Skip to main content

Light Utilization Efficiency in Natural Phytoplankton Communities

  • Chapter
Primary Productivity in the Sea

Part of the book series: Environmental Science Research ((ESRH,volume 19))

Abstract

Before we set out to discuss the concept, definition and measurement of photosynthetic efficiency in the aquatic environment, it would be in order first to try to understand the possible usefulness of such an endeavor. The evaluation of the efficiency of the photosynthetic mechanism in trapping light energy and storing it as potential chemical energy has long attracted plant physiologists and biochemists. The values obtained were considered a touchstone for the validation of models proposed an an explanation of the function of the photochemical machinery. This aspect of photosynthetic efficiencies was reviewed by Rabinowitch (1,2). The results of these studies crystallized around two widely different clusters of values: the first (3,4) estimated the maximum photosynthetic efficiency to be around 100% (about two quanta required per molecule of CO2 reduced), while the second, almost universally accepted (5–7), set its upper limit at about 25% (equivalent to a requirement of 8 quanta per mole CO2 reduced).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.K. Rabinowitch, “Photosynthesis and Related Processes,” Vol.1, Interscience Publishing Co., New York (1951)

    Google Scholar 

  2. E.K. Rabinowitch, “Photosynthesis and Related Processes,” Vol.2, Interscience Publishing Co., New York (1956)

    Google Scholar 

  3. O. Warburg, G. Krippahl and A. Lehmann, Amer. J. Bot. 56:961 (1969)

    Article  Google Scholar 

  4. R.K. Chain and D.I. Arnon, Proc. Nat. Acad. Sci. USA 74: 3377 (1977)

    Article  Google Scholar 

  5. R. Emerson, Ann. Rev. Plant Physiol. 9: 1 (1958)

    Article  Google Scholar 

  6. B. Kok, in: “Handbuch der Pflanzenphysiologie,” Vol. 5, W. Ruhland, ed., Springer Verlag (1960).

    Google Scholar 

  7. R. Govindjee, E.K. Rabinowitch and Govindjee, Biochim. Biophys. Acta 162: 539 (1968)

    Article  Google Scholar 

  8. R.K. Clayton, Brookhaven Symposia in Biology 28: 1 (1977)

    Google Scholar 

  9. A. Yu. Borisov, in: “Photosynthesis in Relation to Model Systems,” J. Barber, ed., Elsevier, Amsterdam (1979)

    Google Scholar 

  10. J.J. Katz and M.R. Wasielewski, in: “Biotechnology in Energy Production and Conservation,” C.D. Scott, ed., John Wiley & Sons, New York (1979)

    Google Scholar 

  11. K. Miyamoto, P.C. Hallenbeck and J.R. Benemann, J. Ferment. Technol. 57: 287 (1979)

    Google Scholar 

  12. A. Mitsui, in: “2nd Miami International Conference on Alternative Energy Sources” (1979).

    Google Scholar 

  13. P.E. Nielsen, H. Nishimura, J.W. Otvos and M. Calvin, Science 198: 942 (1977)

    Article  Google Scholar 

  14. C.C. Burwell, Science 199: 1041 (1978)

    Article  Google Scholar 

  15. W.J. North, in: “Biological Solar Energy Conversion,” A. Mitsui, S. Miyachi, A. San-Pietro and S. Tamura, eds., Academic Press, New York (1977)

    Google Scholar 

  16. J.A. Bassham, Science 197: 630 (1977)

    Article  Google Scholar 

  17. Z. Dubinsky, S. Aaronson and T. Berner, in: “The Production and Utilization of Microalgal Biomass,” G. Shelef, C.J. Soeder and M. Balaban, eds., Elsevier, Amsterdam (1980)

    Google Scholar 

  18. E.C. Wassink, B. Kok and J.L.P. van Oorshot, in: “Algal Culture from Laboratory to Pilot Plant,” J.S. Burlew, ed., Carnegie Institute Publication 600, Washington, D.C (1953)

    Google Scholar 

  19. W.J. Oswald and J.R. Benemann, in: “Biological Solar Energy Conversion,” A. Mitsui, S. Miyachi, A. San Pietro and S. Tamura, eds., Academic Press, New York (1977)

    Google Scholar 

  20. Z. Dubinsky, S. Aaronson and T. Berner, Biotech. Bioengin. Symp. 8: 51 (1978)

    Google Scholar 

  21. J.C. Goldmann, Water Res. 13: 119 (1979)

    Article  Google Scholar 

  22. R.L. Lindeman, Ecology 23: 389 (1942)

    Google Scholar 

  23. D,G. Kozlovsky, Ecology 49: 48 (1968)

    Article  Google Scholar 

  24. E. Schrödinger, “What is Life?” Cambridge University Press, Cambridge, England (1945)

    Google Scholar 

  25. E.P. Odum, “Fundamentals of Ecology,” Saunders, Philadelphia (1971)

    Google Scholar 

  26. H.T. Odum, “Environment, Power and Society,” John Wiley, New York (1971)

    Google Scholar 

  27. G.A. Riley, Am. Scient. 32: 129 (1944)

    Google Scholar 

  28. R.H. Whittaker and G.E. Likens, in: “Primary Productivity of the Biosphere,” H. Lieth and R.H. Whittaker, eds., Springer, New York (1975)

    Google Scholar 

  29. A. Krogh, Ecol. Monographs 4: 421 (1934)

    Article  Google Scholar 

  30. G.A. Riley, Ecol. Monographs 10: 279 (1940)

    Article  Google Scholar 

  31. G.L. Clarke, Ecol. Monographs 16: 323 (1946)

    Article  Google Scholar 

  32. H.T. Odum and E.P. Odum, Ecol. Monographs 25: 291.

    Google Scholar 

  33. B. Patten, Limnol. Oceanogr. 6: 369 (1961)

    Article  Google Scholar 

  34. J.F. Tailing, R.B. Wood, M.V. Prosser and R.M. Baxter, Freshwat. Biol. 3: 53 (1973)

    Article  Google Scholar 

  35. M.M. Tilzer, C.R. Goldman and E. De Amezaga, Int. Ver. Theor. Angew. Limnol. Verh. 19: 800 (1975)

    Google Scholar 

  36. H.L. Golterman, “Physical Limnology, An Approach to the Physiology of Lake Ecosystems,” Elsevier, New York (1975)

    Google Scholar 

  37. R.G. Wetzel, “Limnology,” W.B. Saunders, Philadelphia (1975)

    Google Scholar 

  38. R. C. Haynes and U.T. Hammer, Int. Revue ges Hydrobiol. 63:337 (1978)

    Article  Google Scholar 

  39. A. Morel, Deep-Sea Res. 25: 673 (1978)

    Article  Google Scholar 

  40. J.F. Tailing, New Phytol. 56: 133 (1957)

    Article  Google Scholar 

  41. T. Platt, Limnol. Oceanogr. 14: 653 (1969)

    Article  Google Scholar 

  42. J.E. Tyler, Limnol. Oceanogr. 20: 976 (1975)

    Article  Google Scholar 

  43. Z. Dubinsky and T. Berman, Limnol. Oceanogr. 21: 226 (1976)

    Article  Google Scholar 

  44. C.R. Goldman, in: “Prediction and Measurement of Photosynthetic Productivity,” Centre Agr. Publ. Doc., Wageningen (1970)

    Google Scholar 

  45. S. Taguchi, Bull. Plankton Soc. Japan 26: 1 (1979)

    Google Scholar 

  46. Z. Dubinsky and T. Berman, Limnol. Oceanogr. (in press)

    Google Scholar 

  47. V. Ilmavirta, Ann. Bot. Fennici 11: 136 (1974)

    Google Scholar 

  48. N.G. Jerlov and E. Stecmann Nielsen, eds., “Optical Aspects of Oceanography,” Academic Press, London (1970)

    Google Scholar 

  49. J.E. Tyler, “Light in the Sea,” Halsted, New York (1977)

    Google Scholar 

  50. Z. Dubinsky and T. Berman, Limnol. Oceanogr. 24: 652 (1979)

    Article  Google Scholar 

  51. T.T. Bannister, Limnol. Oceanogr. 19: 1 (1974)

    Article  Google Scholar 

  52. D.A. Kiefer and T. Enns, in: “Modeling in Aquatic Ecosystems,” R.P. Canale, ed., Ann Arbor Science, Ann Arbor, Mich. (1976)

    Google Scholar 

  53. A.D. Jassby and T. Platt, Limnol. Oceanogr. 21: 540 (1976)

    Article  Google Scholar 

  54. T.T. Bannister, Limnol. Oceanogr. 24: 76 (1979)

    Article  Google Scholar 

  55. J.P. Thornber, R.S. Alberte, F.A. Hunter, J.A. Shiozawa and K-S. Kan, Brookhaven Symposia in Biology 28: 132 (1976)

    Google Scholar 

  56. A.L. Lehninger, “Bioenergetics,” Benjamin, New York (1965)

    Google Scholar 

  57. T. Platt and D.V. Subba Rao, J. Fish. Res. Bd. Canada 27: 887 (1970)

    Article  Google Scholar 

  58. E. Steemann Nielsen, J. Cons. Cons. Int. Explor. Mer 18: 117 (1952)

    Google Scholar 

  59. T. Berman, J. Phycol. 9: 327 (1973)

    Google Scholar 

  60. J.D.H. Strickland and T.R. Parsons, Bull. Fish. Res. Bd. Canada No. 167 (1968)

    Google Scholar 

  61. T. Berman and U. Pollingher, Limnol. Oceanogr. 19: 31 (1974)

    Article  Google Scholar 

  62. D.T. Waite, and H.C. Duthie, Int. Revue ges. Hydrobiol. 59: 783 (1974)

    Article  Google Scholar 

  63. G.E. Fogg, in: “A Manual on Methods for Measuring Primary Production in Aquatic Environments,” R.A. Vollenweider, ed., IBP Handbook, No. 12, Blackwell, Oxford (1969)

    Google Scholar 

  64. J.E. Tyler, ed., “Report on the Second Meeting of the Joint Group of Experts on Photosynthetic Radiant Energy,” UNESCO Technical Papers in Marine Science No. 2: 1 (1966)

    Google Scholar 

  65. C.R. Smith, J.E. Tyler and C.R. Goldman, Limnol. Oceanogr. 18: 189 (1973)

    Article  Google Scholar 

  66. A. Morel and R.C Smith, Limnol. Oceanogr. 19: 591 (1974)

    Article  Google Scholar 

  67. N. Nφjerslev, Limnol. Oceanogr. 20: 1024 (1975)

    Article  Google Scholar 

  68. R.C Smith and J.E. Tyler, Photochem. Photobiol. Rev. 1:117 (1975)

    Google Scholar 

  69. R.O. Megard, W.S. Combs, Jr., P.D. Smith and A.S. Knoll, Limnol. Oceanogr. 24: 1038 (1979)

    Article  Google Scholar 

  70. O. Holm-Hansen, C.J. Lorenzen, R.W. Holmes and J.D. Strickland, J. Cons. Cons. Int. Explor. Mer 30: 3 (1965)

    Google Scholar 

  71. T. Berman, Limnol. Oceanogr. 17: 616 (1972)

    Article  Google Scholar 

  72. J.T. Kirk, New Phytol. 75: 11 (1975)

    Article  Google Scholar 

  73. J.T. Kirk, New Phytol. 75: 21 (1975)

    Article  Google Scholar 

  74. D. Atlas and T.T. Bannister, Limnol. Oceanogr. 25: 15 (1980)

    Article  Google Scholar 

  75. R.C. Smith and K.S. Baker, Limnol. Oceanogr. 23: 247 (1978)

    Article  Google Scholar 

  76. Z. Dubinsky and M. Polna, Hvdrobiologia 15: 239 (1976)

    Article  Google Scholar 

  77. J.F. Tailing, Wetter Leben 12: 235 (1960)

    Google Scholar 

  78. M. Bindloss, Proc. R. Soc. Edinburgh Ser. B. 19: 157 (1974)

    Google Scholar 

  79. G.G. Ganf, J. Ecol. 62: 593 (1974)

    Article  Google Scholar 

  80. B.D. Scott, J. Mar. Freshwater Res. 29: 31 (1978)

    Article  Google Scholar 

  81. J.E. Tyler, Appl. Opt. 18: 442 (1979)

    Article  Google Scholar 

  82. O.J. Koblentz-Mishke, V.N. Pelevin and M.A. Semenova, Shirshov. Akaderaia nauk 102: 141 (1975)

    Google Scholar 

  83. W. Rodhe, Int. Ver. Theor. Angew. Limnol. Verh. 13: 121 (1958)

    Google Scholar 

  84. B.B. Prezelin and R.S. Alberte, Proc. Nat. Acad. Sci. USA 75: 1801 (1978)

    Article  Google Scholar 

  85. P.G. Falkowski and T.G. Owens, Plant Physiol. (in press)

    Google Scholar 

  86. G.A. Riley, J. Mar. Res. 6: 54 (1946)

    Google Scholar 

  87. M.R. Droop, in: “Symbiotic Associations,” P.S. Nutman and B. Mosse, eds., Cambridge University Press, Cambridge (1963)

    Google Scholar 

  88. D.R. Stoddart and R.E. Johannes, eds., “Coral Reefs: Research Methods.” UNESCO, Paris (1978)

    Google Scholar 

  89. A.B. Brandt, M.I. Kiseleva, and K.A. Sharipov, Biofizika 20: 862 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Dubinsky, Z. (1980). Light Utilization Efficiency in Natural Phytoplankton Communities. In: Falkowski, P.G. (eds) Primary Productivity in the Sea. Environmental Science Research, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3890-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3890-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3892-5

  • Online ISBN: 978-1-4684-3890-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics