Skip to main content

Part of the book series: Biological Regulation and Development ((BRD,volume 1))

Abstract

All organisms control the expression of the genetic information stored in their DNA. The DNA in every cell of every organism contains a vast number of genes. The gene products can carry out an equally vast number of biological and biochemical functions. Utilization of this potential must be coordinated and energetically efficient so that any organism can survive the selective pressures of its environment and reproduce in numbers sufficient to avoid extinction. Overall genetic regulation has two primary objectives: first, to allow for biologically favorable adaptive responses to changes in environment, and second, to coordinate an effectively irreversible program of development leading to reproduction. Control signals, encoded in an organism’s DNA, are primary elements of this genetic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhya, S., Gottesman, M., and de Crombrugghe, B., 1974, Release of polarity in Escherichia coli by gene N of phage X: Termination and antitermination of transcription, Proc. Natl. Acad. Sci. U.S.A 71: 2534.

    Article  PubMed  CAS  Google Scholar 

  • Adhya, S., Gottesman, M., de Crombrugghe, B., and Court, D., 1976, Transcription termination regulates gene expression, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 719–730, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Adler, K., Beyreuther, K., Fanning, E., Geisler, E., Gronenborn, B., Klemm, A., Müller-Hill, B., Pfahl, M., and Schmitz, A., 1972, How lac repressor binds to DNA, Nature 237: 322.

    Article  PubMed  CAS  Google Scholar 

  • Ames, B., and Hartman, P. E., 1963, The histidine operon, Cold Spring Harbor Symp. Quant. Biol 28: 349.

    Article  CAS  Google Scholar 

  • Anderson, W., Schneider, A., Emmer, M., Perlman, R., and Pastan, I., 1971, Purification of and properties of the cyclic adenosine 3’,5’-monophosphate receptor protein which mediates cyclic adenosine 3’,5’-monophosphate-dependent gene transcription in Escherichia coli, J. Biol. Chem 246: 5929.

    CAS  Google Scholar 

  • Arditti, R. R., Scaife, J. G., and Beckwith, J. R., 1968, The nature or mutants in the lac promoter region, J. Mol. Biol 38: 421.

    Article  PubMed  CAS  Google Scholar 

  • Axelrod, N., 1976, Transcription of bacteriophage 4X174 in vitro: Selective initiation with oligonucleotides, J. Mol. Biol 108: 753.

    Article  PubMed  CAS  Google Scholar 

  • Bautz, E. K. F., 1976, Bacteriophage-induced DNA-dependent RNA polymerases, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 273–284, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Beard, P., Morrow, J. F., and Berg, P., 1973, Cleavage of circular, superhelical simian virus 40 DNA to a linear duplex by S1 nuclease, J. Virol 12: 1303.

    PubMed  CAS  Google Scholar 

  • Beckwith, J., 1963, Restoration of operon activity by suppressors, Biolchim. Biophys. Acta 76: 162

    Article  CAS  Google Scholar 

  • Beckwith, J., and Rossow, P., 1974, Analysis of genetic regulatory mechanisms, Annu. Rev. Genet 8: 1

    Article  PubMed  CAS  Google Scholar 

  • Beckwith, J., Grodzicker, T., and Arditti, R., 1972, Evidence for two sites in the lac promoter region, J. Mol. Biol 69: 155.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, G. N., Schweingruber, M. E., Brown, K. D., Squires, C., and Yanofsky, C., 1976, Nucleotide sequence of region preceding trp mRNA initiation site and its role in promoter and operator function, Proc. Natl. Acad. Sci. U.S.A 73: 235.

    Article  Google Scholar 

  • Bertrand, K., and Yanofsky, C., 1976, Regulation of transcription termination in the leader region of the tryptophan operon on Escherichia coli involves tryptophan or its metabolic product, J. Mol. Biol 103: 339.

    Article  PubMed  CAS  Google Scholar 

  • Bertrand, K., Korn, L., Lee, F., Platt, T., Squires, C. L., Squires, C., and Yanofsky, C., 1975, New features of the regulation of the tryptophan operon, Science 189: 22.

    Article  PubMed  CAS  Google Scholar 

  • Bertrand, K., Squires, C., and Yanofsky, C., 1976, Transcription termination in vivo in the leader region of the tryptophan operon of Escherichia coli, J. Mol. Biol 103: 319.

    Article  PubMed  CAS  Google Scholar 

  • Bertrand, K., Korn, L. J., Lee, F., and Yanofsky, C., 1977, The attenuator of the tryptophan operon of Escherichia coli: a. Heterogeneous 3’-OH termini in vivo. b. Deletion mapping of attenuator functions, J. Mol. Biol 117: 227.

    Article  PubMed  CAS  Google Scholar 

  • Beyreuther, K., and Gronenborn, B., 1976, N-terminal sequence of phage lambda repressor, Mol. Gen. Genet 147: 115.

    Article  PubMed  CAS  Google Scholar 

  • Blattner, F. R., and Dahlberg, J. E., 1972, RNA synthesis startpoints in bacteriophage X: Are the promoter and operator transcribed? Nature New Biol. 237: 277.

    Article  Google Scholar 

  • Block, R., and Haseltine, W. A., 1974, In vitro synthesis of ppGpp and pppGpp, in: Ribosomes (M. Nomura, A. Tissieres, and P. Lengyel, eds.), pp. 747–761, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Botchan, P., 1976, An electron microscopic comparison of transcription on linear and superhelical DNA, J. Mol. Biol 105: 161.

    Article  PubMed  CAS  Google Scholar 

  • Bourgeois, S., and Jobe, A., 1970, Superrepressors of the lac operon, in: The Lactose Operon (J. R. Beckwith and D. Zipser, eds.), pp. 325–341, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Bourgeois, S., and Pfal, M., 1976, Repressors, Adv. Protein Chem 30: 1.

    Article  PubMed  CAS  Google Scholar 

  • Brack, C., and Pirrotta, V., 1975, Electron microscopic study of the repressor of bacteriophage X and its interaction with operator DNA, J. Mol. Biol. 96:139.

    Google Scholar 

  • Bronson, M., Squires, C., and Yanofsky, C., 1973, Nucleotide sequences from tryptophan messenger RNA of Escherichia coli: The sequence corresponding to the amino-terminal region of the first polypeptide specified by the operon, Proc. Natl. Acad. Sci. U.S.A 70: 2335.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, R. R., 1971, RNA polymerase, Annu. Rev. Biochem. 40:711.

    Google Scholar 

  • Burgess, R. R. 1976, Purification and physical properties of E. coli RNA polymerase, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 69–100, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Burgess, R. R., Travers, A. A., Dunn, J. J., and Bautz, E. K. F., 1969, Factor stimulating transcription by RNA polymerase, Nature 221: 43.

    Article  PubMed  CAS  Google Scholar 

  • Carmichael, G. G., 1975, Isolation of bacterial and phage proteins by homopolymer RNA-cellulose chromatography, J. Biol. Chem 250: 6160.

    PubMed  CAS  Google Scholar 

  • Carter, T., and Newton, A., 1971, New polarity suppressors in Escherichia coli: Suppression and messenger RNA stability, Proc. Natl. Acad. Sci. U.S.A 68: 2962.

    Article  PubMed  CAS  Google Scholar 

  • Chadwick, P., Pirrotta, V., Steinberg, R., Hopkins, N., and Ptashne, M., 1970, the X and 434 phage repressors, Cold Spring Harbor Symp. Quant. Biol 35: 283.

    Google Scholar 

  • Chamberlin, M., 1974, The selectivity of transcription, Annu. Rev. Biochem 43: 721.

    Article  PubMed  CAS  Google Scholar 

  • Chamberlin, M. J., 1976, RNA polymerase—An overview, in: RNA Polymerase (R. Losick and M. Chamberlin, eds.), pp. 17–67, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Contesse, G., Crépin, M., and Gross, F., 1970, Transcription of the lactose operon in E. cob, in: The Lactose Operon (1. R. Beckwith and D. Zipser, eds.), pp. 111–142, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Darlix, J. L., 1973, The functions of rho in T7-DNA transcription in vitro, Eur. J. Biochem 35: 517

    Article  PubMed  CAS  Google Scholar 

  • Darlix, J., and Horaist, M., 1975, Existence and possible roles of transcriptional barriers in T7 DNA early region as shown by electron microscopy, Nature 256: 288.

    Article  PubMed  CAS  Google Scholar 

  • Darlix, J. L., Sentenac, A., and Fromageot, P., 1971, Binding of termination factor rho to RNA polymerase and DNA, FEBS Lett. 13: 165.

    Article  PubMed  CAS  Google Scholar 

  • Das, A., Court, D., and Adhya, S., 1976, Isolation and characterization of conditional lethal mutants of Escherichia coli defective in transcription termination factor rho, Proc. Natl. Acad. Sci. U.S.A 73: 1959.

    Article  PubMed  CAS  Google Scholar 

  • Dausse, J. P., Sentenac, A., and Fromageot, P., 1975, Interaction of RNA polymerase from Escherichia coli with DNA. Analysis of T7 DNA early promoter sites, Eur. J. Biochem 57: 569.

    Article  PubMed  CAS  Google Scholar 

  • Dean, W., and Lebowitz, J., 1971, Alterations induced in native superhelices by formaldehyde, Nature New Biol. 231: 1.

    Article  Google Scholar 

  • de Crombrugghe, B., Chen, B., Gottesman, M., Varmus, H., Emmer, M., and Perlman, R., 1971a, Regulation of lac mRNA synthesis in a soluble cell-free system, Nature New Biol. 230: 37.

    PubMed  Google Scholar 

  • de Crombrugghe, B., Chen, B., Anderson, W., Nissley, S., Gottesman, M., Pastan, I., and Perlman, R., 1971b, Lac DNA, RNA polymerase and cyclic AMP receptor protein, cyclic AMP receptor protein, cyclic AMP, lac repressor and inducer are the essential elements for controlled lac transcription, Nature New Biol. 231: 139.

    Google Scholar 

  • de Crombrugghe, B., Adhya, S., Gottesman, M., and Pastan, I., 1973, Effect of rho on transcription of bacterial operons, Nature New Biol. 241: 260.

    Article  PubMed  Google Scholar 

  • Dickson, R. C., Abelson, J., Barnes, W. M., and Reznikoff, W. S., 1975, Genetic regulation: The lac control region, Science 187: 27.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, R. C., Abelson, J., Johnson, P., Reznikoff, W. S., and Barnes, W. M., 1977, Nucleotide sequence changes produced by mutations in the lac promoter of Escherichia coli, J. Mol. Biol 111: 65.

    Google Scholar 

  • Downey, K., and So. A., 1970, Studies on the kinetics of ribonucleic acid chain initiation and elongation, Biochemistry 9: 2520.

    Article  PubMed  CAS  Google Scholar 

  • Downey, K., Jurmark, B., and So, A., 1971, Determination of nucleotide sequences at promoter regions by the use of dinucleotides, Biochemistry 10: 4970.

    Article  PubMed  CAS  Google Scholar 

  • Duffy, J. J., and Geiduschek, E. P., 1973, Transcription specificity of an RNA polymerase fraction from bacteriophage SPO1-infected B. subtilis, FEBS Lett. 34: 172.

    Article  PubMed  CAS  Google Scholar 

  • Duffy, J. J., and Geiduschek, E. P., 1975, RNA polymerase from phage SPO1-infected and uninfected Bacillus subtilis, J. Biol. Chem 250: 4530.

    PubMed  CAS  Google Scholar 

  • Duffy, J. J., and Geiduschek, E. P., 1977a, The virus-specified subunits of a modified B. subtilis RNA polymerase are determinants of DNA binding and RNA chain initiation, Cell 8: 595.

    Article  Google Scholar 

  • Duffy, J. J., and Geiduschek, E. P., 1977b, Purification of a positive regulatory subunit from phage SPOT-modified RNA polymerase, Nature 270: 28.

    Article  PubMed  CAS  Google Scholar 

  • Duffy, J. J., Petrusek, R. L., and Geiduschek, E. P., 1975, Conversion of Bacillus subtilis RNA polymerase activity in vitro by a protein induced by phage SPO1, Proc. Natl. Acad. Sci. U.S.A 71: 2761.

    Google Scholar 

  • Dunn, J. J., and Studier, F. W., 1973, T7 early RNAs are generated by site-specific cleavages, Proc. Natl. Acad. Sci. U.S.A 70: 1559.

    Article  PubMed  CAS  Google Scholar 

  • Emmer, M., de Crombrugghe, B., Pastan, I., and Perlman, R., 1970, Cyclic AMP receptor protein of E. coli; Its role in the synthesis of inducible enzymes, Proc. Natl. Acad. Sci. U.S.A 66: 480.

    Article  PubMed  CAS  Google Scholar 

  • Englesberg, E., and Wilcox, G., 1974, Regulation: Positive control, Annu. Rev. Genet 8: 219

    Article  PubMed  CAS  Google Scholar 

  • Epp, C., and Pearson, M. L., 1976, Association of bacteriophage lambda N gene protein with E. coli RNA polymerase, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 667–691, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Epstein, W., and Beckwith, J., 1968, Regulation of gene expression, Annu. Rev. Biochem 37: 411

    Article  CAS  Google Scholar 

  • Franklin, N. C., 1974, Altered reading of genetic signals fused to the N operon of bacteriophage X: Genetic evidence for modification of polymerase by the protein product of the N gene, J. Mol. Biol 89: 33.

    Article  PubMed  CAS  Google Scholar 

  • Franklin, N. C., and Luria, S. E., 1961, Transduction by bacteriophage PI and the properties of the lac genetic region in E. coli and S. dysenteriae, Virology 15: 299.

    Article  PubMed  CAS  Google Scholar 

  • Franklin, N. C., and Yanofsky, C., 1976, The N protein of X: Evidence bearing on transcription termination, polarity and the alteration of the E. coli RNA polymerase, in: RNA Polymerise ( R. Losick and M. Chamberlin, eds.), pp. 693–706, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Friedman, B. E., Olson, J. S., and Matthews, K. S., 1977, Interaction of the lac repressor with inducer. Kinetic and equilibrium measurements, J. Mol. Biol 111: 27.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, D. I., Wilgus, G. S., and Mural, R. J., 1973, Gene N regulator function of phage X imm 21: Evidence that a site of N action differs from a site of N recognition, J. Mol. Biol 81: 505.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, D. J., Ohlsson-Wilhelm, B. M., and Geiduschek, E. P., 1971, Transcription during bacteriophage SPOT development: Mutations affecting the program of viral transcription, J. Mol. Biol 57: 301.

    Article  PubMed  CAS  Google Scholar 

  • Galluppi, G., Lowery, C., and Richardon, J. P., 1976, Nucleoside triphosphate requirement for termination of RNA synthesis by rho factor, in: RIVA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 657–666, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Georgopoulos, C. P., 1971, Bacterial mutants in which the gene N function of bacteriophage lambda have an altered RNA polymerase, Proc. Natl. Acad. Sci. U.S.A 68: 2977.

    Article  PubMed  CAS  Google Scholar 

  • Ghysen, A., and Pironio, M., 1972, Relationship between the N function of bacteriophage X and host RNA polymerase, J. Mol. Biol 65: 259.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., 1972, The lac repressor and the lac operator, Ciba Found. Symp 7: 245.

    PubMed  CAS  Google Scholar 

  • Gilbert, W., 1976, Starting and stopping sequences for the RNA polymerase, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 193–205, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Gilbert, W., and Maxam, A., 1973, The nucleotide sequence of the lac operator, Proc. Natl. Acad. Sci. U.S.A 70: 3581.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., and Müller-Hill, B., 1966, Isolation of the lac repressor, Proc. Natl. Acad. Sci. U.S.A 56: 1891.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., and Müller-Hill, B., 1967, The lac operator is DNA, Proc. Natl. Acad. Sci. U.S.A 58: 2415

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., and Müller-Hill, B., 1970, The lactose repressor, in: The Lactose Operon ( J. R. Beckwith and D. Zipser, eds.), pp. 93–109, Cold Spring Harbor Lab., Cold Spring Harbor, New York

    Google Scholar 

  • Gilbert, W., Maizels, N., and Maxam, A., 1973, Sequences of controlling regions of the lactose operon, Cold Spring Harbor Symp. Quant. Biol 38: 845.

    Article  Google Scholar 

  • Gilbert, W., Gralla, J., Majors, J., and Maxam, A., 1975, Lactose operator sequences and the action of Lac repressor, in: Symposium on Protein—Ligand Interactions (H. Sund and G. Blauer, eds.), pp. 193–210, de Gruyter, Berlin.

    Google Scholar 

  • Gilbert, W., Maxam, A., and Mirzebekov, A., 1976, Contacts between the lac repressor and DNA revealed by methylation, in: Control of Ribosome Synthesis ( N. O. Kjelgaard and O. Maalie, eds.), pp. 139–148, The Alfred Benzon Symposium IX, Munksgaard, Copenhagen.

    Google Scholar 

  • Goeddel, D. V., Yansura, D. G., and Caruthers, M. H., 1977, Studies on gene control regions. VI. The 5-methyl of thymine, a lac repressor recognition site, Nucleic Acids Res. 4: 3039.

    Article  PubMed  CAS  Google Scholar 

  • Goff, C., and Minkley, E. G., 1970, The RNA polymerase sigma factor: A specificity determinant, in: Lepetit Colloquium on RNA Polymerase, Vol. I ( L. Silvestri, ed.), pp. 124–147, North-Holland, Amsterdam

    Google Scholar 

  • Hayashi, M., Fujimura, F. K., and Hayashi, M., 1976, Mapping of in vivo messenger RNAs for bacteriophage IX-174, Proc. Natl. Acad. Sci. U.S.A 73: 3519.

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz, I., 1974, Control of gene expression in bacteriophage lambda, Annu. Rev. Genet 7: 389

    Google Scholar 

  • Herskowitz, I., and Signer, E. R., 1970, A site essential for expression of all late genes in bacteriophage X, J. Mol. Biol 47: 545.

    Article  PubMed  CAS  Google Scholar 

  • Heyden, B., Nusslein, C., and Schaller, H., 1975, Initiation of transcription within an RNA polymerase binding site, Eur. J. Biochem 55:147.

    Article  PubMed  CAS  Google Scholar 

  • Hinkle, D., and Chamberlin, M., 1972, Studies of the binding of E. coli RNA polymerase to DNA. I. The role of the sigma subunit, J. Mol. Biol 70: 157.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins, J. D., 1974, A new class of promoter mutations in the lactose operon of Escherichia coli, J. Mol. Biol 87: 715.

    Article  PubMed  CAS  Google Scholar 

  • Howard, B., and de Crombrugghe, B., 1975, ATPase activity required for termination of transcription by the E. coli protein factor rho, J. Biol. Chem. 251:2520.

    Google Scholar 

  • Jackson, E. N., and Yanofsky, C., 1973, The region between the operator and the first structural gene of the tryptophan operon of Escherichia coli may have a regulatory function, J. Mol. Biol 76: 89.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, F., and Monod, J 196la, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol 3:318

    Google Scholar 

  • Jacob, F., and Monod, J., 1961 b, On the regulation of gene activity, Cold Spring Harbor Symp. Quant. Biol 26: 193.

    Google Scholar 

  • Jacob, F., Ullman, A., and Monod, J., 1964, Le promoteur, élément génétique nécessaire à l’expression d’un operon, C.R. Acad. Sci 258: 3125.

    Google Scholar 

  • Jobe, A., and Bourgeois, S., 1972, The natural inducer of the lac operon, J. Mol. Biol 69: 397.

    Article  PubMed  CAS  Google Scholar 

  • Jobe, A., Sadler, J. R., and Bourgeois, S., 1974, Lac repressor—operator interaction. IX. The binding of lac repressor to operators containing O` mutations, J. Mol. Biol 85: 231.

    CAS  Google Scholar 

  • Johnston, D. E., and McClure, W. R., 1976, Abortive initiation of in vitro RNA synthesis on bacteriophage X DNA, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 413–428, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Kasai, T., 1974, Regulation of the expression of the histidine operon in Salmonella typhimurium, Nature 249: 523.

    Article  PubMed  CAS  Google Scholar 

  • Kiefer, M., Neff, N., and Chamberlin, M. J., 1977, Transcriptional termination at the end of the early region of bacteriophages T3 and T7 is not affected by polarity suppressors, J. Virol 22: 548.

    Google Scholar 

  • Kleid, D., Humayun, Z., Jeffrey, A., and Ptashne, M., 1976, Novel properties of a restriction endonuclease isolated from Haemophilus parahaemolyticus, Proc. Natl. Acad. Sci. U.S.A 73:293.

    Article  PubMed  CAS  Google Scholar 

  • Korn, L. J., and Yanofsky, C., 1976a, Polarity suppressors increase expression of the wild-type tryptophan operon of Escherichia coli, J. Mol. Biol 103: 395.

    Article  PubMed  CAS  Google Scholar 

  • Korn, L. J., and Yanofsky, C., 1976b, Polarity suppressors defective in transcription termination of the tryptophan operon of Escherichia coli have altered rho factor, J. Mol. Biol 106: 231.

    Article  PubMed  CAS  Google Scholar 

  • Kornberg, A., 1976, RNA priming of DNA replication, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 331–352, Cold Spring Harbor Lab., Cold Spring Harbor, New York

    Google Scholar 

  • Krakow, J. S., 1966, Azobacter vinelandii ribonucleic acid polymerase. II. Effect of ribonuclease on polymerase activity, J. Biol. Chem 241: 1830.

    CAS  Google Scholar 

  • Krakow, J. S., and Fronk, E., 1969, Azobacter vinelandii ribonucleic acid polymerase. VIII. Pyrophosphate exchange, J. Biol. Chem 244: 5988.

    CAS  Google Scholar 

  • Krakow, J. S., and Pastan, I., 1973, Cyclic adenosine monophosphate receptor: Loss of cAMPdependent DNA binding activity after proteolysis in the presence of cyclic adenosine monophosphate, Proc. Natl. Acad. Sci. U.S.A 70: 2529.

    Article  PubMed  CAS  Google Scholar 

  • Krakow, J. S., Rhodes, G., and Jovin, T. M., 1976, RNA polymerase: Catalytic mechanisms and inhibitors, in: RNA Polymerase (R. Losick and M. Chamberlin, eds.), pp. 127–157, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Köpper, H., Contreras, R., Khorana, H. G., and Landy, A., 1976, The tyrosine tRNA promoter, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 473–484, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Lebowitz, P., Weissman, S. H., and Radding, C. M., 1971, Nucleotide sequence of a ribonucleic acid transcribed in vitro from X phage deoxyribonucleic acid, J. Biol. Chem 246: 5120.

    PubMed  CAS  Google Scholar 

  • Lee, F., Squires, C. L., Squires, C., and Yanofsky, C., 1976, Termination of transcription in vitro in the Escherichia coli tryptophan operon leader region, J. Mol. Biol 103: 383.

    Article  PubMed  CAS  Google Scholar 

  • Losick, R., 1972, In vitro transcription, Annu. Rev. Biochem 41: 409.

    Article  CAS  Google Scholar 

  • Losick, R., and Pero, J., 1976, Regulatory subunits of RNA polymerase, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 227–246, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Lowery-Goldhammer, C., and Richardson, J. P., 1974, An RNA-dependent nucleoside triphosphate phosphohydrolase (ATPase) associated with rho termination factor, Proc. Natl. Acad. Sci. U.S.A 71: 2003.

    Google Scholar 

  • Magasanik, B., 1970, Glucose effects: Inducer exclusion and repression, in: The Lactose Operon ( J. R. Beckwith and D. Zipser, eds.), pp. 189–219, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Maitra, U., Nakata, Y., and Hurwitz, J., 1967, The role of deoxyribonucleic acid in ribonucleic acid synthesis. XIV. A study of the initiation of ribonucleic acid synthesis, J. Biol. Chem 242: 4908

    PubMed  CAS  Google Scholar 

  • Maizels, N., 1973, The neucleotide sequence of the lactose messenger ribonucleic acid transcribed from the UV5 promoter mutant of E. coli, Proc. Natl. Acad. Sci. U.S.A 70: 3585.

    Article  PubMed  CAS  Google Scholar 

  • Majors, J., 1975a, Specific binding of CAP factor to lac promoter DNA, Nature 256: 672.

    Article  PubMed  CAS  Google Scholar 

  • Majors, J., 1975b, Initiation of in vitro mRNA synthesis from the wild-type lac promoter, Proc. Natl. Acad. Sci. U.S.A 72: 4394.

    Article  PubMed  CAS  Google Scholar 

  • Majors, J., 1978, Symmetric Binding Sites for CAP Factor within the E. coli lac Promoter, Ph. D. Thesis, Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  • Maniatis, T., and Ptashne, M., 1973, Multiple repressor binding at the operators in bacteriophage X, Proc. Natl. Acad. Sci. U.S.A 70: 1531.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis, T., Ptashne, M., Barrell, B., and Donelson, J., 1974, Sequence of a repressor-binding site in the DNA of bacteriophage X, Nature 250: 394.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis, T., Ptashne, M., Backman, K., Kleid, D., Flashman, S., Jeffrey, A., and Maurer, R., 1975, Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda, Cell 5: 109.

    Article  PubMed  CAS  Google Scholar 

  • Mangel, W. F., and Chamberlin, M. J., 1974a, Studies of RNA chain initiation by E. coli RNA polymerase bound to T7 DNA. I. An assay for the rate and extent of RNA chain initiation, J. Biol. Chem 249: 2995.

    PubMed  CAS  Google Scholar 

  • Mangel, W. F., and Chamberlin, M. J., 1974b, Studies of RNA chain initiation by E. coli RNA polymerase bound to T7 DNA. II. The effect of alterations in ionic strength on chain intiation and on the conformation of binary complexes, J. Biol. Chem 249: 3002.

    PubMed  CAS  Google Scholar 

  • Mangel, W. F., and Chamberlin, M. J., 1974e, Studies of RNA chain initiation by E. coli RNA polymerase bound to T7 DNA. III. The effect of temperature on RNA chain intiation and on the conformation of binary complexes, J. Biol. Chem 249: 3007.

    PubMed  CAS  Google Scholar 

  • Maurer, R, Maniatis, T., and Ptashne, M., 1974, Promoters are in the operators in phage X, Nature 249: 221.

    Article  PubMed  CAS  Google Scholar 

  • Maxam, A. M., and Gilbert, W., 1977, A new method for sequencing DNA, Proc. Natl. Acad. Sci. U.S.A 74: 560.

    Article  PubMed  CAS  Google Scholar 

  • McDermit, M., Pierce, M., Staley, D., Shimaji, M., Shaw, R., and Wulff, D., 1976, Mutations masking the lambda cin-1 mutation, Genetics 82: 417.

    PubMed  CAS  Google Scholar 

  • Meyer, B., Kleid, D., and Ptashne, M., 1975, Lambda repressor turns off transcription of its own genes, Proc. Natl. Acad. Sci. U.S.A 72: 4785.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. H., 1970, Transcription starts and stops in the lac operon, in: The Lactose Operon Q. R. Beckwith and D. Zipser, eds.), pp. 173–188, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Miller, J. H., Ippen, K., Scaife, J. G., and Beckwith, J. R., 1968, The promoter—operator region of the lac operon of E. coli, J. Mol. Biol 38: 413.

    Article  PubMed  CAS  Google Scholar 

  • Miller, Z., Varmus, H. E., Parks, J. S., Perlman, R. L., and Pastan, I., 1971, Regulation of gal messenger ribonucleic acid synthesis in Escherichia coli by 3’,5’-cydic adenosine monophosphate, J. Biol. Chem 246: 2898.

    PubMed  CAS  Google Scholar 

  • Minkley, E. G., Pribnow, D., 1973, Transcription of the early region of bacteriophage T7: Selective initiation with dinucleotides, J. Mol. Biol 77: 255.

    Article  PubMed  CAS  Google Scholar 

  • Mitra, S., Zubay, G., and Landy, A., 1975, Evidence for the preferential binding of the catabolite gene activator protein (CAP) to DNA containing the lac promoter, Biochem. Biophys. Res. Commun. 67:857.

    Google Scholar 

  • Morse, D. E., and Morse, A. N. C., 1976, Dual control of the tryptophan operon is mediated by both tryptophanyl-tRNA synthetase and the repressor, J. Mol. Biol 103: 209.

    Article  PubMed  CAS  Google Scholar 

  • Müller-Hill, B., Crapo, L., and Gilbert W., 1968, Mutants that make more lac repressor, Proc. Natl. Acad. Sci. U.S.A 59: 1259.

    Article  PubMed  Google Scholar 

  • Musso, R., Di Lauro, R., Rosenberg, M., and de Crombrugghe, B., 1977, Nucleotide sequence of the operator—promoter region of the galactose operon of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A 74: 106.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi, S., Adhya, S., Gottesman, M. E., and Pastan, I., 1973a, In vitro repression of transcription of gal operon by purified gal repressor, Proc. Natl. Acad. Sci. U.S.A 70: 334.

    CAS  Google Scholar 

  • Nakanishi, S., Adhya, S., Gottesman, M. E., and Pastan, I., 1973b, Studies on the mechanism of action of the gal repressor, J. Biol. Chem 248: 5937.

    PubMed  CAS  Google Scholar 

  • Neff, N., and Chamberlin, M. J., 1978, Termination of transcription by E. coli RNA polymerase in vitro is affected by ribonucleoside triphosphate base analogs, J. Biol. Chem 253: 2455.

    PubMed  CAS  Google Scholar 

  • Nissley, S., Anderson, W., Gottesman, M., Perlman, R., and Pastan, I., 1971, In vitro transcription of the gal operon requires cyclic adenosine monophosphate and cyclic adenosine monophosphate receptor protein, J. Biol. Chem 246: 4671.

    CAS  Google Scholar 

  • Okubo, S., Yanagida, T., Fujita, D. J., and Ohlssen-Wilhelm, B. M., 1972, The genetics of bacteriophage SPO1, Biken J. 15: 81.

    PubMed  CAS  Google Scholar 

  • Pannekoek, H., Brammar, W. J., and Pouwels, P. H., 1975, Punctuation of transcription in vitro of the tryptophan operon of Escherichia coli. A novel type of control of transcription, Mol. Gen. Genet. 136:199.

    Google Scholar 

  • Parks, J. S., Gottesman, M., Shimada, K., Weisberg, A., Perlman, R. L., and Pastan, I., 197la, Isolation of the gal repressor, Proc. Natl. Acad. Sci. U.S.A 68: 1891.

    Google Scholar 

  • Parks, J. S., Gottesman, M., Perlman, R. L., and Pastan, I., 1971 b, Regulation of galactokinase synthesis by cyclic adenosine 3’,5’-monophosphate in cell-free extracts of Escherichia coli, J. Biol. Chem 246: 2419.

    Google Scholar 

  • Pero, J., Nelson, J., and Fox, T. D., 1975a, Highly asymmetric transcription by RNA polymerase containing phage-SPO1-induced polypeptides and a new host protein, Proc. Natl. Acad. Sci. U.S.A 72: 1589.

    Article  PubMed  CAS  Google Scholar 

  • Pero, J., Tijan, R., Nelson, J., and Losick, R., 1975b, In vitro transcription of a late class of phage SPO1 genes, Nature 257: 248.

    CAS  Google Scholar 

  • Petrusek, R., Duffy, J. J., and Geiduschek, E. P., 1976, Control of gene action in phage SPO1 development: Phage-specific modifications of RNA polymerase and a mechanism of positive regulation, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 587–600, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Pettijohn, D., Stonington, O., and Kossman, C., 1970, Chain termination of ribosomal RNA synthesis in vitro, Nature 228: 235.

    Article  PubMed  CAS  Google Scholar 

  • Pieczenik, G., Barrell, B. G., and Gefter, M. L., 1972, Bacteriophage 4)80-induced low molecular weight RNA, Arch. Biochem. Biophys. 152:152.

    Google Scholar 

  • Pirrotta, V., Chadwick, P., and Ptashne, M., 1970, Active form of two coliphage repressors, Nature 227: 41.

    Article  PubMed  CAS  Google Scholar 

  • Platt, T., Squires, C., and Yanofsky, C., 1976, Ribosome-protected regions in the leader-trpE sequence of Escherichia coli tryptophan operon messenger RNA, J. Mol. Biol 103: 411.

    Article  PubMed  CAS  Google Scholar 

  • Pribnow, D., 1975a, Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter, Proc. Natl. Acad. Sci. U.S.A 72: 784.

    Article  PubMed  CAS  Google Scholar 

  • Pribnow, D., 1975b, Bacteriophage T7 early promoters: Nucleotide sequences of two RNA polymerase binding sites, J. Mol. Biol: 99: 419.

    Google Scholar 

  • Ptashne, M., 1971, Repressor and its action, in: The Bacteriophage Lambda ( A. D. Hershey, ed.), pp. 221–238, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Ptashne, M., Backman, K., Humayun, M. Z., Jeffrey, A., Maurer, R., Meyer, B., and Sauer, R. T., 1976, Autoregulation and function of a repressor in bacteriophage lambda. Interactions of a regulatory protein with sequences in DNA mediate intricate patterns of gene regulation, Science 194: 156.

    Article  PubMed  CAS  Google Scholar 

  • Rabussay, D., and Geiduschek, E. P., 1976, Regulation of gene action in the development of lytic bacteriophages, Comp. Virol 8: 1.

    Google Scholar 

  • Radding, C. M., and Echols, H., 1968, The role of the N gene of phage X in the synthesis of two phage-specified proteins, Proc. Natl. Acad. Sci. U.S.A 60: 707.

    Article  PubMed  CAS  Google Scholar 

  • Ratner, D., 1976a, The rho gene of E. coli maps at suA, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 645–655, Cold Spring Harbor Lab., Cold Spring Harbor, New York

    Google Scholar 

  • Ratner, D., 1976b, Evidence that mutations in the suA polarity suppressing gene directly affect termination factor rho, Nature 259: 151.

    Article  PubMed  CAS  Google Scholar 

  • Record, M. T., Jr., Lohman, T. M., and de.Haseth, P., 1976, Ion effects on ligand—nucleic acid interactions, J. Mol. Biol 107: 145

    Article  PubMed  CAS  Google Scholar 

  • Reichardt, L. F., 1975, Control of bacteriophage lambda repressor synthesis after phage infection: The role of the N, cil, clll and cro products, J. Mol. Biol 93: 267.

    Article  PubMed  CAS  Google Scholar 

  • Reznikoff, W., 1972, The operon revisited, Annu. Rev. Genet 6: 133.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, J. P., 1975, Initiation of transcription by Escherichia coli RNA polymerase from supercoiled and non-supercoiled bacteriophage PM2 DNA, J. Mol. Biol 91: 477.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, J. P., Grimley, C., and Lowery, C., 1975, Transcription termination factor rho activity is altered in E. coli with suA gene mutations, Proc. Natl. Acad. Sci. U.S.A 72: 1725.

    Article  PubMed  CAS  Google Scholar 

  • Riggs, A. D., Bourgeois, S., Newby, R. F., and Cohn, M., 1968, DNA binding of the lac repressor, J. Mol. Biol 34: 365.

    Article  PubMed  CAS  Google Scholar 

  • Riggs, A. D., Suzuki, H., and Bourgeois, S., 1970a, The lac repressor—operator interaction. I. Equilibrium studies, J. Mol. Biol 48: 67.

    Article  PubMed  CAS  Google Scholar 

  • Riggs, A. D., Newby, R. F., and Bourgeois, S., 1970b, The lac repressor—operator interaction. II. Effect of galactosides and other ligands, J. Mol. Biol 51: 303.

    Article  PubMed  CAS  Google Scholar 

  • Riggs, A. D., Bourgeois, S., and Cohn, M., 1970c, The lac repressor—operator interaction. III. Kinetic studies, J. Mol. Biol 53: 401.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J., 1969, Termination factor for RNA synthesis, Nature 224: 1168.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J., 1970, The p factor: Termination and antitermination in lambda, Cold Spring Harbor Symp. Quant. Biol 35: 121.

    Article  CAS  Google Scholar 

  • Roberts, J., 1975, Transcription termination and late control in phage lambda, Proc. Natl. Acad. Sci. U.S.A 72: 3300.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J. W., 1976, Transcription termination and its control in E. coli, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 247–271, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Roberts, J. W., and Roberts, C. W., 1975, Proteolytic cleavage of bacteriophage lambda repressor in induction, Proc. Natl. Acad. Sci. U.S.A 72: 147.

    Article  PubMed  CAS  Google Scholar 

  • Rose, J. K., and Yanofsky, C., 1974, Interaction of the operator of the tryptophan operon with repressor, Proc. Natl. Acad. Sci. U.S.A 71: 3134.

    Article  PubMed  CAS  Google Scholar 

  • Rose, J. K., Squires, C. L., Yanofsky, C., Yang, H.-L., and Zubay, G., 1973, Regulation of in vitro transcription of the tryptophan operon by purified RNA polymerase in the presence of partially purified repressor and tryptophan, Nature New Biol. 245: 133.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, M., and Kramer, R. A., 1977, Nucleotide sequence surrounding a ribonuclease III processing site in bacteriophage T7 RNA, Proc. Nail. Acad. Sci. U.S.A 74: 984.

    Article  CAS  Google Scholar 

  • Rosenberg, M., Weissman, S., and de Crombrugghe, B., 1975, Termination of transcription in bacteriophage X. Heterogeneous 3’-terminal oligo-adenylate additions and the effects of p, J. Biol. Chem 250: 4755.

    PubMed  CAS  Google Scholar 

  • Salstrom, J. S., and Szybalski, W., 1976, Phage lambda nutL mutants unable to utilize N product for leftward transcription, Fed. Proc. 35:1538.

    Google Scholar 

  • Sanger, F., and Coulson, A. R., 1975, A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase, J. Mol. Biol 94: 441.

    Article  PubMed  CAS  Google Scholar 

  • Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, J. C., Hutchison, C. A., III, Slocombe, P. M., and Smith, M., 1977, Nucleotide sequence of bacteriophage OX174 DNA, Nature 265: 687.

    Article  PubMed  CAS  Google Scholar 

  • Saucier, J.-M., and Wang, J., 1972, Angular alteration of the DNA helix by E. coli RNA polymerase, Nature 239:167

    Article  CAS  Google Scholar 

  • Schaller, H., Gray, C., and Herrmann, K., 1975, Nucleotide sequence of an RNA polymerase binding site from the DNA of bacteriophage fd, Proc. Natl. Acad. Sci. U.S.A. 72:737.

    Article  PubMed  CAS  Google Scholar 

  • Seeburg, P. H., Nusslein, C., and Schaller, H., 1977, Interaction of RNA polymerase with promoters from bacteriophage fd, Eur. J. Biochem 74:107

    Article  PubMed  CAS  Google Scholar 

  • Seeman, N. C., Rosenberg, J. M., and Rich, A., 1976, Sequence-specific recognition of double helical nucleic acids by proteins, Proc. Natl. Acad. Sci. U.S.A 73: 804.

    Article  PubMed  CAS  Google Scholar 

  • Sekiya, T., Takeya, T., Contreras, R., Köpper, H., Khorana, H. G., and Landy, A., 1976, Nucleotide sequences at the two ends of the E. coli tyrosine tRNA genes and studies on the promoter, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 455–472, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Shimizu, N., and Hayashi, M., 1974, In vitro transcription of the tryptophan operon integrated into a transducing phage genome, J. Mol. Biol 84: 315.

    CAS  Google Scholar 

  • So, A. G., and Downey, K. M., 1970, Studies on the mechanism of ribonucleic acid synthesis. II. Stabilization of the deoxyribonucleic acid—ribonucleic acid—polymerase complex by the formation of a single phosphodiester bond, Biochemistry 9: 4788.

    Article  PubMed  CAS  Google Scholar 

  • Spiegelman, G. B., and Whiteley, H. R., 1974, In vivo and in vitro transcription by RNA polymerase from SP82-infected Bacillus subtilis, J. Biol. Chem 249: 1843.

    Google Scholar 

  • Squires, C., Lee, F., and Yanofsky, C., 1975, Interaction of the trp repressor and RNA polymerase with the trp operon, J. Mol. Biol 92: 93.

    Article  PubMed  CAS  Google Scholar 

  • Squires, C., Lee, F., Bertrand, K., Squires, C. L., Bronson, M. J., and Yanofsky, C., 1976, Nucleotide sequence of the 5’ end of tryptophan messenger RNA of Escherichia coli, J. Mol. Biol 103: 351

    Article  PubMed  CAS  Google Scholar 

  • Stahl, S. J., and Chamberlin, M. J., 1977, An expanded map of T7 bacteriophage: Reading of minor T7 promoter sites in vitro by E. coli RNA polymerase, J. Mol. Biol 112: 577.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, K., Okamoto, T., Sugisaki, H., and Takanami, M., 1975, The nucleotide sequence of an RNA polymerase binding site on bacteriophage fd DNA, Nature 253: 410.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, K., Sugisaki, T., Okamoto, T., and Takanami, M., 1977, Studies on bacteriophage fd DNA. IV. The sequence of messenger RNA for the major coat protein gene, J. Mol. Biol 110: 487

    Article  Google Scholar 

  • Szybalski, W., 1976a, A network of developmental controls in coliphage lambda, in: Cell Differentiation in Microorganisms, Plants and Animals ( L. Nover and K. Mothes, eds.), VEB Fisher Verlag, Jena and Elsevier, Amsterdam.

    Google Scholar 

  • Szybakski, W., 1976b, Genetic and molecular map of Escherichia coli bacteriophage lambda (X), in: Handbook of Biochemistry and Molecular Biology, 3rd ed. Nucleic Acids, Vol. II ( G. D. Fasman, ed.), pp. 677–685, CRC Press, Cleveland, Ohio.

    Google Scholar 

  • Takanami, M., Sugimoto, K., Sugisaki, H., and Okamoto, T., 1976, Sequence of promoter for coat protein gene of bacteriophage fd, Nature 260: 297.

    Article  PubMed  CAS  Google Scholar 

  • Travers, A., and Burgess, R., 1969, Cyclic reuse of RNA polymerase sigma factor, Nature 222: 537

    Article  PubMed  CAS  Google Scholar 

  • von Hippel, P. H., and McGhee, J. D., 1972, DNA—protein interactions, Annu. Rev. Biochem 41: 231

    Article  Google Scholar 

  • Walter, G., Zillig, W., Palm, P., and Fuchs, E., 1967, Initiation of DNA-dependent RNA synthesis and the effect of heparin on RNA polymerase, Eur. J. Biochem 3: 194.

    Article  PubMed  CAS  Google Scholar 

  • Walz, A., and Pirrotta, V., 1975, Sequence of the PR promoter of phage X, Nature 254: 118.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., 1974, Interaction between twisted DNAs and enzymes: The effect of superhelical turns, J. Mol. Biol 87: 797.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Barkley, M., and Bourgeois, S., 1974, Measurements of unwinding of lac operator by repressor, Nature 251: 247.

    Article  PubMed  CAS  Google Scholar 

  • Whitely, H. R., Spiegelman, G. B., Lawrie, J. M., and Hiatt, W. R., 1976, The in vitro transcriptional specificity of RNA polymerase isolated from SP82-infected Bacillus subtilis, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 587–600, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Williams, R. C., and Chamberlin, M. J., 1977, Electron microscopic studies of transient complexes found between E. coli RNA polymerase holoenzyme and T7 DNA, Proc. Natl. Acad. Sci. U.S.A 74: 3740.

    Article  PubMed  CAS  Google Scholar 

  • Willson, C., Perrin, D., Cohn, M., Jacob, F., and Monod, J., 1964, Non-inducible mutants of the regulator gene in the “lactose” system of Escherichia coli, J. Mol. Biol 8: 582.

    Article  PubMed  CAS  Google Scholar 

  • Wu, F. Y.-H., Nath, K., and Wu, C. -W., 1974, Conformational transition of cyclic adenosine mono-phosphate receptor protein of Escherichia coli. A fluorescent probe study, Biochemistry 13: 2567

    Article  PubMed  CAS  Google Scholar 

  • Wulff, D. L., 1976, Lambda cin-1, a new mutation which enhances lysogenization by bacteriophage lambda, and the genetic structure of the lambda cy region, Genetics 82: 401.

    PubMed  CAS  Google Scholar 

  • Yanofsky, C., 1976, Regulation of transcription initiation and termination in the control of expression of the tryptophan operon of E. coli, in: Molecular Mechanisms in the Control of Gene Expression ( D. P. Nierlich and W. J. Rutter, eds.), pp. 75–87, Academic Press, New York.

    Google Scholar 

  • Yanofsky, C., and Soll, L., 1977, Mutations affecting tRNAT“ and its charging and their effect on regulation of transcription termination at the attenuator of the tryptophan operon, J. Mol. Biol 113: 663

    Article  PubMed  CAS  Google Scholar 

  • Yarus, M., 1969, Recognition of nucleic acid sequences, Annu. Rev. Biochem 38: 841.

    Article  PubMed  CAS  Google Scholar 

  • Zillig, W., Fuchs, E., Palm, P., Rabussay, D., and Zechel, K., 1970a, On the different subunits of DNA-dependent RNA polymerase from E. coli and their role in the complex function of the enzyme, in: Lepetit Colloquium on RNA Polymerase, Vol. I ( L. Silvestri, ed.), pp. 151–157, North-Holland, Amsterdam.

    Google Scholar 

  • Zillig, W., Zechel, K., Rabussay, D., Schachner, M., Sethi, V., Palm, P., Heil, A., and Seifert, W., 1970b, On the role of different subunits of DNA-dependent RNA polymerase from E. coli in the transcription process, Cold Spring Harbor Symp. Quant. Biol 35: 47.

    Article  CAS  Google Scholar 

  • Zillig, W., Palm, P., and Heil, A., 1976, Function and reassembly of subunits of DNA-dependent RNA polymerase, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 101–125, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Zubay, G., Schwartz, D., and Beckwith, J., 1970, Mechanism of activation of catabolite-sensitive genes: A positive control system, Proc. Natl. Acad. Sci. U.S.A 66: 104.

    Article  PubMed  CAS  Google Scholar 

  • Zubay, G., Morse, D. E., Schrenk, W. J., and Miller, J. H., 1972, Detection and isolation of the repressor protein for the tryptophan operon of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A 69: 1100.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Pribnow, D. (1979). Genetic Control Signals in DNA. In: Goldberger, R.F. (eds) Biological Regulation and Development. Biological Regulation and Development, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3417-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3417-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3419-4

  • Online ISBN: 978-1-4684-3417-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics