Skip to main content

A Compact Transportable HF Radar System for Directional Coastal Wave Field Measurements

  • Chapter
Ocean Wave Climate

Part of the book series: Marine Science ((MR,volume 8))

Abstract

A low-powered transportable coastal radar system which can measure the first five angular Fourier coefficients of the wave height directional spectrum as a function of wave number is proposed and described. Operating at a single frequency in the upper HF region, the surface-wave radar employs a novel, stationary three-element receiving antenna to obtain angular information. The received signals from two crossed Zoop antennas and a monopole, all aligned along the same vertical axis and standing ~2 m high, are combined digitally to form and scan a broad cardioid beam. The second-order portion of the sea-echo Doppler spectrum is used to extract wave spectral information. This echo portion is described mathematically by a nonlinear integral equation. Trigonometric basis functions are used to represent the radar system output (both first and second order) as well as the wave height spectrum’s angular dependence.

The first-order echo is used to linearize the integral equation in an approximation valid at upper HF for higher sea states (e.g., at 25 MHz for rms sea wave heights greater than 0.4 m). A Fredholm linear integral equation in which the radar data and the desired wave data are five-element vectors or tensors is then obtained. Different inversion methods are employed for the echo region between the first-order peaks and for the region beyond these peaks. Inversion error is examined based upon N-sample averaging of the random sea-echo voltage, and a stabilization technique is introduced to circumvent the problem of ill-conditioning. The standard deviation of the five coefficients is obtained from simulations using a Phillips wave spectral model and error propagation theory. The accuracy of these radar-derived coefficients is compared with that obtained with a pitch-and-roll buoy over the same two-hour observing period and for the same frequency resolution. Near the spectral peak, typical radar inversion errors are 2–3% versus 13% buoy errors for the zero-order coefficient (i.e., the nondirectional wave height spectrum); the two first-harmonic coefficient accuracies are typically 2–4% for the radar, while they can be as high as 17% for the buoy. The Zess important second-harmonic coefficient comparisons are 2–4% for the radar and ~4% for the buoy. These accuracies are generally consistent with the inverse square-root relation to the number of independent samples; for the same observation time and frequency resolution, the radar observes many more samples from area averaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M. and I. A. Stegun. 1964. Handbook of Mathematical Functions, Chapter 6, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Barrick, D. E., M. W. Evans, and B. L. Weber. 1977. Ocean surface currents mapped by radar, Science, 198, 138–144.

    Article  Google Scholar 

  • Barrick, D. E. and J. B. Snider. 1977. The statistics of HF sea-echo Doppler spectra, IEEE Trans. on Antennas and Propagation, 25, 19–28.

    Article  Google Scholar 

  • Barrick, D. E. and B. L. Weber. 1977. On the nonlinear theory of gravity waves on the ocean’s surface. Part II: interpretation and applications, J. Phys. Oceanogr., 7, 11–21.

    Article  Google Scholar 

  • Brandt, S. 1970. Statistical and Computational Methods in Data Analysis, North Holland Publishing Co., Amsterdam, 414 pp.

    Google Scholar 

  • Kraus, J. D. 1950. Antennas, McGraw-Hill, New York, 155–172.

    Google Scholar 

  • Lipa, B. J. 1977. Derivation of directional ocean-wave spectra by integral inversion of second order radar echoes, Radio Science, 12, 425–434.

    Article  Google Scholar 

  • Longuet-Higgins, M. S., D. E. Cartwright and N. D. Smith. 1963. Observations of the directional spectrum of sea waves using the motions of a floating buoy, In: Ocean Wave Spectra, Prentice-Hall, Englewood Cliffs, N.J. 111–136.

    Google Scholar 

  • Phillips, D. L. 1962. A technique for the numerical solution of certain integral equations of the first kind, J. Assoc. Comp. Mach., 9, 84–97.

    Article  Google Scholar 

  • Stewart, R. H. 1977. A discus-hulled wave measuring buoy, Ocean Engineering, 4, 101–107.

    Article  Google Scholar 

  • Stewart, R. H. and J. R. Barnum. 1975. Radio measurements of oceanic winds at long ranges: an evaluation, Radio Science, 10, 853–857.

    Article  Google Scholar 

  • Twomey, S. 1963. On the numerical solution of Fredholm integral equations of the first kind by inversion of the linear system produced by quadrature, J. Assoc. Comp. Mach., 10, 97–101.

    Article  Google Scholar 

  • Tyler, G. L., C. C. Teague, R. H. Stewart, A. M. Peterson, W. H. Munk, and J. W. Joy. 1974. Wave directional spectra from synthetic aperture observations of radio scatter, Deep Sea Res., 21, 989–1016.

    Google Scholar 

  • Weber, B. L. and D. E. Barrick. 1977. On the nonlinear theory of gravity waves on the ocean’s surface. Part I: derivations, J. Phys. Oceanogr., 7, 3–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Barrick, D.E., Lipa, B.J. (1979). A Compact Transportable HF Radar System for Directional Coastal Wave Field Measurements. In: Earle, M.D., Malahoff, A. (eds) Ocean Wave Climate. Marine Science, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3399-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3399-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3401-9

  • Online ISBN: 978-1-4684-3399-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics