Scholar 

  • Croce, C. M., Linnenbach, A., Hall, W., Steplewski, Z., and Koprowski, H., 1980, Production of human hybridomas secreting antibodies to measles virus, Nature 288:488–489.

    Article  Google Scholar 

  • Dalla-Favera, R., Breeni, M., Erikson, J., Patterson, D., Gallo, R. C., and Croce, C., 1982, Human c-myc oncgene is located on the region of chromosome 8 that is translocated in Burkitt’s lymphoma cells, Proc. Natl. Acad. Sci. USA 79:7824–7827.

    Article  Google Scholar 

  • Dwyer, D. S., Bradley, R. J., Urguhart, C. K., and Kearney, J. F., 1983, Naturally occurring anti-idiotypic antibodies in myasthenia gravis patients, Nature 301:611–614.

    Article  Google Scholar 

  • Edwards, P. A. W., Smith, C. M., Neville, A. M., and O’Hare, M. J., 1982, A human/human hybridoma system based on a fast growing mutant of the ARH-77 plasma cell leukemia derived line, Eur. J. Immunol. 12:641–648.

    Article  Google Scholar 

  • Eisenbarth, G. S., Linnenbach, A., Jackson R., Scearce R., and Croce, C. M., 1982, Human hybridomas secreting anti-islet antibodies, Nature 300:264–267.

    Article  Google Scholar 

  • Ellison, J., and Hood, L., 1982, Linkage and sequence homology of two human immunoglobulin gamma heavy chain constant region genes, Proc. Natl. Acad. Sci. USA 79:1984–1988.

    Article  Google Scholar 

  • Erikson, J., Martinis, J., and Croce, C. M., 1981, Assignment of the genes for human immunoglobulin chains to chromosome 22, Nature 294:173–175.

    Article  Google Scholar 

  • Foung, S. K. H., Sasaki, D., Grumet, F. C., and Engleman, E. G., 1982, Production of functional human T/T hybridomas in selection medium lacking aminopterin and thymidine, Proc. Natl. Acad. Sci. USA 79:7484–7488.

    Article  Google Scholar 

  • Gigliotti, F., and Insel, R. A., 1982, Protective human hybridoma antibody to tetanus toxin, J. Clin. Invest. 70:1306–1309.

    Article  Google Scholar 

  • Glassy, M. C., Handley, H. H., Royston, I., and Lowe, D. H., 1983, Human monoclonal antibodies to human cancers, in: Proceeding of the 4th Arm and Hammer Cancer Symposium (B. D. Boss, R. Langman, I. S. Trowbridge, and R. Dulbecco, eds.), Academic Press, New York, pp. 163–170.

    Google Scholar 

  • Goodman, M., and Weigel, W., 1983, Activation of lymphocytes by a thiol-derivatized nucleoside: Characterization of cellular parameters and responsive subpopulations, J. Immunol. 130:552–557.

    Google Scholar 

  • Gronowicz, E., Coutinho, A., and Melchers, F., 1976, A plaque assay for all cells secreting Ig of a given type or class, Eur. J. Immunol. 6:588–590.

    Article  Google Scholar 

  • Handley, H. H., and Royston, L, 1982, A human lymphoblastoid B cell line useful for generating immunoglobulin secreting human hybridomas, in: Hybridomas in Cancer Diagnosis and Treatment (M. S. Mitchell and H. F. Oettgen, eds.), Raven Press, New York, pp. 125–132.

    Google Scholar 

  • Handley, H., Royston, I., and Glassy, M. C., 1983, The production of human monoclonal antibodies to human tumor associated antigens, in: Proceedings of the 15th International Leucocyte Conference (J. W. Parker and R. L. O’Brien, eds.), Wiley Interscience, New York, pp. 617–620.

    Google Scholar 

  • Heiter, P. A., Max, E. E., Maizel, J. V., and Leder, P., 1980, Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments, Cell 22:197–207.

    Article  Google Scholar 

  • Heiter, P. A., Hollis, G. F., Korsmeyer, S. J., Waldman, T. A., and Leder, P., 1981, Clustered arrangement of immunoglobulin lambda constant region genes in man, Nature 294:536–540.

    Article  Google Scholar 

  • Heiter, P. A., Korsmeyer, S. J., Waldman, T. A., and Leder, P., 1981, Human immunoglobulin k light-chain genes are deleted or rearranged in X-producing B cells, Nature 290:368–372.

    Article  Google Scholar 

  • Hirohashi, S., and Shimosato, Y., 1982, In vitro production of tumor-related human monoclonal antibody and its immunohistochemical screening with autologous tissue, Gann 73:345–347.

    Google Scholar 

  • Hoffman, M., 1980, Antigen-specific induction and regulation of antibody synthesis in cultures of human peripheral blood mono-nuclear cells, Proc. Natl. Acad. Sci. USA 77:1139–1143.

    Article  Google Scholar 

  • Houghton, A. N., Brooks, H., Cote, R. J., Taormina, M. C., Oettgen, H. F., and Old, L. J., 1983, Detection of cell surface and intracellular antigens by human monoclonal antibodies: Hybrid cell lines derived from lymphocytes of patients with malignant melanoma, J. Exp. Med. 158:53–65.

    Article  Google Scholar 

  • Howard, M., Kessler, S., Chused, T., and Paul W., 1981, Long term culture of normal mouse B lymphocytes, Proc. Natl. Acad. Sci. USA 78:5788–5792.

    Article  Google Scholar 

  • Howard, M., Farrar, J., Hilfiker, M., Johnson, B., Takatsu, K., Hamaoka, T., and Paul, W., 1982, Identification of a T cell-derived B cell growth factor distinct from interleukin-2, J. Exp. Med. 155:914–923.

    Article  Google Scholar 

  • Irie, R. F., Sze, L. L., and Saxton, R. E., 1982, Human antibody to OFA-1, a tumor antigen produced in vitro by Epstein-Barr virus-transformed human B-lymphoid cell lines, Proc. Natl. Acad. Sci. USA 79:5666–5670.

    Article  Google Scholar 

  • Kamo, I., Furukawa, S., Tada, A., Mano, Y., Iwasaki, Y., and Furuse, T., 1982, Monoclonal antibody to acetylcholine receptor: Cell line established from thymus of patient with myasthenia gravis, Science 215:995–997.

    Article  Google Scholar 

  • Karpas, A., Fischer, P., and Swirsky, D., 1982, Human myeloma cell line carrying a Philadelphia chromosome, Science 216:997–999.

    Article  Google Scholar 

  • Kearney, J. F., Radbruch, A., Liesegang, B., and Rajewsky, K., 1979, A new mouse myeloma line that has lost immunoglobulin expression that permits the construction of antibody secreting hybrid cell lines, J. Immunol. 123:1548–1550.

    Google Scholar 

  • Kohler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256:495–497.

    Article  Google Scholar 

  • Kohler, G., and Shulman, M. J. L., 1978, Cellular and molecular restrictions of the lymphocyte fusion, in: Lymphocyte Hybridomas (F. Melchers, M. Potter, and N. I. Warner, eds.), Springer-Verlag, Berlin, pp. 143–148.

    Google Scholar 

  • Kohler, G., Howe, C. S., and Milstein, C., 1976, Fusion between immunoglobulin secreting and non-secreting lines, Eur. J. Immunol. 6:292–295.

    Article  Google Scholar 

  • Korsmeyer, S. J., Hieter, P., Ravetch, J. V., Poplack, D. G., Waldmann, T. A., and Leder, P., 1981, Developmental hierarchy of immunoglobulin gene rearrangements in human leukemic pre-B-cells, Proc. Natl. Acad. Sci. USA 78:7096–7100.

    Article  Google Scholar 

  • Koskimies, S., 1980, Human lymphoblastoid cell line producing specific antibody against Rh-antigen D, Scand. J. Immunol. 11:73–77.

    Article  Google Scholar 

  • Kozbor, D., and Roder, J., 1981, Requirements for the establishment of high titred human monoclonal antibodies against tetanus toxoid using the Epstein-Barr virus technique, J. Immunol. 127:1275–1280.

    Google Scholar 

  • Kozbor, D., and Roder, J. C., 1983, In vitro stimulated lymphoocytes as a source of human hybridomas, Eur. J. Immunol., in press.

    Google Scholar 

  • Kozbor, D., Steinitz, M., Klein, G., Koskimies, S., and Makela, O., 1979, Establishment of anti-TNP antibody-producing human lymphoid lines by preselection for hapten binding followed by EBV transformation, Scand. J. Immunol. 10:187–194.

    Article  Google Scholar 

  • Kozbor, D., Lagarde, A. E., and Roder, J. C., 1982a, Human hybridomas constructed with antigen-specific EBV transformed lines, Proc. Natl. Acad. Sci. USA 79:6651–6655.

    Article  Google Scholar 

  • Kozbor, D., Roder, J. C., Chang, T. H., Steplewski, Z., and Koprowski, H., 1982b, Human antitetanus toxoid monoclonal antibody secreted by EBV-transformed human B cells fused with murine myeloma, Hybridoma 1(3):323–328.

    Article  Google Scholar 

  • Kozbor, D., Dexter, D., and Roder, J. C., 1983, A comparative analysis of the phenotypic characteristics of available fusion partners for the construction of human hybridomas, Hybridoma 2(1):7–16.

    Article  Google Scholar 

  • Lane, H. C., Shelhamer, J. H., Mostowski, H. S., and Fauci, A. S., 1982, Human monoclonal anti-KLH antibody-secreting hybridoma produced from peripheral blood B lymphocytes of a KLH-immune individual, J. Exp. Med. 155:333–338.

    Article  Google Scholar 

  • Larrick, J. W., Truitt, K. E., Raubitschek, A. A., Senyk, G. S., Wang, J. C. N., 1983, Characterization of human hybridomas secreting antibody to tetanus toxoid, Proc. Natl. Acad. Sci. USA 80:6376–6380.

    Article  Google Scholar 

  • Lever, J. E., Nuki, G., and Seegmiller, J. E., 1974, Expression of purine overproduction in a series of 8-azaguanine resistant diploid human lymphoblast lines, Proc. Natl. Acad. Sci. USA 71:2679–2683.

    Article  Google Scholar 

  • Levy, J. A., Virolainen, M., and Defendi, V., 1968, Human lymphoblastoid lines from lymph node and spleen, Cancer 22:517–524.

    Article  Google Scholar 

  • Lewin, R., 1981, An experiment that had to succeed, Science 212:767–769.

    Article  Google Scholar 

  • Littlefield, J. W., 1964, Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants, Science 145:709–710.

    Article  Google Scholar 

  • Loken, M. R., and Stall, A. M., 1982, Flow cytometry as an analytical and preparative tool in immunology, J. Immunol. Methods 50:R85–R112.

    Article  Google Scholar 

  • Madsen, M., and Johnson, H. E., 1979, A methodological study of E-rosette formation using AET treated sheep red blood cells, J. Immunol. Methods 27:61–74.

    Article  Google Scholar 

  • Maizel, A., Sahasrabuddhe, C., Mehta, S., Morgan, J., Lachman, L., and Ford, R., 1982, Biochemical separation of a human B cell mitogenic factor, Proc. Natl. Acad. Sci. USA 79:5998–6002.

    Article  Google Scholar 

  • Malcom, S., Barton, P., Murphy, C., Ferguson-Smith, M. A., Bentley, D. L., and Rabbitts, T. H., 1982, Localization of human immunoglobulin K light chain variable region genes to the short arm of chromosome 2 by in situ hybridization, Proc. Natl. Acad. Sci. USA 79:4957–4961.

    Article  Google Scholar 

  • Matsuoka, Y., Moore, G. E., Yagi, Y., and Pressman, D., 1967, Production of free light chains of immunoglobulin by a haematopoietic cell line derived from a patient with multiple myeloma, Exp. Biol. N. Y. 125:1246–1250.

    Google Scholar 

  • Matthyssens, G., and Rabbitts, T. H., 1980, Structure and multiplicity of human immunoglobulin heavy chain variable region genes, Proc. Natl. Acad. Sci. USA 77:6561–6565.

    Article  Google Scholar 

  • Miller, G., and Lipman, M., 1973, Release of infectious Epstein-Barr virus by transformed marmoset leukocytes, Proc. Natl. Acad. Sci. USA 70:190–194.

    Article  Google Scholar 

  • Miller, G., Grogan, E., Heston, H., Robinson, J., and Smith, D., 1981, Epstein-Barr viral DNA: Infectivity for human placental cells, Science 212:452–455.

    Article  Google Scholar 

  • Mishell, R., and Dutton, R., 1967, Immunization of dissociated spleen cells cultures from normal mice, J. Exp. Med. 126:424–442.

    Article  Google Scholar 

  • Morimoto, C., Reinherz, E., and Schlossman, S., 1981, Regulation of in vitro primary anti-DNP antibody production by functional subsets of T lymphocytes in man, J. Immunol. 127:69–73.

    Google Scholar 

  • Muraguchi, A., and Fauci, A., 1982, Proliferative responses of normal human B lymphocytes: Development of an assay system for human B cell growth factor (BCGF), J. Immunol. 129:1104–1108.

    Google Scholar 

  • Muraguchi, A., Butler, J., Kehrl, J., and Fauci, A., (1983), Differential sensitivity of human B cell subsets to activation signals delivered by anti-µ antibody and proliferative signals delivered by a monoclonal B cell growth factor, J. Exp. Med. 157:530–546.

    Article  Google Scholar 

  • Nilsson, K., Bennich, H., Johansson, S. G. O., and Ponten, J., 1970, Established immunoglobulin producing myeloma (IgE), Clin. Exp. Immunol. 7:477–489.

    Google Scholar 

  • Nishida, Y., Miki, T., Hisajima, H., and Honjo, T., 1982, Cloning of human immunoglobulin epsilon chain genes: Evidence for multiple C epsilon genes, Proc. Natl. Acad. Sci. USA 79:3833–3837.

    Article  Google Scholar 

  • Nowinski, R., Berglund, C., Lane, J., Lostrom, M., Bernstein, L, Young, W., and Hakomori, S., 1980, Human monoclonal antibody against Forssman antigen, Science 210:537–539.

    Article  Google Scholar 

  • Ochi, A., Hawley, R. G., Shulman, M. J., and Hoyuni, N-, 1983, Transfer of a cloned immunoglobulin light chain gene to mutant hybridoma cells restores specific antibody production, Nature 302: 340–342.

    Article  Google Scholar 

  • Oi, V. T., Morrison, S. L., Herzenberg, L. A., and Berg, P., 1983, Immunoglobulin gene expression in transformed lymphoid cells, Proc. Natl. Acad. Sci. USA 80:825–829.

    Article  Google Scholar 

  • Okada, M., Sakaguchi, N., Yoshimura, N., Hara, H., Shimizu, K., Yoshida, W, Shizaki, K., Kishimoto, S., Yamamura, Y., and Kishimoto, T., 1983, B cell growth factors and B cell differentiation factor from human T hybridomas, J. Exp. Med. 157:538–590.

    Article  Google Scholar 

  • Olsson, L., and Kaplan, H. S., 1980, Human/human hybridomas producing monoclonal antibodies of predefined antigenic specificity, Proc. Natl. Acad. Sci. USA 77:5429–5431.

    Article  Google Scholar 

  • Potter, M., Humphrey, J. G., and Walters, J. L., 1972, Growth of primary plasmacytomas in the mineral oil conditioned periotoneal environment, J. Natl. Cancer Inst. 49:305–308.

    Google Scholar 

  • Rabbitts, T. H., Bentley, D. L., and Milstein, C. P., 1981, Human antibody genes: V gene variability and CH gene switching strategies, Immunol. Rev. 59:69–91.

    Article  Google Scholar 

  • Ralph, P., and Kishimoto, T., 1981, Tumor promoter phorbol myristir oretak stimulates immunoglobulin secretion correlated with growth cessation in human B lymphocyte cell lines, J. Clin. Invest. 68:1093–1096.

    Article  Google Scholar 

  • Ravetch, J. V., Siebenlist, U., Korsmeyer, S., Waldmann, T., and Leder, P., 1981, Structure of the human immunoglobulin µ locus: Characterization of embryonic and rearranged J and D genes, Cell 27:583–591.

    Article  Google Scholar 

  • Reedman, B., and Klein, G., 1973, Cellular localization of an Epstein-Barr virus (EBV)-associated complement fixing antigen in producer and non-producer lymphoblastoid cell lines, Int. J. Cancer 11:499–520.

    Article  Google Scholar 

  • Rosen, A. S., Britton, B., Gergely, P., Jondal, M., and Klein, G., 1977, Polyclonal Ig production after Epstein-Barr virus infection of human lymphocytes in vitro, Nature 267:52–54.

    Article  Google Scholar 

  • Ruddle, F. H., 1974, Human genetic linkage and gene mapping by somatic cell genetics, in: Somatic Cell Hybridization (R. L. Davidson and F. F. de la Cruz, eds.), Raven Press, New York, pp. 1–12.

    Google Scholar 

  • Sato, K., Slesinski, R. S., and Littlefield, J. W., 1972, Chemical mutagenesis at the phosphoribosyltransferase locus in cultured human lymphoblasts, Proc. Natl. Acad. Sci. USA 69:1244–1248.

    Article  Google Scholar 

  • Schlom, J., Wunderlich, D., and Teramoto, Y. A., 1980, Generation of monoclonal antibodies reactive with human mammary carcinoma cells, Proc. Natl. Acad. Sci. USA 77:6841–6845.

    Article  Google Scholar 

  • Schoenfeld, Y., Hsu-Lin, S., Gabriels, J., Silberstein, L., Furie, B. C., Furie, B., Stollar, B., and Schwartz, R., 1982, Production of autoantibodies by human-human hybridomas, J. Clin. Invest. 70:205–208.

    Article  Google Scholar 

  • Schoenfeld, Y., Rauch, J., Massicotte, H., Datta, S., Schwartz, J., Stollar, D., and Schwartz, R. S., 1983, Polyspecificity of monoclonal lupus autoantibodies produced by human/human hybridomas, New Engl. J. Med. 308(8):414–420.

    Article  Google Scholar 

  • Schwaber, J., and Cohen, E. P., 1973, Human/mouse somatic cell hybrid clone secreting immunoglobulin of both parental types, Nature 244:444–447.

    Article  Google Scholar 

  • Sikora, K., and Phillips, J., 1981, Human monoclonal antibodies to glioma cells, Br. J. Cancer 43:105–107.

    Article  Google Scholar 

  • Sikora, K., and Wright, R., 1981, Human monoclonal antibodies to lung cancer antigens, Br. J. Cancer 43:696–700.

    Article  Google Scholar 

  • Sikora, K., Alderton, T., Phillips, J., and Watson, J., 1982, Human hybridomas from malignant gliomas, Lancet i:11.

    Article  Google Scholar 

  • Sredni, B., Sieckmann, D., Kumagai, S., House, S., Green, I., and Paul, W., 1981, Long term culture and cloning of nontransformed human B lymphocytes, J. Exp. Med. 154:1500–1516.

    Article  Google Scholar 

  • Stanbridge, E. J., Der, C. J., Doerson, C. J., Nishimi, R. Y., Peehl, D. M., Weissman, B. E., and Wilkinson, J. E., 1982, Human cell hybrids: Analysis of transformation and tumorigenicity, Science 215:252–259.

    Article  Google Scholar 

  • Stashenko, P., Nadler, L. M., Hardy, R., and Schlossman, S. F., 1980, Characterization of a human B lymphocyte-specific antigen, J. Immunol 125:1678–1685.

    Google Scholar 

  • Steinitz, M., 1981, Human monoclonal antibodies produced by Epstein-Barr virus-immortalized cell lines, in: Monoclonal Antibodies and T-Cell Hybridomas Perspectives and Technical Advances (G. J. Hammerling, U. Hammerling, and J. F. Kearney, eds.), Elsevier/North-Holland Biomedical Press, New York, pp. 447–452.

    Google Scholar 

  • Steinitz, M., and Tamir, S., 1982, Human monoclonal autoimmune antibody produced in vitro: Rheumatoid factor generated by Epstein-Barr virus-transformed cell line, Eur. J. Immunol. 12:126–133.

    Article  Google Scholar 

  • Steinitz, M., Klein, G., Koskimies, S., and Makela, O., 1977, EB virus-induced B lymphocyte cell lines producing specific antibody, Nature 269:420–22.

    Article  Google Scholar 

  • Steinitz, M., Koskimies, S., Klein, G., and Makela, O., 1979, Establishment of specific antibody producing human lines by antigen preselection and Epstein-Barr virus (EBV) transformation, J. Clin. Lab. Immunol. 2:1–7.

    Google Scholar 

  • Taylor, I. W., and Milthorpe, B. K., 1980, An evaluation of DNA fluorochrome, staining techniques, and analysis for flow cytometry, J. Histochem. Cytochem. 28:1224–1232.

    Article  Google Scholar 

  • Togawa, A., Inoue, N., Myamoto, K., Hyodo, H., and Namba, M., 1982, Establishment and characterization of a human myeloma cell line, Int. J. Cancer 29:495–500.

    Article  Google Scholar 

  • Tonegawa, S., 1983, Somatic generation of antibody diversity, Nature 302:575–581.

    Article  Google Scholar 

  • Tsuchiya, S., Yokoyama, S., Yoshie, O., and Ono, Y., 1980, Production of diphtheria antitoxin antibody in Epstein-Barr virus induced lymphoblastoid cell lines, J. Immunol. 124:1970–1976.

    Google Scholar 

  • Wetzel, G. D., Swain, S. L., and Dutton, R. W., 1982, A monoclonal T cell-replacing activity can act directly on B cells to enhance clonal expansion, J. Exp. Med. 156:306–311.

    Article  Google Scholar 

  • Whitlock, C. A., and Witte, O. N., 1982, Long-term culture of B lymphocytes and their precursors from murine bone marrow, Proc. Natl. Acad. Sci. USA 79:3608–3612.

    Article  Google Scholar 

  • Zurawski, V., Black, P., and Haber, E., 1980, Continuously proliferating human cell lines synthesizing antibody of predetermined specificity, in: Monoclonal Antibodies. Hybridomas: A New Dimension in Biological Analyses (R. H. Kennett, T. J. McKearn, and K. Bechtol, eds.), Plenum Press, New York, pp. 19–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Buck, D.W. et al. (1984). Production of Human Monoclonal Antibodies. In: Kennett, R.H., Bechtol, K.B., McKearn, T.J. (eds) Monoclonal Antibodies and Functional Cell Lines. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4673-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4673-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4675-3

  • Online ISBN: 978-1-4684-4673-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics