Skip to main content

Mosaic Evolution in the Primate Brain: Differences and Similarities in the Hominoid Thalamus

  • Chapter
Primate Brain Evolution

Abstract

Development of evolutionary hypotheses about the brain or central nervous system (CNS) in any particular taxon depends on solid comparative neurobiological data. Differences among closely related species are likely to be quantitative, and in comparative neuroanatomy a histological technique amenable for quantitative comparisons is a Nissl stain that colors all neuronal perikarya and glial nuclei. Nissl-stained serial sections throughout the brain permit identification of discrete populations of neurons according to their cytoarchitecture, i.e., the arrangement, orientation, density, and coloring features of the nerve cells. Measurements on and within architecturally distinct regions called nuclei or laminae can then be made (Armstrong, 1979; Bauchot, this volume; Zilles et al., this volume; Galaburda and Pandya, this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amaral, D.G. and Cowan W.M., 1980, Subcortical afférents to the hippocampal formation in the monkey. J. Comp. Neurol., 189:573–591.

    Article  Google Scholar 

  • Andrew, J. and Watkins, E.S., 1969. A Stereotaxic Atlas of the Human Thalamus and Adjacent Structures: a Variability Study, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Andy, O.J. and Stephan, H., 1976. Septum development in primates. In, The Septal Nuclei, J.F. De France, ed., Adv. in Behav. Bio., Vol. 20, Plenum, New York, pp. 3–36.

    Google Scholar 

  • Armstrong, E., 1976. A quantitative comparison of the hominoid thalamus. Unpublished Ph. D. dissertation: Columbia University.

    Google Scholar 

  • Armstrong, E., 1979, A quantitative comparison of the hominoid thalamus: I. Specific sensory relay nuclei. Am. J. Phys. Anthrop. 52:405–419.

    Article  Google Scholar 

  • Armstrong, E., 1980a, A quantitative comparison of the hominoid thalamus: II. Limbic nuclei anterior principalis and lateralis dorsalis. Am. J. Phys. Anthrop. 52:43–54.

    Article  Google Scholar 

  • Armstrong, E., 1980b, A quantitative comparison of the hominoid thalamus: III. A motor substrate — the ventrolateral complex. Am. J. Phys. Anthrop. 52:405–419.

    Article  Google Scholar 

  • Armstrong, E., 1981, A quantitative comparison of the hominoid thalamus: IV. Posterior association nuclei — the pulvinar and lateral posterior nucleus. Am. J. Phys. Anthrop., 55:369–383.

    Article  Google Scholar 

  • Bauchot, R., 1963. L’architectonique comparée, qualitative et quantitative, du diencéphale des insectivores. Mammalia, 27: Suppl. 1, pp. 1-400.

    Google Scholar 

  • Bauchot, R., 1979, Indices encéphaliques et distances interspécifiques chez les insectivores et les primates. II. Diencéphale et thalamus. Mammalia, 43:407–426.

    Article  Google Scholar 

  • Blinkov, S.M., and Glezer, I.I., 1968. The Human Brain in Figures and Tables, Plenum Press, New York, p. 227.

    Google Scholar 

  • Blinkov, S., and Zvorykin, V.P., 1950. Dimensions of the auditory cortex and the medial geniculate body in man and monkeys. Referred to in, The Human Brain in Figures and Tables, S.M. Blinkov and I.I. Glezer, eds., Basil Haigh, trans., Plenum Press, New York, 1968, pp. 225-226 and 410-412.

    Google Scholar 

  • Bok, S.T., 1959. Histonomy of the Cerebral Cortex, Van Nostrand-Rinehold, Princeton, N.J.

    Google Scholar 

  • Brady, J.V., 1960. Emotional behavior. In, Handbook of Physiology, Section I, J. Field, ed., Neurophysiology, Vol. III, American Physiological Society, Washington, D.C., pp. 1529–1552.

    Google Scholar 

  • Chalupa, L.M., 1977, A review of cat and monkey studies implicating the pulvinar in visual function. Behav. Biol., 20:149–167.

    Article  Google Scholar 

  • Chow, K.L., 1951, Numerical estimates of the auditory central nervous system of the rhesus monkey. J. Comp. Neurol., 95:159–175.

    Article  Google Scholar 

  • Chow, K.L., Blum, J.S., and Blum, K.A., 1950, Cell ratios in the thalamocortical visual system of Macaca mulatta. J. Comp. Neurol., 92:227–239.

    Article  Google Scholar 

  • Curtiss, S., 1977. Genie: A Psycholinguistic Study of a Modern Day “Wild Child,” Academic Press, New York.

    Google Scholar 

  • Elder, J.H., 1934, Auditory acuity of the chimpanzee. J. Comp. Psychol., 17:157–183.

    Article  Google Scholar 

  • Farrer, D.N., and Prim, M.M., 1965. A preliminary report on auditory frequency threshold comparison of humans and pre-adolescent chimpanzees. Aeromedical Research Laboratory Technical Report, Holloman AFB, New Mexico, pp. 65-66.

    Google Scholar 

  • Farrer, D.N., and Young, F.A., 1970. Chimpanzee color vision, acuity, and ocular components. In, The Chimpanzee, Vol. 2, G. Bourne, ed., Karger, Basel, pp. 16-25.

    Google Scholar 

  • Feremutsch, K., 1963, Thalamus. Primatologia, 2:1–226.

    Google Scholar 

  • Freud, S., 1930. Civilization and Its Discontents, Hogarth Press, London.

    Google Scholar 

  • Gould, J.C., and Gould, C.G., 1981, The instinct to learn. Science 81, 2:44–50.

    Google Scholar 

  • Grether, W.F., 1941, Spectral saturation curves for chimpanzees and man. J. Exp. Psychol., 28:419–427.

    Article  Google Scholar 

  • Grether, W.F., 1942, The magnitude of simultaneous color contrast and simultaneous brightness contrast for chimpanzee and man. J. Exp. Psychol., 30:69–83.

    Article  Google Scholar 

  • Harting, J.K., Hall, W.C., and Diamond, I.T., 1972, Evolution of the pulvinar. Brain Behav. Evol., 6:424–452.

    Article  Google Scholar 

  • Hassler, R., 1959. Anatomy of the thalamus. In, Introduction to Stereotaxis with an Atlas to the Human Brain. Grune and Stratton, New York, pp. 230–290.

    Google Scholar 

  • Haug, H., 1972, Stereological methods in the analysis of neuronal parameters in the central nervous system. J. Micros., 95:165–180.

    Article  Google Scholar 

  • Heiner, J.R., 1960, A reconstruction of the diencephalic nuclei of the chimpanzee. J. Comp. Neurol., 114:217–238.

    Article  Google Scholar 

  • Hirsh, R., Davis, R.E., and Holt, L., 1979, Fornix-thalamus fibers motivational states, and contextual retrieval. Exp. Neurol., 65:373–390.

    Article  Google Scholar 

  • Holloway, R.L., Jr., 1968, The evolution of the primate brain: some aspects of quantitative relations. Brain Res., 7:121–172.

    Article  Google Scholar 

  • Holloway, R.L., Jr., 1970. Neural parameters, hunting, and the evolution of the human brain. In, The Primate Brain, C.R. Noback and W. Montagna, eds., Appleton-Century-Crofts, New York, pp. 299–310.

    Google Scholar 

  • Holloway, R.L., Jr., 1975. The Role of Human Social Behavior in the Evolution of the Brain. 43rd James Arthur Lecture, 1973, American Museum of Natural History, New York.

    Google Scholar 

  • Holloway, R.L., Jr., 1979. Brain size allometry and reorganization: toward a synthesis. In, Development and Evolution of Brain Size, M.E. Hahn, C. Jensen and B.C. Dudek, eds., Academic Press, New York, pp. 61–88.

    Google Scholar 

  • Hopf, A., 1965, Volumetrische Untersuchungen zur vergleichenden Anatomie des Thalamus. J. f. Hirnforschung, 8:25–38.

    Google Scholar 

  • Hsu, F.L.K., 1979, The cultural problem of the cultural anthropologist. Am. Anthrop., 81:517–532.

    Article  Google Scholar 

  • Jerison, H.J., 1973. Evolution of the Brain and Intelligence, Academic Press, New York.

    Google Scholar 

  • Kanagasuntheram, J. and Wong, W.C., 1968, Nuclei of the diencephalon of Hylobatidae. J. Comp. Neurol., 134:265–286.

    Article  Google Scholar 

  • Kievit, J., and Kuypers, H.G.J.M., 1977, Organization of the thalamocortical connexions to the frontal lobe in the rhesus monkey. Exp. Brain Res., 29:299–322.

    Article  Google Scholar 

  • Krayniak, P.F., Siegel, A., Meibach, R.C., Fruchtman, D., and Scrimenti, M., 1979, Origin of the fornix system in the squirrel monkey. Brain Res., 160:401–411.

    Article  Google Scholar 

  • Kuhlenbeck, H., 1954. The Human Diencephalon, Karger, New York.

    Google Scholar 

  • Kurepina, M.M., 1938. Structure and phylogenetic development of the thalamus in primates. Arkh. Biol. Nasuk., 49:116. In, The Human Brain in Figures and Tables, S.M. Blinkov and I.I. Glezer, eds., B. Haigh, trans., 1968, Plenum Press, New York.

    Google Scholar 

  • Le Gros Clark, W.E., 1941, The laminar organization and cell content of the lateral geniculate body in the monkey. J. Anat., 75:419–433.

    Google Scholar 

  • Le Gros Clark, W.E., 1959. The Antecedents of Man, Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Lovejoy, C.O., 1981, The origin of man. Science, 21:341–350.

    Article  Google Scholar 

  • MacLean, P.D., 1952, Some psychiatric implications of physiological studies on the frontotemporal portion of the limbic system (visceral brain). Electroencep. Clin. Neurol., 4:407–418.

    Article  Google Scholar 

  • MacLean, P.D., 1973. A triune concept of the brain and behavior. In, The Hincks Memorial Lectures, T. Boag and D. Campbell, eds., University of Toronto Press, Toronto, pp. 6–66.

    Google Scholar 

  • Mayer, O., 1912. Mikrometrische Untersuchungen über Zelldichtigkeit der Grosshirnrinde bei den Affen. Jahrb. u. Psychol. Neurol., 17. Reprinted in, The Human Brain in Figures and Tables, S.T. Blinkov and I.I. Glezer, eds., B. Haigh, trans., 1968, Plenum Press, New York, p. 402.

    Google Scholar 

  • McDonnell, M.F., and Flynn, J.P., 1968, Attack elicited by Stimulation of the thalamus and adjacent structures of cats. Behav., 31:185–202.

    Article  Google Scholar 

  • McGuinness, C.M., and Krauthamer, G.M., 1980, The afferent connections to the centrum medianum of the cat as demonstrated by retrograde transport of horseradish peroxidase. Brain Res., 184:255–269.

    Article  Google Scholar 

  • McHenry, H., 1975, Fossils and the mosaic nature of human evolution. Science, 190:425–431.

    Article  Google Scholar 

  • Mesulam, M.-M., and Geschwind, N., 1978, On the possible role of neocortex and its limbic connections in the process of attention and schizophrenia: Clinical cases of inattention in man and experimental anatomy in monkey. J. Psychiat. Res., 14:249–259.

    Article  Google Scholar 

  • Mesulam, M.-M., Van Hoesen, G.W., Pandya, D.N., and Geschwind, N., 1977, Limbic and sensory connections of the inferior parietal lobule (Area PG) in the rhesus monkey: A study with a new method for horseradish peroxidase histochemistry. Brain Res., 136:393–414.

    Article  Google Scholar 

  • Mikol, J., Brian, S., Derome, P., De Pommery, J., and Gallissot, M.C., 1977, Connections of latero-dorsal nucleus of the thalamus. II. Experimental study in Papio papio. Brain Res., 138:1–16.

    Article  Google Scholar 

  • Mirsky, A., Rosvold, H.E., and Pribram, K.H., 1957, Effects of cingulectomy on social behavior in monkeys. J. Neurophys., 20:588–601.

    Google Scholar 

  • Morison, R.S., and Dempsy, E.W., 1942, A study of thalamo-cortical relations. Am. J. Physiol, 135:281–292.

    Google Scholar 

  • Namba, M., 1958, Uber die feineren Strukturen des Medio-dorsalen Supranucleus und der Lamella Medialis des Thalamus beim Menschen. J. f. Hirnforsch., 4:1–42.

    Google Scholar 

  • Niimi, K., and Kuwahara, E., 1973, The dorsal thalamus of the cat and comparison with monkey and man. J. f. Hirnforsch., 14:303–325.

    Google Scholar 

  • Niimi, K., Katayama, K., Karaseki, T., and Morimoto, K., 1960, Studies on the derivation of the centremedian nucleus of Luys. Tokushima J. Exp. Med., 6:261–268.

    Google Scholar 

  • Ojemann, G.A., 1974. Speech and short-term verbal memory alterations evoked from stimulation in pulvinar. In, The Pulvinar-LP Complex, I.S. Cooper, M. Riklan, and P. Rakic, eds., Charles C Thomas, Springfield, pp. 173–184.

    Google Scholar 

  • Olszewski, J., 1952. The Thalamus of the Macaca Mulatta, Karger, New York.

    Google Scholar 

  • Papez, J.W., 1937, A proposed mechanism of emotion. Arch. Neurol. Psychiat., 38:725–744.

    Google Scholar 

  • Passingham, R.E., 1973, Changes in the size and organization of the brain in man and his ancestors. Brain Behav. Evol., 11:73–90.

    Article  Google Scholar 

  • Passingham, R.E., 1979. Specialization in the language areas. In, Neurobiology of Social Communication in Primates, H.O. Steklis and M.J. Raleigh, eds., Academic Press, New York, pp. 221–256.

    Google Scholar 

  • Phillips, C.G., and Porter, R., 1977. Corticospinal neurons: Their role in movement. In, Monographs of the Physiol. Soc., Vol. 34, Academic Press, New York.

    Google Scholar 

  • Radinsky, L.B., 1979. The Fossil Record of Primate Brain Evolution. 49th James Arthur Lecture on the Evolution of the Human Brain, American Museum of Natural History, New York.

    Google Scholar 

  • Rakic, P., 1974. Embryonic development of the pulvinar-LP complex in man. In, The Pulvinar-LP Complex, I.S. Cooper, M. Riklan, and P. Rakic, eds., Charles C Thomas, Springfield, pp. 3–30.

    Google Scholar 

  • Rakic, P., and Sidman, R.L., 1969, Telencephalic origin of pulvinar neurons in the fetal human brain. Z. Anat. Entwickl.-Gesch., 129:53–82.

    Article  Google Scholar 

  • Reynolds, V., 1976. The Biology of Human Action, Freeman, San Franscisco.

    Google Scholar 

  • Riesen, A.H., 1970. Chimpanzee visual perception. In, The Chimpanzee, Vol. 2, G. Bourne, ed., Karger, Basel, pp. 1–15.

    Google Scholar 

  • Riss, W., Halpern, M., and Scalia, F., 1969, Anatomical aspects of the evolution of the limbic and olfactory systems and their potential significance for behavior. In, Experimental Approaches to the Study of Emotional Behavior, E. Toback, ed., Ann. N.Y. Acad. Sci., 159:1096-1111.

    Google Scholar 

  • Rockel, A.J., Nivens, R.W., and Powell, T.P.S., 1980, The basic uniformity in structure of the neocortex. Brain, 103:221–244.

    Article  Google Scholar 

  • Shariff, G.A., 1953, Cell counts in the primate cerebral cortex. J. Comp. Neurol., 98:381–400.

    Article  Google Scholar 

  • Singer, M., 1980, Signs of the self: an exploration in semiotic anthropology. Am. Anthrop., 82:485–507.

    Article  Google Scholar 

  • Spiegel, E.A., Wycis, H.I., Freed, H., Orchinik, C., 1951, The central mechanisms of the emotions. Am. J. Psychiat., 108:426–431.

    Google Scholar 

  • Stebbins, W.C., 1971. Hearing. In, Behavior of Nonhuman Primates, Vol. 3, A.M. Schrier and Stollnitz, eds., Academic Press, New York, pp. 159–192.

    Google Scholar 

  • Stephan, H., 1969, Quantitative investigations on visual structure in primate brains. Proc. 2nd Int. Congr. Primat., 3:34–42.

    Google Scholar 

  • Stephan, H., and Andy, O.J., 1964, Quantitative comparisons of brain structures from insectivores to primates. Am. Zool., 4:59–74.

    Google Scholar 

  • Stephan, H., and Andy, O.J., 1974. Comparative primate neuroanatomy of structures relating to aggressive behavior. In, Primate Aggression Territoriality and Xenophobia: A Comparative Perspective, R. Holloway, ed., Academic Press, New York, pp. 305–330.

    Google Scholar 

  • Stephan, H., Bauchot, R., and Andy, O.J., 1970. Data on size of the brain and of various brain parts in insectivores and primates. The Primate Brain, C.R. Noback and W. Montagna, eds., Appleton-Century-Crofts, New York, pp. 289–298.

    Google Scholar 

  • Sullivan, P.R., Kuten, J., Atkinson, M.S., Angevine, J.B., and Yakovlev, P.I., 1958, Cell count in the lateral geniculate nucleus of man. Neurol., 8:566–567.

    Google Scholar 

  • Thompson, R., Gates, C.E., and Gross, S.A., 1979, Thalamic regions critical for retention of skilled movements in the rat. Physiol. Psychol., 7:7–21.

    Google Scholar 

  • Tower, D.B., 1954, Structural and functional organization of the mammalian cerebral cortex. The correlation of neuron density with brain size. Cortical density in the finwhale with a note on the cortical neurone density in the Indian elephant. J. Comp. Neurol., 101:19–53.

    Article  Google Scholar 

  • Tower, D.B., and Young, O.M., 1973, The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of mammalian species from mouse to whale. J. Neurochem., 20:269–278.

    Article  Google Scholar 

  • Tsubokawa, T., and Moriyasu, N., 1978, Motivational slow negative potential shift (CNV) related to thalamotomy. Appl. Neurophysiol., 41:202–208.

    Google Scholar 

  • Van Buren, J., and Borke, R., 1972. Variations and Connections of the Human Thalamus, Vol. I, II, Springer-Verlag, New York.

    Google Scholar 

  • Victor, M., Adams, R.D., and Collins, H.G., 1971. The Wernicke-Korsakoff Syndrome, E. A. Davis Co., Philadelphia.

    Google Scholar 

  • Vinagradova, O.S., 1975. Functional organization of the limbic system in the process of registration of information: Facts and hypotheses. In, The Hippocampus, II, R.L. Isaacson and K.H. Pribram, eds., Plenum Press, New York, pp. 3–69.

    Chapter  Google Scholar 

  • Vogt, O.H., Rosene, D.L., and Pandya, D.N., 1979, Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. Science, 204:205–207.

    Article  Google Scholar 

  • Vyshinskaya, G.A., 1961. Personal communication. In, The Human Brain in Figures and Tables, S.M. Blinkov and I.I. Glezer, eds., B. Haigh, trans., Plenum Press, New York, p. 44.

    Google Scholar 

  • Walker, A.E., 1938. The Primate Thalamus, University of Chicago Press, Chicago.

    Google Scholar 

  • Wilson, W.P., 1975. Sociobiology: The New Synthesis, Belknap Press, Cambridge, Massachusetts.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Armstrong, E. (1982). Mosaic Evolution in the Primate Brain: Differences and Similarities in the Hominoid Thalamus. In: Armstrong, E., Falk, D. (eds) Primate Brain Evolution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4148-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4148-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4150-5

  • Online ISBN: 978-1-4684-4148-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics