Skip to main content

Respiratory and Circulatory Coordination in Decapod Crustaceans

  • Chapter
Locomotion and Energetics in Arthropods

Abstract

Two components of the crustacean respiratory system — gill ventilation and perfusion — are required to meet the metabolic requirements for gas exchange. All crustaceans possess some means of moving the external medium past their gas exchange surfaces. In primitive forms such as Hutchinsoniella (Cephalocarida) and Branchionecta (Brachiopoda) the paired thoracic appendages are serially similar and by their paired phase-locked movements these appendages facilitate respiration, locomotion and feeding. In some smaller crustaceans an internal circulatory system to transport oxygen may not be necessary because sufficient gas exchange can occur by diffusion. Decapods and other large crustaceans, on the other hand, depend on a dual hydraulic pumping system to effect gas exchange between the external medium and the blood. In decapods the gills are enclosed within branchial chambers, and scaphognathites, modified portions of the 2nd maxillae located anterior to the gills, pump water or air through the gill chambers. The heart with possible assistance from accessory contractile structures, pumps blood throughout the body and internally perfuses the gills. In this paper I will focus on the scaphognathites and heart as pumps and discuss how these two systems are integrated to meet the range of demands placed on them. Other aspects of this topic are soon to be reviewed (McMahon and Wilkens, in press).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandrowicz, J.S. 1932. The innervation of the heart of the Crustacea. I. Decapoda. Quart. J. Micro. Sci. 75, 181–249.

    Google Scholar 

  • Alexandrowicz, J.S. and Carlisle, D.B. 1953. Some experiments on the function of the pericardial organs in Crustacea. J. Mar. Biol. Ass. U.B. 32, 175–192.

    Article  Google Scholar 

  • Anderson, M. and Cooke, I.M. 1971. Neural activation of the heart of the lobster Homarus americanus. J. Exp. Biol. 55, 449–468.

    PubMed  CAS  Google Scholar 

  • Arudpragasam, J.D. and Naylor, E. 1966. Patterns of gill ventilation in some decapod Crustacea. J. Zool. Soc. Lond. 150, 401–411.

    Article  Google Scholar 

  • Ashby, E.A. and Larimer, J.L. 1965. Modification of cardiac and respiratory rhythms in crayfish following carbohydrate chemoreception. J. Cell. Comp. Physiol. 65, 373–380.

    Article  CAS  Google Scholar 

  • Battelle, B.A. and Kravitz, E.A. 1978. Targets of octopamine action in the lobster: cyclic nucleotide changes and physiological effects in hemolymph, heart and exoskeletal muscle. J. Pharmocol., Exp. Therap. 205, 438–448.

    CAS  Google Scholar 

  • Batterton, C.V. and Cameron, J.N. 1978. Characteristics of resting ventilation and response to hypoxia, hypercapnia and emersion in the blue crab Callinectes sapidus (Rathbun). J. Exp. Zool. 203, 403–418.

    Article  Google Scholar 

  • Belamarich, F.A. and Terwilliger, R.C. 1966. Isolation and identification of cardio-excitor hormone from the pericardial organs of Cancer borealis. Amer. Zool. 6, 101–106.

    CAS  Google Scholar 

  • Belman, B.W. 1975. Some aspects of the circulatory physiology of the spiny lobster Panulirus interruptus. Mar. Biol. 29, 295–305.

    Article  Google Scholar 

  • Belman, B.W. 1976. New observations on blood pressure in marine Crustacea. J. Exp. Zool. 196, 71–78.

    Article  Google Scholar 

  • Belman, B.W. and Childress, J.J. 1976. Circulatory adaptations to the oxygen minimum layer in the bathypelagic mysid Gnathophausia ingens. Biol. Bull. 150, 15–37.

    Article  PubMed  CAS  Google Scholar 

  • Berlind, A. 1976. Neurohemal organ extracts effect the ventilation oscillator in crustaceans. J. Exp. Zool. 195, 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Berlind, A. 1977. Neurohumoral and reflex control of scaphognathite beating in the crab Carcinus maenas. J. Comp. Physiol. 116A, 77–90.

    Article  CAS  Google Scholar 

  • Blatchford, J.G. 1971. Hemodynamics of Carcinus maenas (L.). Comp. Biochem. Physiol. 39A, 193–202.

    Article  Google Scholar 

  • Bullock, T.H. and Horridge, G.A. 1965. Structure and Function in the Nervous Systems of Invertebrates. W.H. Freeman and Co., San Francisco. pp. 988–997.

    Google Scholar 

  • Bullock, T.H., Cohen, M.J. and Maynard, D.M. 1954. Integration and central synaptic properties of some receptors. Fed. Proc. 13, 20.

    Google Scholar 

  • Burnett, L.D. and Johansen, K. The role of branchial ventilation in blood acid-base changes in the shore crab, Carcinus maenas. J. Comp. Physiol. (in press).

    Google Scholar 

  • Burnett, L.E., deFur, P.L. and Jorgensen, D.D. The application of the thermodilution technique for measuring cardiac output and assessing cardiac stroke volume in crabs. J. Exp. Zool. (in press).

    Google Scholar 

  • Butler, P.J., Taylor, E.W. and McMahon, B.R. 1978. Respiratory and circulatory changes in the lobster (Homarus vulgaris) during long term exposure to moderate hypoxia. J. Exp. Biol. 73, 131–146.

    Google Scholar 

  • Cooke, I.M. 1964. Electrical activity and release of neuro-secretory material in crab pericardial organs. Comp. Biochem. Physiol. 13, 353–366.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, I.M. 1966. The sites of action of pericardial organ extract and 5-hydroxytryptamine in the decapod crustacean heart. Amer. Zool. 6, 107–121.

    CAS  Google Scholar 

  • Cooke, I.M. and Goldstone, M.W. 1970. Fluorescence localization of monoamines in crab neurosecretory structures. J. Exp. Biol. 53, 651–668.

    PubMed  CAS  Google Scholar 

  • Coyer, P.E. 1979. Heart and one gill-bailer rhythm phase couple in Cancer borealis and Cancer irroratus. Comp. Biochem. Physiol. 62A, 677–683

    Article  Google Scholar 

  • Cumberlidge, N. and Uglow, R.F. 1977a. Heart and scaphognathite

    Google Scholar 

  • activity during the digging behaviour of the shore crab, Carcinus maenas (L.). in: Physiology and Behavior of Marine Organisms (Proc. 12th European Symp. on Marine Biol.). Pergamon Press. pp. 23–30.

    Google Scholar 

  • Cumberlidge, N. and Uglow, R.F. 1977b. Heart and scaphognathite activity in the shore crab Carcinus maenas (L.). J. Exp. Mar. Biol. Ecol. 28, 87–107.

    Article  Google Scholar 

  • Dyer, M.F. and Uglow, R.F. 1978a. Gill chamber ventilation and scaphognathite movements in Crangon crangon (L.). J. Exp. Mar. Biol. Ecol. 31, 195–207

    Article  Google Scholar 

  • Dyer, M.F. and Uglow, R.F. 1978b. Heart and scaphognathite beat behaviour in laboratory-held Crangon crangon (L.). J. Exp. Mar. Biol. Ecol. 32, 209–218.

    Article  Google Scholar 

  • Evans, P.D., Kravitz, E.A. and Talamo, B.R. 1976. Octopamine release at two points along lobster nerve trunks. J. Physiol. 262, 71–89.

    PubMed  CAS  Google Scholar 

  • Evans, P.D., Talamo, B.R. and Kravitz, E.A. 1975. Octopamine neurons: morphology, release of octopamine and possible physiological role. Brain Res. 90, 340–347.

    Article  PubMed  CAS  Google Scholar 

  • Field, L.H. and Larimer, J.L. 1975a. The cardioregulatory system of crayfish: neuroanatomy and physiology. J. Exp. Biol. 62, 519–530.

    PubMed  CAS  Google Scholar 

  • Field, L.H. and Larimer, J.L. 1975b. The cardioregulatory system of crayfish: role of circumoesophageal interneurons. J. Exp. Biol. 62, 531–543.

    PubMed  CAS  Google Scholar 

  • Flindt, R. 1971. Zur abhängigkeit des Herzschlages von O2-gehalt des Wassers bei Carcinus maenas. Mar. Biol. 9, 224–227.

    Article  Google Scholar 

  • Florey, E. 1960. Studies on the nervous regulation of the heart beat in decapod Crustacea. J. Gen. Physiol. 43, 1061–1081.

    Article  PubMed  CAS  Google Scholar 

  • Florey, E. and Rathmayer, M. 1978. The effects of octopamine and other amines on a heart and on neuromuscular transmission in decapod crustaceans: further evidence for a role as neurohormone. Comp. Biochem. Physiol. 61C, 229–237.

    Google Scholar 

  • George, C.J., Nair, K.K. and Muthe, P.T. 1955. The pericardial membrane and its role in crustacean circulation. J. Animal Morphol. Physiol. 2, 73–78.

    Google Scholar 

  • Hartline, D.K. 1979. Integrative neurophysiology of the lobster cardiac ganglion. Amer. Zool. 19, 53–65.

    Google Scholar 

  • Hassall, C.D. 1979. Respiratory Physiology of the Crayfish Procambarus clarki. Thesis, University of Calgary, Calgary, Alberta, Canada.

    Google Scholar 

  • Hill, B.J. and Koopowitz, H. 1975. Heart-rate of the crab Scylla serrata (Forshal) in air and in hypoxic conditions. Cômp. Biochem. Physiol. 52A, 385–387.

    Article  CAS  Google Scholar 

  • Izquierdo, J.J. 1931. A study of the crustacean heart muscle. Proc. Roy. Soc. Lond. B. 109, 229–250.

    Article  Google Scholar 

  • Larimer, J.L. 1962. Responses of the crayfish heart during respiratory stress. Physiol. Zool. 35, 179–186.

    Google Scholar 

  • Larimer, J.L. 1964. Sensory induced modifications of ventilation and heart rate in crayfish. Comp. Biochem. Physiol. 12, 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Maynard, D.M. 1953. Activity in a crustacean ganglion. I. Cardioinhibition and acceleration in Panulirus argus. Biol. Bull. 104, 156–170.

    Article  Google Scholar 

  • Maynard, D.M. 1960. “Circulation and Heart Function,” in: The Physiology of Crustacea,(H.P. Wolvekamp and T.H. Waterman, eds.), Vol. 1, Academic Press, New York (161–226).

    Google Scholar 

  • Maynard, D.M. and Welsh, J.H. 1959. Neurohormones of the pericardial organs of brachiuran Crustacea. J. Physiol. 149, 215–227.

    PubMed  CAS  Google Scholar 

  • McDonald, D.G. 1977. Respiratory Physiology of the Crab Cancer magister. Ph.D. Thesis, University of Calgary, Calgary, Alberta, Canada.

    Google Scholar 

  • McDonald, D.G., McMahon, B.R. and Wood, C.M. 1977. Patterns of heart and scaphognathite activity in the crab Cancer magister. J. Exp. Zool. 202, 33–44.

    Article  Google Scholar 

  • McDonald, D.G., Wood, C.M. and McMahon, B.R. 1980. Ventilation and oxygen consumption in the dungeness crab, Cancer magister. J. Exp. Zool. 213, 123–136.

    Article  Google Scholar 

  • McMahon, B.R. and Burggren, W.W. 1979. Respiration and adapta-tion to the terrestrial habitat in the land hermit crab Coenobita clypeatus. J. Exp. Biol. 79, 265–281.

    Google Scholar 

  • McMahon, B.R. and WIlkens, J.L. 1972. Simultaneous apnea and bradycardia in the lobster Homarus americanus. Canad. J. Zool. 50, 165–170.

    Article  Google Scholar 

  • McMahon, B.R. and Wilkens, J.L. 1975. Respiratory and circulatory responses to hypoxia in the lobster Homarus americanus. J. Exp. Biol. 62, 637–655.

    Google Scholar 

  • McMahon, B.R. and Wilkens, J.L. 1977. Periodic respiratory and circulatory performance in the red rock crab Cancer productus. J. Exp. Zool. 202, 363–374.

    Article  Google Scholar 

  • McMahon, B.R. and Wilkens, J.L. Ventilation, perfusion and oxygen uptake. in: Biology of the Crustacea (L.M. Mantel and D.E. Bliss, eds.), Chapt. 5, Vol. II Academic Press (in press).

    Google Scholar 

  • McMahon, B.R., Burggren, W.W. and Wilkens, J.L. 1979. Repiratory responses to long-term hypoxic stress in the crayfish Orconectes virilis. J. Exp. Biol. 60, 195–206.

    Google Scholar 

  • McMahon, B.R., McDonald, D.G. and Wood, C.M. 1979. Ventilation, oxygen uptake and haemolymph oxygen transport, following enforced exhausting activity in the dungeness crab Cancer maqister. J. Exp. Biol. 80, 271–285.

    Google Scholar 

  • Mendelson, M. 1971. Oscillator neurons in crustacean ganglia. Science. 171, 1170–1173.

    Article  PubMed  CAS  Google Scholar 

  • Moody-Corbett, F. and Pasztor, V.M. 1980. Innervation, synaptic physiology and ultrastructure of the muscles of the second maxilla in crayfish. J. Neurobiol. 2, 21–30.

    Article  Google Scholar 

  • Pasztor, V.M. 1968. The neurophysiology of respiration in decapod Crustacea. I. The motor system. Canad. J. Zool. 46, 585–596.

    CAS  Google Scholar 

  • Pilkington, J.B. and MacFarlane, D.W. 1978. Numbers and central projections of crab second maxilla motor neurones. J. Mar. Biol. Ass. U.K. 58, 571–584.

    Article  Google Scholar 

  • Pilkington, J.B. and Simmers, A.J. 1973. An analysis of bailer movements responsible for gill ventilation in the crab, Cancer novae-zelandiae. Mar. Behay. Physiol. 2, 73–95.

    Article  Google Scholar 

  • Sherman, R.G. and Burrage, T.G. 1979. Cellular development of the American lobster heart. Amer. Zool. 19, 29–38.

    Google Scholar 

  • Simmers, A.J. and Bush, B.M.H. 1980. Non-spiking neurones controlling ventilation in crabs. Brain. Res. 197, 247–252.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J.R. 1963. Observations of the ultrastructure of the myocardium of the common lobster (Homarus americanus), especially of the myofibrils. Anat. Rec. 145, 391–400.

    Article  PubMed  CAS  Google Scholar 

  • Spoek, G.L. 1974. The relationship between blood haemocyanin level, oxygen uptake, and the heart-beat and scaphognathitebeat frequencies in the lobster Homarus gammarus. Netherlands J. Sea Res. 8, 1–26.

    Article  CAS  Google Scholar 

  • Stiffler, D.F. and Pritchard, A.W. 1972. A comparison of in situ and in vitro responses of crustacean hearts to hypoxia. Biol. Bull. 143, 247–255.

    Article  Google Scholar 

  • Sullivan, R.E. 1979. A proctolin-like peptide in crab pericardial organs. J. Exp. Zool. 210, 543–552.

    Article  CAS  Google Scholar 

  • Taylor, A.C. 1976. The respiratory responses of Carcinus maenas to declining oxygen tension. J. Exp. Biol. 65, 309–322.

    PubMed  CAS  Google Scholar 

  • Taylor, E.W. and Butler, P.J. 1973. The behaviour and physiological responses of the shore crab Carcinus maenas during changes in environmental oxygen tension. Netherlands J. Sea Res. 7, 496–505.

    Article  Google Scholar 

  • Taylor, E.W. and Butler, P.J. 1978. Aquatic and aerial respiration in the shore crab Carcinus maenas (L.), acclimated to 15°C. J. Comp. Physiol. 127, 315–323.

    Google Scholar 

  • Taylor, E.W., Butler, P.J. and Al-Wassia, A. 1977. Some responses of the shore crab, Carcinus maenas (L.), to progressive hypoxia at different acclimation temperatures and salinities. J. Comp. Physiol. 122, 391–402.

    CAS  Google Scholar 

  • Taylor, E.W., Butler, P.J. and Sherlock, P.J. 1973. The respiratory and cardiovascular changes associated with the emersion response of Carcinus maenas (L.) during environmental hypoxia, at three different temperatures. J. Comp. Physiol. 86, 95116.

    Article  Google Scholar 

  • Wiersma, C.A.G. and Novitski, E. 1942. The mechanism of the nervous regulation of the crayfish heart. J. Exp. Biol. 19, 225–265.

    Google Scholar 

  • Wilkens, J.L. and McMahon, B.R. 1972. Aspects of branchial irrigation in the lobster Homarus americanus. I. Functional analysis of scaphognathite beat, water pressures and currents. J. Exp. Biol. 56, 469–479.

    CAS  Google Scholar 

  • Wilkens, J.L. and Young, R.E. 1975. Patterns and bilateral coordination of scaphognathite rhythms in the lobster Homarus americanus. J. Exp. Biol. 63, 219–235.

    PubMed  CAS  Google Scholar 

  • Wilkens, J.L., Wilkens, L.A. and McMahon, B.R. 1974. Central control of cardiac and scaphognathite pacemakers in the crab, Cancer magister. J. Comp. Physiol. 90, 89–104.

    Article  Google Scholar 

  • Young, R.E. 1975. Neuromuscular control of ventilation in the crab Carcinus maenas. J. Comp. Physiol. 101, 1–37.

    Article  Google Scholar 

  • Young, R.E. 1978. Correlated activities in the cardioregulator nerves and ventilatory system in the Norwegian lobster, Nephorps norvegicus (L.). Comp. Biochem. Physiol. 61A, 387–394.

    Article  Google Scholar 

  • Young, R.E. and Coyer, P.E. 1979. Phase co-ordination in the cardiac and ventilatory rhythms of the lobster Homarus americanus. J. Exp. Biol. 82, 53–74.

    Google Scholar 

  • Young, R.E., Wilkens, J.L. and Dodd, C. 1980. Pharmacological dissection of a neuronal pattern generator. J. Comp. Physiol. 139A, 1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Wilkens, J.L. (1981). Respiratory and Circulatory Coordination in Decapod Crustaceans. In: Herreid, C.F., Fourtner, C.R. (eds) Locomotion and Energetics in Arthropods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4064-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4064-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4066-9

  • Online ISBN: 978-1-4684-4064-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics