Skip to main content

Strontium as the Substitute for Calcium in the Excitation-Contraction Coupling of Crayfish Muscle Fibers

  • Chapter
Handbook of Stable Strontium

Abstract

Extensive studies on the excitation-contraction coupling of skeletal muscle have been carried out, and were reviewed in the papers of Ebashi (1) and of Endo (2). Most of the review articles were concerned with the vertebrate skeletal muscle. The peculiar properties of the crustacean muscle were described by Zachar (3), Atwood (4), and Reuben et al. (5). Because the crustacean muscle usually does not respond to the electrical stimulus with the all-or-none-type action potential, the term “electromechanical coupling” seems to be more suitable than the “excitation-contraction coupling.” However, the latter term has now become customary and the usage of this term will be continued also in this paper [see Sandow (6)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Ebashi, Excitation-contraction coupling, Annu. Rev. Physiol. 38, 293–313 (1976).

    Article  CAS  Google Scholar 

  2. M. Endo, Calcium release from the sarcoplasmic reticulum, Physiol. Rev. 57, 71–108 (1977).

    CAS  Google Scholar 

  3. J. Zachar, Electrogenesis and Contractility in Skeletal Muscle, Slovak Academy of Sciences, University Park Press, Baltimore and London (1971).

    Google Scholar 

  4. H. L. Atwood, Crustacean muscle, in The Structure and Function of Muscle (G. H. Bourne, ed.), 2nd ed., Vol. 1, pp. 389–421, Academic Press, New York (1972).

    Google Scholar 

  5. J. P. Reuben, D. P. Purpura, M. V. L. Bennet, and E. R. Kendel, Electrophysiologic of Nerve, Synapse, and Muscle, Raven Press, New York (1976).

    Google Scholar 

  6. A. Sandow, Excitation-contraction coupling in skeletal muscle, Pharmacol. Rev. 17, 265–320 (1965).

    CAS  Google Scholar 

  7. A. L. Hodgkin and P. Horowicz, Potassium contracture in single muscle fibres, J. Physiol. (London) 153, 386–403 (1960).

    CAS  Google Scholar 

  8. P. Heistracher and C. C. Hunt, The relation of membrane changes to contraction on twitch muscle fibres, J. Physiol. (London) 201, 589–611 (1969).

    CAS  Google Scholar 

  9. J. Dudel, M. Morad, and R. Rudel, Contraction of single crayfish muscle fibers induced by controlled changes of membrane potential, Pflügers Arch. Gen. Physiol. 299, 38–51 (1968).

    Article  CAS  Google Scholar 

  10. M. Matsumura, Electro-mechanical coupling in crayfish muscle fibers examined by the voltage clamp method, Jpn. J. Physiol. 22, 53–69 (1972).

    Article  CAS  Google Scholar 

  11. P. Fatt and B. L. Ginsborg, The ionic requirements for the production of action potential in crustacean muscle fibres, J. Physiol. (London) 142, 516–543 (1958).

    CAS  Google Scholar 

  12. S. Hagiwara and K. I. Naka, The initiation of spike potential in barnacle muscle fibers under low intracellular Ca++, J. Gen. Physiol. 48, 141–162(1964).

    Article  CAS  Google Scholar 

  13. M. Matsumura, The effects of metal ions and caffeine on electro-mechanical coupling in crayfish muscle fibers, Jpn. J. Physiol. 22, 71–85 (1972).

    Article  CAS  Google Scholar 

  14. G. B. Frank, Utilization of bound calcium in the action of caffeine and certain multivalent cations on skeletal muscle, J. Physiol. (London) 163, 254–268 (1962).

    CAS  Google Scholar 

  15. H. C. Lüttgau, The action of calcium ions on potassium contractures of single muscle fibres, J. Physiol (London) 168, 679–697 (1963).

    Google Scholar 

  16. C. Edwards, H. Lorkovic, and A. Weber, The effect of the replacement of calcium by strontium on excitation-contraction coupling in frog skeletal muscle, J. Physiol. (London) 186, 295–306 (1966).

    CAS  Google Scholar 

  17. L. L. Costantin, The role of calcium on contraction and conductance threshold in frog skeletal muscle, J. Physiol. (London) 195, 119–132 (1968).

    CAS  Google Scholar 

  18. C. M. Armstrong, F. M. Bezanilla, and P. Horowicz, Twitches in the presence of ethylene glycol bis (β-amino-ethyl ether)-N,N′-tetraacetic acid, Biochim. Biophys. Acta 267, 605–608 (1972).

    Article  CAS  Google Scholar 

  19. A. F. Huxley and R. E. Taylor, Local stimulation of striated muscle fibres, J. Physiol. (London) 144,426–441(1958).

    CAS  Google Scholar 

  20. M. Matsumura, The rate of action of calcium on the electrical and mechanical responses of the crayfish muscle fibers, Jpn. J. Physiol. 28, 75–87 (1978).

    Article  CAS  Google Scholar 

  21. I. Atwater, E. Rojas, and J. Vergaro, Calcium influxes and tension development in perfused barnacle muscle fibres under membrane potential control. J. Physiol. (London) 243, 523–551 (1974).

    CAS  Google Scholar 

  22. M. Matsumura and H. Mashima, Contraction produced by intracellular injection of calcium, strontium, and barium in the single crayfish muscle fibers, Jpn. J. Physiol. 26, 145–157 (1976).

    Article  CAS  Google Scholar 

  23. J. P. Reuben, P. W. Brandt, and H. Grundfest, Regulation of myoplasmic calcium concentration in intact crayfish muscle fibers, J. Mechanochem. Cell Motility 2, 269–285 (1974).

    CAS  Google Scholar 

  24. S. Ebashi, M. Endo, and M. Ohtsuki, Control of muscle contraction, Q. R. Biophys. 2, 351–384 (1969).

    Article  CAS  Google Scholar 

  25. P. Mermier and W. Hasselbach, Comparison between strontium and calcium uptake by the fragmented sarcoplasmic reticulum, Eur. J. Biochem. 69, 79–86 (1976).

    Article  CAS  Google Scholar 

  26. S. K. B. Donaldson and W. G. L. Kerrick, Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned skeletal muscle fibers, J. Gen. Physiol. 66, 427–444 (1975).

    Article  CAS  Google Scholar 

  27. P. C. Caldwell and G. Walster, Studies on the microinjections of various substances into crab muscle fibres, J. Physiol. (London) 169, 353–372 (1963).

    CAS  Google Scholar 

  28. S. Hagiwara and K. Takahashi, Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane, J. Gen. Physiol 50, 583–601 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Matsumura, M. (1981). Strontium as the Substitute for Calcium in the Excitation-Contraction Coupling of Crayfish Muscle Fibers. In: Skoryna, S.C. (eds) Handbook of Stable Strontium. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3698-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3698-3_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3700-3

  • Online ISBN: 978-1-4684-3698-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics