Skip to main content

Neurospora crassa: A Unique System for Studying Circadian Rhythms

  • Chapter
Photochemical and Photobiological Reviews

Abstract

Progress in a particular field of biology has often been the result of the development of an organism or system especially well suited to research on that problem. The value of E. coli to molecular biology, the mammalian red blood cell to membrane biochemistry, and the oat coleoptile to plant physiology has been well-documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkinson, D. E., 1968, The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers, Biochemistry 7:4030–4034.

    Google Scholar 

  • Atkinson, D. E., 1970, Adenine nucleotides as universal stoichiometric metabolic coupling agents, Advances in Enzyme Regulation, 19:207–219.

    Google Scholar 

  • Beavo, J. A., Rogers, N. L., Crofford, O. B., Hardman, J. G., Sutherland, E. W., and Newman, E. V., 1970, Effects of xanthine derivatives on lipolysis and on adenosine 3′,5′ monophosphate phosphodiesterase activity, Mol. Pharmacol. 6:597–603.

    Google Scholar 

  • Bitz, D. M., and Sargent, M. L., 1974, A failure to detect an influence of magnetic fields on the growth rate and circadian rhythm of Neurospora crassa, Plant Physiol. 53:154–157.

    Google Scholar 

  • Bonner, J. T., Hall, E. M., Noller, S., Oleson, F. B., Jr., Roberts, A. B., 1972, Synthesis of cyclic AMP and phosphodiesterase in various species of cellular slime molds and its bearing on Chemotaxis and differentiation, Dev. Biol. 29:402–409.

    Google Scholar 

  • Borst, P., Loos, J. A., Christ, E. J., and Slater, E. C., 1962, Uncoupling activity of long-chain fatty acids, Biochim. Biophys. Acta 62:509–518.

    Google Scholar 

  • Botstein, D., and Jones, E. W., 1969, Nonrandom mutagenesis of the Escherichia coli genome by nitrosoguanidine, J. Bacteriol. 98:847–848.

    Google Scholar 

  • Bowman, B. J., Mainzer, S. F., Allen, K. E., and Slayman, C. W., 1978, Effects of inhibitors on the plasma membrane and mitochondrial adenosine triphosphatases of Neurospora crassa, Biochim. Biophys. Acta 512:13–28.

    Google Scholar 

  • Brain, R. D., Freeberg, J., Weiss, C. V., and Briggs, W. R., 1977a, Blue-light induced absorbance changes in membrane fractions from corn and Neurospora, Plant Physiol. 59:948–952.

    Google Scholar 

  • Brain, R., Woodward, D. O., and Briggs, W. R., 1977b, Correlative studies of light sensitivity and cytochrome content in Neurospora crassa, Carnegie Inst. Wash. Yearbook 1976, pp. 295–299.

    Google Scholar 

  • Brandt, William H., 1953, Zonation in a prolineless strain of Neurospora, Mycologia 45:194–208.

    Google Scholar 

  • Briggs, W. R., 1976, The nature of the blue light photoreceptor in higher plants and fungi, in: Light and Plant Development (H. Smith, ed.), pp. 7–18, Butterworths, Boston.

    Google Scholar 

  • Brody, S., 1973, Circadian oscillations of pyridine nucleotide levels and ratios in Neurospora, Abstr., Ann. Mtg. Am. Soc. Microbiol., p. 38.

    Google Scholar 

  • Brody, S., 1981, Oligomycin-resistant mutations in the DCCD-binding protein of the mitochondrial ATPase affect the circadian rhythm of Neurospora, Fed. Proc. 40:1734.

    Google Scholar 

  • Brody, S., and Forman, L., 1980, Interactions between exogenous fatty acids and mitochondria in Neurospora crassa, Abstr., Ann. Mtg. Am. Soc. Microbiol., K185.

    Google Scholar 

  • Brody, S., and Harris, S., 1973, Circadian rhythms in Neurospora: spatial differences in pyridine nucleotide levels, Science 180:498–500.

    Google Scholar 

  • Brody, S., and Martins, S., 1973, Effects of morphological and auxotrophic mutations on the circadian rhythm of Neurospora crassa, Genetics 74:S31.

    Google Scholar 

  • Brody, S., and Martins, S. A., 1976, Circadian rhythms in Neurospora: the role of unsaturated fatty acids, in: The Molecular Basis of Circadian Rhythms (J. W. Hastings and H. G. Schweiger, eds.), pp. 245–246, Dahlem Konferenzen, Berlin.

    Google Scholar 

  • Brody, S., and Martins, S. A., 1979, Circadian rhythms in Neurospora crassa: effects of unsaturated fatty acids, J. Bacteriol. 137:912–915.

    Google Scholar 

  • Bunning, E., 1973, The Physiological Clock, Third Ed. Springer-Verlag, New York.

    Google Scholar 

  • Costantini, M. G., Sturani, E., Ghersa, P., and Alberghina, L., 1978, Effects of caffeine on RNA and protein synthesis in Neurospora crassa, Exp. Mycol. 2:366–376.

    Google Scholar 

  • Criddle, R. S., Edwards, T. L., Partis, M., and Griffiths, D. E., 1977, Association of pantothenic acid with a protein subunit of yeast mitochondrial ATPase, FEB S Lett. 84:278–282.

    Google Scholar 

  • Cummings, F. W., 1975, A biochemical model of the circadian clock, J. Theor. Biol. 55:455–470.

    Google Scholar 

  • Davis, R. H., and deSerres, F. J., 1970, Genetic and microbiological research techniques for Neurospora crassa, Methods Enzymol. 17A:79–143.

    Google Scholar 

  • Delmer, D. P., and Brody, S., 1973, Periodic changes in the energy charge state of a circadian rhythm mutant of Neurospora crassa, Abstr., Ann. Mtg. Am. Soc. Microbiol., p. 38.

    Google Scholar 

  • Delmer, D. P., and Brody, S., 1975, Circadian rhythms in Neurospora crassa: Oscillation in the level of an adenine nucleotide, J. Bacteriol. 121:548–553.

    Google Scholar 

  • Dharmananda, S., 1980, Studies on the circadian clock of Neurospora crassa: Light-induced phase shifting, Ph.D. Thesis, Univ. of Calif., Santa Cruz.

    Google Scholar 

  • Dharmananda, S. and Feldman, J. F., 1979, Spatial distribution of circadian clock phase in aging cultures of Neurospora crassa, Plant Physiol. 63:1049–1054.

    Google Scholar 

  • Dieckmann, C., 1980, Circadian rhythms in Neurospora crassa: a biochemical and genetic study of the involvement of mitochondrial mtabolism in periodicity, Ph.D. Thesis, Univ. of Calif., San Diego.

    Google Scholar 

  • Dieckmann, C., and Brody, S., 1979, Circadian rhythms in Neurospora: Oligomycin-re-sistant mutants, Abstr., Ann. Mtg. Am. Soc. Microbiol., p. 159.

    Google Scholar 

  • Dieckmann, C., and Brody, S., 1980, Circadian rhythms in Neurospora crassa: Oligomycin-resistant mutations affect periodicity, Science 207:896–898.

    Google Scholar 

  • Dunlap, J. C., and Feldman, J., 1982, Frq-7, a circadian clock mutant whose clock is insensitive to cycloheximide, Neurospora Newsletter 29:12.

    Google Scholar 

  • Edwards, D. L., and Unger, B. W., 1978, Nuclear mutations conferring oligomycin resistance in Neurospora crassa, J. Biol. Chem. 253:4254–4258.

    Google Scholar 

  • Elovson, J., 1975, Purification and properties of the fatty acid synthetase complex from Neurospora crassa, and the nature of the fas- mutation. J. Bacteriol. 124:524–533.

    Google Scholar 

  • Engelmann, W., and Schrempf, M., 1980, Membrane models of circadian rhythms, Photochem. Photobiol. 5:49–86.

    Google Scholar 

  • Feldman, J. F., 1967a, Biochemical and Physiological Studies on the Circadian Clock of Euglena, PhD Thesis, Princeton Univ., Princeton, New Jersey.

    Google Scholar 

  • Feldman, J. F., 1967b, Lengthening the period of a biological clock in Euglena by cycloheximide, an inhibitor of protein synthesis, Proc. Natl. Acad. Sci. USA 57:1080–1087.

    Google Scholar 

  • Feldman, J. F., 1975, Circadian periodicity in Neurospora: alteration by inhibitors of cyclic AMP phosphodiesterase, Science 190:789–790.

    Google Scholar 

  • Feldman, J. F., 1982, Genetic approaches to circadian clocks, Annu. Rev. Plant Physiol. 33:583–608.

    Google Scholar 

  • Feldman, J. F., and Atkinson, C. A., 1978, Genetic and physiological characteristics of a slow-growing circadian clock mutant of Neurospora crassa, Genetics 88:255–265.

    Google Scholar 

  • Feldman, J. F., and Hoyle, M. N., 1973, Isolation of circadian clock mutants of Neurospora crassa, Genetics 75:605–613.

    Google Scholar 

  • Feldman, J. F., and Hoyle, M. N., 1974, A direct comparison between circadian and non-circadian rhythms in Neurospora crassa, Plant Physiol. 53:928–930.

    Google Scholar 

  • Feldman, J. F., and Hoyle, M. N., 1976, Complementation analysis of linked circadian clock mutants in Neurospora, Genetics 82:9–17.

    Google Scholar 

  • Feldman, J. F., and Widelitz, R., 1977, Manipulation of circadian periodicity in cysteine auxotrophs of Neurospora crassa, Abstr., Ann. Mtg. Am. Soc. Microbiol, p. 125.

    Google Scholar 

  • Feldman, J. F., Gardner, G. F., and Denison, R. A., 1979, Genetic analysis of the circadian clock of Neurospora, in: Biological Rhythms and Their Central Mechanisms (M. Suda et al., eds.), pp. 57–66, North-Holland/Else vier Biomedical Press, Amsterdam.

    Google Scholar 

  • Francis, C. D., and Sargent, M. L., 1979, Effects of temperature perturbations on circadian conidiation in Neurospora, Plant Physiol. 64:1000–1004.

    Google Scholar 

  • Frelinger, J. G., Motulsky, H., and Woodward, D. O., 1976, Effects of chloramphenicol on the circadian rhythm of Neurospora crassa, Plant Physiol. 58:592–594.

    Google Scholar 

  • Gardner, G. F., and Feldman, J. F., 1980, The frq locus of Neurospora crassa: a key element in circadian clock organization, Genetics 96:877–886.

    Google Scholar 

  • Gardner, G. F. and Feldman, J. F., 1981, Temperature compensation of circadian periodicity in clock mutants of Neurospora crassa, Plant Physiol. 68:1244–1248.

    Google Scholar 

  • Gottlieb, D., and Shaw, P. D., 1970, Mechanism of action of antifungal antibiotics, Annu. Rev. Phytopath. 8:371–402.

    Google Scholar 

  • Grindle, M., 1973, Sterol mutants of Neurospora crassa: their isolation, growth characteristics, and resistance to polyene antibiotics, Mol. Gen. Genet. 120:283–290.

    Google Scholar 

  • Halaban, R., and Feldman, J. F., 1973a, Circadian periodicity in acetate nonutilizing mutants of Neurospora crassa, Neurospora Newsletter 20:20.

    Google Scholar 

  • Halaban, R., and Feldman, J. F., 1973b, An acetate-requiring mutant of Neurospora crassa with an unusual rhythmic growth pattern, Genetics 74:S104–105.

    Google Scholar 

  • Harding, R., 1974, The effect of temperature on photo-induced carotenoid biosynthesis in Neurospora crassa, Plant Physiol. 54:142–147.

    Google Scholar 

  • Hastings, J. W., 1960, Biochemical aspects of rhythms: phase shifting by chemicals, Cold Spring Harbor Symp. Quant. Biol. 25:131–140.

    Google Scholar 

  • Hastings, J. W., and Schweiger, H.-G. (eds), 1976, The Molecular Basis of Circadian Rhythms, Dahlem Konferenzen, Berlin.

    Google Scholar 

  • Henry, S. A., and Keith, A. D., 1971, Saturated fatty acid requirer of Neurospora crassa, J. Bacteriol. 106:174–182.

    Google Scholar 

  • Hochberg, M. L., and Sargent, M. L., 1974, Rhythms of enzyme activity associated with circadian conidiation in Neurospora crassa, J. Bacteriol. 120:1164–1175.

    Google Scholar 

  • Jacklet, J., 1981, Circadian timing by endogenous oscillators in the nervous system: toward cellular mechanisms, Biol. Bull. 160:199–227.

    Google Scholar 

  • Karakashian, M. W., and Hastings, J. W., 1963, The effects of inhibitors of macromolecular biosynthesis upon the persistent rhythm of luminescence in Gonyaulax, J. Gen. Physiol. 47:1–12.

    Google Scholar 

  • Klemm, E., and Ninnemann, H., 1979, Nitrate reductase—key enzyme in blue light promoted conidiation and absorbance change of Neurospora, Photochem. Photobiol. 29:629–632.

    Google Scholar 

  • Konopka, R., 1981, Genetics and development of circadian rhythms in invertebrates, in: Handbook of Behavioral Neurobiology (J. Aschoff, ed.), Vol. 4, pp. 173–181, Plenum Press, New York.

    Google Scholar 

  • Lakin-Thomas, P. L., and Brody, S., 1981, Circadian rhythms in Neurospora: Additive and non-additive gene interactions, J. Cell Biol. 91:20a.

    Google Scholar 

  • Lowry, O. H., Passonneau, J. V., Schultz, D. W., and Rock, M. K., 1961, The measurement of pyridine nucleotides by enzymatic cycling, J. Biol. Chem. 236:2746–2755.

    Google Scholar 

  • Martens, C. L., and Sargent, M. L., 1973, Circadian rhythms of nucleic acid metabolism in Neurospora crassa, J. Bacteriol. 177:1210–1215.

    Google Scholar 

  • Marzluf, G., 1981, Regulation of nitrogen metabolism and gene expression in fungi, Microbiol. Rev. 45:437–461.

    Google Scholar 

  • Mattern, D., and Brody, S., 1979, Circadian rhythms in Neurospora crassa: Effects of saturated fatty acids, J. Bacteriol. 139:977–983.

    Google Scholar 

  • Mattern, D. L., Forman, L. R., and Brody, S., 1982, Circadian rhythms in Neurospora crassa: A mutation affecting temperature compensation, Proc. Natl. Acad. Sci. USA 79:825–829.

    Google Scholar 

  • Means, A. R., and Dedham, J. R., 1980, Calmodulin: an intracellular calcium receptor, Nature 285:73–77.

    Google Scholar 

  • Mishra, N. C., 1977, Genetics and biochemistry of morphogenesis in Neurospora, Adv. Genet. 19:341–405.

    Google Scholar 

  • Nakashima, H., 1981, A liquid culture method for the biochemical analysis of the circadian clock of Neurospora crassa, Plant Cell Physiol. 22:231–238.

    Google Scholar 

  • Nakashima, H., 1982a, Effects of membrane ATPase inhibitors on light-induced phase shifting of the circadian clock in Neurospora crassa, Plant Physiol. 69:619–623.

    Google Scholar 

  • Nakashima, H., 1982b, Phase shifting of the circadian clock by diethylstilbestrol and related compounds in Neurospora crassa, Plant Physiol. 70:982–986.

    Google Scholar 

  • Nakashima, H., and Feldman, J. F., 1980, Temperature sensitivity of light-induced phase shifting of the circadian clock of Neurospora, Photochem. Photobiol. 32:247–252.

    Google Scholar 

  • Nakashima, H., and Fujimora, Y., 1982, Light-induced phase shifting of the carcadian clock in Neurospora crassa requires ammonium salts at high pH, Planta 155:431–436.

    Google Scholar 

  • Nakashima, H., Perlman, J., and Feldman, J. F., 1981a, Cycloheximide-induced phase shifting of the circadian clock of Neurospora, Am. J. Physiol. 241:R31–R35.

    Google Scholar 

  • Nakashima, H., Perlman, J., and Feldman, J. F., 1981b, Genetic evidence that protein synthesis is required for the circadian clock of Neurospora, Science 212:361–362.

    Google Scholar 

  • Nelson, R. E., Selitrennikoff, C. P., and Siegel, R. W., 1975, Mutants of Neurospora deficient in nicotinamide adenine dinucleotide (phosphate) glycohydrolase, J. Bacteriol. 122:695–709.

    Google Scholar 

  • Ninnemann, H., 1979, Photoreceptors for circadian rhythms, Photochem. Photobiol. Rev. 4:207–265.

    Google Scholar 

  • Ninnemann, H., and Klemm-Wolfgramm, E., 1980, Blue light controlled conidiation and absorbance change in Neurospora mediated by nitrate reductase, in: The Blue Light Syndrome (H. Senger, ed.), pp. 238–243, Springer, Berlin.

    Google Scholar 

  • Njus, D., Sulzman, F. M., and Hastings, J. W., 1974, Membrane model for the circadian clock, Nature 248:116–120.

    Google Scholar 

  • O’Farrell, P., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem. 250:4007–4021.

    Google Scholar 

  • Paietta, J., and Sargent, M. L., 1981, Photoreception in Neurospora crassa: correlation of reduced light sensitivity with flavin deficiency, Proc. Natl. Acad. Sci. USA 78:5573–5577.

    Google Scholar 

  • Paietta, J., and Sargent, M. L., 1982, Blue light responses in nitrate reductase mutants of Neurospora crassa, Photochem. Photobiol. 35:853–855.

    Google Scholar 

  • Paietta, J., and Sargent, M. L., 1983a, Modification of blue light photoresponses by riboflavin analogs in Neurospora crassa, Plant Physiol, (in press).

    Google Scholar 

  • Paietta, J., and Sargent, M. L., 1983b, Isolation and characterization of light insensitive mutants of Neurospora crassa, Genetics (in press).

    Google Scholar 

  • Pastan, I., 1972, Cyclic AMP, Sci. Am. 227:97–105.

    Google Scholar 

  • Pavlidis, T., Zimmerman, W. F., and Osborn, J., 1968, A mathematical model for the temperature effects on circadian rhythms,J. Theor, Biol. 18:210–221.

    Google Scholar 

  • Pendyala, L., Smyth, J., and Wellman, A. M., 1979, Nature of 6-methylpurine inhibition and characterization of two 6-methylpurine-resistant mutants of Neurospora crassa, J. Bacteriol. 137:248–255.

    Google Scholar 

  • Perkins, D. D., and Barry, E. G., 1977, The cytogenetics of Neurospora, Adv. Genet. 19:133–285.

    Google Scholar 

  • Perkins, D. D., Glassey, M., and Bloom, B. A., 1962, New data on markers and rearrangements in Neurospora, Am. J. Genet. Cytol. 4:187–205.

    Google Scholar 

  • Perlman, J., 1981, Physiological and biochemical studies of circadian rhythmicity in Neurospora crassa, Ph.D. Thesis, Univ. of Calif., Santa Cruz.

    Google Scholar 

  • Perlman, J., Nakashima, H., and Feldman, J. F., 1981, Assay and characteristics of circadian rhythmicity in liquid cultures of Neurospora crassa, Plant Physiol. 67:404–407.

    Google Scholar 

  • Pittendrigh, C. S., 1960, Circadian rhythms and the circadian organization of living systems, Cold Spring Harbor Symp. Quant. Biol. 25:159–184.

    Google Scholar 

  • Pittendrigh, C. S., 1967, Circadian systems. I. The driving oscillator and its assay in Dro-sophila pseudoobscur a, Proc. Natl. Acad. Sci. USA 58:1762–1767.

    Google Scholar 

  • Pittendrigh, C. S., 1974, Circadian oscillations in cells and the circadian organization of multicellular systems, in: The Neurosciences, Third Study Program (F. O. Schmidt and F. G. Worden, eds.), pp. 437–458, MIT Press, Cambridge.

    Google Scholar 

  • Pittendrigh, C. S., Bruce, V. G., Rosenzweig, N. S., and Rubin, M. L., 1959, A biological clock in Neurospora, Nature 184:169–170.

    Google Scholar 

  • Pittendrigh, C. S., and Caldarola, P. C., 1973, General homeostasis of the frequency of circadian oscillations, Proc. Natl. Acad. Sci. USA 70:2697–2701.

    Google Scholar 

  • Roeder, P. E., Sargent, M. L., and Brody, S., 1982, Circadian rhythms in Neurospora eras sa: oscillations in fatty acids, Biochemistry 21:4909–4916.

    Google Scholar 

  • Ross, E. M., and Gilman, A. G., 1980, Biochemical properties of hormone-sensitive adenylate cyclase, Annu. Rev. Biochem. 49:533–564.

    Google Scholar 

  • Rusak, B., 1979, Neural mechanisms for entrainment and generation of mammalian circadian rhythms, Fed. Proc. 38:2589–2595.

    Google Scholar 

  • Sargent, M. L., 1969, Response of Neurospora to various antibiotics and other toxic chemicals, Neurospora Newsletter 5:17.

    Google Scholar 

  • Sargent, M. L., and Briggs, W. R., 1967, The effects of light on a circadian rhythm of conidiation in Neurospora, Plant Physiol. 42:1504–1510.

    Google Scholar 

  • Sargent, M. L., and Kaltenborn, S. H., 1972, Effects of medium composition and carbon dioxide on circadian conidiation in Neurospora, Plant Physiol. 50:171–175.

    Google Scholar 

  • Sargent, M. L., and Woodward, D. O., 1969, Genetic determinants of circadian rhythmicity in Neurospora, J. Bacteriol. 97:861–866.

    Google Scholar 

  • Sargent, M. L., Briggs, W. R., and Woodward, D. O., 1966, The circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa, Plant Physiol. 41:1343–1349.

    Google Scholar 

  • Sargent, M. L., Ashkenazi, I. E., Bradbury, E. M., Bruce, V. G., Ehret, C. F., Feldman, J. F., Karakashian, M. W., Konopka, R. J., and Mergenhagen, D., 1976, The role of genes and their expression: group report, in: The Molecular Basis of Circadian Rhythms (J. W. Hastings and H. G. Schweiger, eds.), pp. 295–310, Dahlem Konferenzen, Berlin.

    Google Scholar 

  • Schmit, J. C., and Brody, S., 1976, Biochemical genetics of Neurospora crassa conidial germination, Bacteriol. Rev. 40:1–41.

    Google Scholar 

  • Scott, W. A., 1976a, Biochemical genetics of morphogenesis in Neurospora, Annu. Rev. Microbiol. 30:85–104.

    Google Scholar 

  • Scott, W. A., 1976b, Adenosine 3′:5′-cyclic monophosphae deficiency in Neurospora crassa, Proc. Natl. Acad. Sci. USA 73:2995–2999.

    Google Scholar 

  • Scott, W. A., and Solomon, B., 1973, Cyclic 3′,5′-AMP phosphodiesterase of Neurospora crassa, Biochem. Biophys. Res. Commun. 53:1024–1030.

    Google Scholar 

  • Scott, W. A., and Solomon, B., 1975, Adenosine 3′,5′-cyclic monophosphate and morphology in Neurospora crassa: Drug-induced alterations,J. Bacteriol. 122:454–463.

    Google Scholar 

  • Sebald, W., Sebald-Athaus, M., and Wächter, E., 1977, Altered amino acid sequence of the DCCD-binding protein in the nuclear oligomycin-resistant mutant AP-2 from Neurospora crassa, in: Genetics and Biogenesis of Mitochondria (F. Kaudewitz, R. Schweyen, W. Bandlow, and K. Wolf, eds.), DeGruyter, Berlin.

    Google Scholar 

  • Selitrennikoff, C., Nelson, R. E., and Siegel, R. W., 1974, Phase-specific genes for macro-conidiation in Neurospora crassa, Genetics 78:679–690.

    Google Scholar 

  • Serna, L., and Stadler, D., 1978, Nuclear division cycle in germinating conidia of Neurospora crassa, J. Bacteriol. 136:341–351.

    Google Scholar 

  • Slayman, C. W., and Tatum, E. L., 1964, Potassium transport in Neurospora. I. Intracellular sodium and potassium concentrations, and cation requirements for growth Biochim. Biophys. Acta 88:578–592.

    Google Scholar 

  • Stadler, D. R., 1959, Genetic control of a cyclic growth pattern in Neurospora, Nature 184:170–171.

    Google Scholar 

  • Sussman, A. S., Lowry, R. J., and Durkee, T., 1964, Morphology and genetics of a periodic colonial mutant of Neurospora crassa, Am. J. Bot. 51:243–252.

    Google Scholar 

  • Sweeney, B. M., 1974, A physiological model for circadian rhythms derived from the Ace-tabularia rhythm paradoxes, Int. J. Chronobiol. 2:25–33.

    Google Scholar 

  • Sweeney, B. M., 1979, Bright light does not immediately stop the circadian clock of Gonyaulax, Plant Physiol. 64:341–344.

    Google Scholar 

  • Takahashi, J. S., and Menaker, M., 1979, Physiology of avian circadian pacemakers, Fed. Proc. 38:2583–2588.

    Google Scholar 

  • Taylor, W., and Feldman, J., 1982, Nutritional manipulation of circadian period length of auxotrophic mutants, Neurospora Newsletter 29:12.

    Google Scholar 

  • Terenzi, H. F., Flawia, M. M., and Torres, H. N., 1974, A Neurospora crassa morphological mutant showing reduced adenylate cyclase activity, Blochem. Biophys, Res. Commun. 58:990–996.

    Google Scholar 

  • Turian, G., and Bianchi, D. E., 1972, Conidiation in Neurospora, Bot. Rev. 38:119–154.

    Google Scholar 

  • West, D. J., 1975, Effects of pH and biotin on a circadian rhythm of conidiation in Neurospora crassa, J. Bacteriol. 123:387–389.

    Google Scholar 

  • West, D. J., 1976, Phase shift of the circadian rhythm of conidiation in response to ultraviolet light, Neurospora Newsletter 23:17–18.

    Google Scholar 

  • Woodward, D. O., and Sargent, M. L., 1973, Circadian rhythms in Neurospora, in: Behaviour of Microorganisms (A. Perez-Miravete, ed.), pp. 282–296, Plenum Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Feldman, J.F., Dunlap, J.C. (1983). Neurospora crassa: A Unique System for Studying Circadian Rhythms. In: Smith, K.C. (eds) Photochemical and Photobiological Reviews. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4505-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4505-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4507-7

  • Online ISBN: 978-1-4684-4505-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics