Skip to main content

Calcium, Calmodulin, and Synaptic Function: Modulation of Neurotransmitter Release, Nerve Terminal Protein Phosphorylation, and Synaptic Vesicle Morphology by Calcium and Calmodulin

  • Chapter
Regulatory Mechanisms of Synaptic Transmission

Abstract

An understanding of the molecular mechanism underlying calcium-dependent neurotransmitter release would greatly enhance our knowledge of synaptic transmission and the action of specific neuropharmacologic agents, and possibly provide new insights into human disease processes involving synaptic modulation. Although calcium’s role in neurotransmitter release from the presynaptic nerve terminal has been of great interest, little is known about the molecular mechanisms of Ca2+ in stimulating neurotransmitter release or its other physiological functions in the nerve terminal. Ca2+ was shown to stimulate the endogenous phosphorylation of whole brain (8–10,15) and synaptosomal proteins (10,16) and it was suggested from these results that the effects of calcium on protein phosphorylation might play a role in mediating some of the effects of this ion on neuronal tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barondes, H.B., Synaptic macromolecules: Identification and metabolism, Ann. Rev. Biochem., 43 (1974) 147–168.

    Article  PubMed  CAS  Google Scholar 

  2. Blaustein, M.P., Effects of potassium, veratridine, and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro, J. Physiol. (London), 247 (1974) 617–655.

    Google Scholar 

  3. Blaustein, M.P. and Goldring, J.M., Membrane potentials in pinched-off presynaptic nerve terminals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials, J. Physiol. (London), 247 (1975) 589–615.

    CAS  Google Scholar 

  4. Boyne, A.F., Neurosecretion: integration of recent findings into the vesicle hypothesis, Life Sci., 22 (1978) 2057–2066.

    Article  PubMed  CAS  Google Scholar 

  5. Brostrom, C.O., Huang, Y.C., Breckenridge, B., and Wolff, D.J., Identification of a calcium-binding protein as a calcium-dependent regulator of brain adenylate cyclase, Proc. Natl. Acad. Sci. 72 (1975) 64–68.

    Article  PubMed  CAS  Google Scholar 

  6. Cheung, W.Y., Cyclic 3’,5’-nucleotide phosphodiesterase: Demonstration of an activator, Biochem. Biophys. Res. Commun. 38 (1970) 533–538.

    Article  CAS  Google Scholar 

  7. Cotman, C.W. and Flansburg, D.A., An analytical micro-method for electron microscopic study of the composition and sedimentation properties of subcellular fractions, Brain Res., 22 (1970) 152156.

    Article  Google Scholar 

  8. DeLorenzo, R.J., Antagonistic action of diphenylhydantoin and calcium on the endogenous phosphorylation of specific brain proteins, Neurology, 26 (1976) 386.

    Google Scholar 

  9. DeLorenzo, R.J., Possible role of phosphoproteins in mediating calcium-dependent neurotransmitter release, Neurosci. Abstracts, 2 (1976) 1001.

    Google Scholar 

  10. DeLorenzo, R.J., Antagonistic action of diphenylhydantoin and calcium on the level of phosphorylation of particular rat and human brain proteins, Brain Res., 134 (1977) 125–138.

    Article  PubMed  CAS  Google Scholar 

  11. DeLorenzo, R.J., Role of calcium dependent regulator proteins in neurotransmitter release, Trans. Am. Soc. Neurochem., 10 (1979) 100.

    Google Scholar 

  12. DeLorenzo, R.J., Calcium-dependent morphological changes in synaptic vesicles, Trans. Int. Soc. Neurochem., 7 (1979) 68.

    Google Scholar 

  13. DeLorenzo, R.J., Phenytoin: calcium-and calmodulin-dependent protein phosphorylation and neurotransmitter release. In Glaser G.H., Penry, J.K., and Woodbury, D.M., (eds.), Antiepileptic Drugs: Mechanisms of Action, Raven, New York, 1980, pp. 399–414.

    Google Scholar 

  14. DeLorenzo, R.J., Role of calmodulin in neurotransmitter release and synaptic function, Ann. N.Y. Acad. Sci., 356 (1980) in press.

    Google Scholar 

  15. DeLorenzo, R.J., Emple, G.P., and Glaser, G.H., Regulation of the level of endogenous phosphorylation of specific brain proteins by diphenylhydantoin, J. Neurochem., 28 (1976) 21–30.

    Article  Google Scholar 

  16. DeLorenzo, R.J., and Freedman, S.D., Possible role of calcium-dependent protein phosphorylation in mediating neurotransmitter release and anticonvulsant action, Epilepsia, 18 (1977) 357–365.

    Article  PubMed  CAS  Google Scholar 

  17. DeLorenzo, R.J., and Freedman, S.D., Calcium-dependent phosphorylation of specific synaptosomal fraction proteins: Possible role of phosphoproteins in mediating neurotransmitter release, Biochem. Biophys. Res. Commun., 71 (1977) 590–597.

    Article  Google Scholar 

  18. DeLorenzo, R.J., and Freedman, S.D., Calcium-dependent phosphorylation of synaptic vesicle proteins and its possible role in mediating neurotransmitter release and vesicle function, Biochem. Biophys. Res. Commun. 77 (1977) 1036–1043.

    Article  CAS  Google Scholar 

  19. DeLorenzo, R.J., and Freedman, S.D. Phenytoin inhibition of calcium-dependent protein phosphorylation in synaptic vesicles, Neurology 27 (1977) 375.

    Google Scholar 

  20. DeLorenzo, R.J., and Freedman, S.D. Possible role of synaptic vesicle-associated phosphoproteins in mediating calcium-dependent neurotransmitter release, Neurosci. Abstracts, 3 (1977) 513.

    Google Scholar 

  21. DeLorenzo, R.J., and Freedman, S.D., Calcium-dependent neurotransmitter release and protein phosphorylation in synaptic vesicles, Biochem. Biophys. Res. Commun., 80 (1978) 183–192.

    Article  CAS  Google Scholar 

  22. DeLorenzo, R.J., Freedman, S.D. and Yohe, W.B., Purification of a synaptic vesicle-bound protein mediating calcium dependent vesicle neurotransmitter release and protein phosphorylation, Soc. Neurosci. Abs., 4 (1978) 578.

    Google Scholar 

  23. De Lorenzo, R.J., Freedman, S.D., Yohe, W.B., and Maurer, S.C., Stimulation of Ca2+-dependent neurotransmitter release and presynaptic nerve terminal protein phosphorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles,Proc. Natl. Acad. Sci. U.S.A., 76 (1979) 1838–1842.

    Article  PubMed  CAS  Google Scholar 

  24. DeLorenzo, R.J., and Glaser, G.H., Regulation of endogenous phosphorylation of a specific protein from rat brain homogenates by diphenylhydantoin, Neurosci. Abstracts, 1 (1975) 342.

    Google Scholar 

  25. DeLorenzo, R.J., and Glaser, G.H., Effect of diphenylhydantoin on the endogenous phosphorylation of brain protein, Brain Res., 105 (1976) 381–386.

    Article  PubMed  CAS  Google Scholar 

  26. DeRobertis, E., and DeLores Arnaiz, G.R., Structural components of the synaptic region. In: A. Lajtha (ed.), Handbook of Neurochemistry, Plenum, New York, 1969, vol. 2, pp. 365–392.

    Google Scholar 

  27. Esplin, D.W., Effects of diphenylhydantoin on synaptic transmission in cat spinal cord and stellate ganglion, J. Pharmacol. Exp. Ther., 120 (1957) 301–323.

    Google Scholar 

  28. Esplin, D.W., Criteria for assessing effects of depressant drugs on spinal cord synaptic transmission, with examples of drug selectivity, Arch. Int. Pharmacodyn. Ther., 143 (1963) 479–497.

    Google Scholar 

  29. Kakiuchi, S., and Yamazaki, R., Calcium dependent phosphodiesterase activity and its activating factor (PAF) from brain, Biochem. Biophys. Res. Commun., 41 (1970) 1104-1110.

    Article  PubMed  CAS  Google Scholar 

  30. Katz, B., and Miledi, R., Tetrodotoxin-resistant electric activity in presynaptic terminals, J. Physiol. (Lond.), 203 (1969) 459–487.

    CAS  Google Scholar 

  31. Katz, B., and Miledi, R., Further study of the role of calcium in synaptic transmission, J. Physiol. (Lond.), 207 (1970) 789–801.

    CAS  Google Scholar 

  32. Kretsinger, R.H., in Carafoli, E., Clementi, F., Drabikowski, W. and Margreth, A., (eds.), Calcium Transport in Contraction and Secretion, North-Holland, Amsterdam, 1975, pp. 469–478.

    Google Scholar 

  33. Krueger, B.K., Forn, J., and Greengard, P., Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes, J. Biol. Chem., 252 (1977) 2764–2773.

    PubMed  CAS  Google Scholar 

  34. Lin, Y.M., Lin, Y.P., and Cheung, W.Y., Cyclic 3’:5’-nucleotide phosphodiesterase: Purification, characterization and active forms of the protein activator from bovine brain, J. Biol. Chem., 249 (1974) 4943–4954.

    PubMed  CAS  Google Scholar 

  35. Llinas, R., Steinberg, I.Z., and Walton, K., Presynaptic calcium currents and their relation to synaptic transmission: Voltage clamp study in squid giant synapse and theoretical model for the calcium gate, Proc. Natl. Acad. Sci. U.S.A., 73 (1976) 2918–2922.

    Article  PubMed  CAS  Google Scholar 

  36. Matthews, E.K. and Nordmann, J.S., The synaptic vesicle: calcium ion binding to the vesicle membrane and its modification by drug action, Mol. Pharm., 12 (1976) 778–788.

    CAS  Google Scholar 

  37. Miledi, R., Transmitter release induced by injection of calcium ions into nerve terminals, Proc. R. Soc. Lond. (Biol.), 183 (1973) 421–425.

    Article  CAS  Google Scholar 

  38. Pfenninger, K., The cytochemistry of synaptic densities, J. Ultrastruct. Res., 34 (1971) 103–118.

    Article  PubMed  CAS  Google Scholar 

  39. Pincus, J.H., and Lee, S.H., Diphenylhydantoin and calcium: Relation to norepinephrine release from brain slices, Arch. Neurol., 29 (1973) 239–244.

    Article  PubMed  CAS  Google Scholar 

  40. Raines, A., and Standaert, F.G., An effect of diphenylhydantoin on post-tetanic hyperpolarization of intramedullary nerve terminals, J. Pharmacol. Exp. Ther., 156 (1967) 591–597.

    PubMed  CAS  Google Scholar 

  41. Raines, A., and Standaert, F.G., Pre-and post-junctional effects of diphenylhydantoin at the soleus neuromuscular junction, J. Pharmacol. Exp. Ther. 153 (1966) 361–366.

    CAS  Google Scholar 

  42. Schulman, H., and Greengard, P., Stimulation of brain membrane protein phosphorylation by calcium and an endogenous heat-stable protein, Nature (Lond.), 271 (1978) 478–479.

    Article  CAS  Google Scholar 

  43. Szmigielski, A., Guidotti, A., and Costa, E., Endogenous protein kinase inhibitors. Purification, characterization and distribution in different tissues, J. Biol. Chem., 252 (1977) 3848–3853.

    PubMed  CAS  Google Scholar 

  44. Tamir, H., Rapport, M.M., and Gershon, M.D. Serotonin binding protein in synaptic vesicles from brain, Trans. Am. Soc. Neurochem., 10 (1979) 184.

    Google Scholar 

  45. Teo, T.S., Wang, H., and Wang, J.H., Purification and properties of the protein activation of bovine heart cyclic adenosine 3’,5’monophosphate phosphodiesterase, J. Biol. Chem., 248 (1973) 588-595.

    Google Scholar 

  46. Ueda, T., Maeno, H., and Greengard, P., Regulation of endogenous phosphorylation of specific proteins in synaptic membrane fractions from rat brain adenosine 3’: 5’-monophosphate, J. Biol. Chem., 248 (1973) 8295–8305.

    PubMed  CAS  Google Scholar 

  47. Waisman, D., Stevens, F.C., and Wang, J.H., The distribution of the calcium-dependent protein activator of cyclic nucleotide phosphodiesterase in invertebrates, Biochem. Biophys. Res. Commun., 65 (1975) 975–982.

    CAS  Google Scholar 

  48. Weller, M., and Rodnight, R., Protein kinase activity in membrane preparations from ox brain: stimulation of intrinsic activity by adenosine 3’: 5’-cyclic monophosphate, Biochem. J., 132 (1973) 483–492.

    PubMed  CAS  Google Scholar 

  49. Whittaker, V.P., The synaptosome. In A. Lajtha (ed.), Handbook of Neurochemistry, Plenum, New York, 1969, Vol. 2, pp. 327–364.

    Google Scholar 

  50. Wolff, D.J., and Siegel, F.L., Purification of a calcium-binding phosphoprotein from pig brain, J. Biol. Chem., 247 (1972) 4180-4185.

    PubMed  CAS  Google Scholar 

  51. Yaari, Y., Pincus, J.H., and Argov., Z., Depression of synaptic transmission by diphenylhydantoin, Ann. Neurol., 1 (1977) 334-338.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

DeLorenzo, R.J. (1981). Calcium, Calmodulin, and Synaptic Function: Modulation of Neurotransmitter Release, Nerve Terminal Protein Phosphorylation, and Synaptic Vesicle Morphology by Calcium and Calmodulin . In: Tapia, R., Cotman, C.W. (eds) Regulatory Mechanisms of Synaptic Transmission. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3968-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3968-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3970-0

  • Online ISBN: 978-1-4684-3968-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics