Skip to main content

Photoreception

  • Chapter
Sensory Ecology

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 18))

Abstract

Sensitivity to solar radiation is a widespread phenomenon among living forms and is commonly expressed in phototropic, phototactic or visual responses. Whenever sufficiently detailed investigations have been made, a molecular mechanism involving photolabile pigments and associated membrane specialisations was found to mediate this photosensitivity. We find this applicable to the bacteriorhodopsin of some bacteria (Oesterhelt and Stoeckenius, 1971), the flavin-type and carotenoid pigments of the phototropic fungi (Wolken, 1975), the chloroplast-based chlorophyl of green plants and, of course, the photopigments of animal photoreceptors. Photoreception, especially vision, has a prominent role among the sensory modalities used by many animal forms to provide information on the Nature of the environment. It is reasonable to assert that, in the most organised visual systems, the sensory information contained in the visual messages is one of the richest, both in quality and detail.

Art thou not, fatal vision, sensible to feeling as to sight? Or art thou but A dagger of the mind, a false creation Proceeding from the heat-oppressed brain?

Macbeth, Act II, Sc. 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adrian, E.D. (1928). The basis of sensation. Christophers, London. Ali, M.A. (1971). Les réponses rétinomotricess caractères et mécanismes. Vision Res. 11: 1225–1288.

    Google Scholar 

  • Ali, M.A. (1975). Retinomotor responses. In: Vision in Fishes: New Approaches to Research, p. 313–355, ed. M.A. Ali. Plenum Press, New York.

    Google Scholar 

  • Ali, M.A. and Anctil, M. (1976). Retinas of Fishes: An Atlas. Springer-Verlag, Heidelberg. 284 p.

    Google Scholar 

  • Ali, M.A. and Anctil, M. (1977). Retinal structure and function of the walleye CStizostedion vitreum) and sauger (S. oanadense). J. Fish. Res. Board Can. 34: 1467–1474.

    Google Scholar 

  • Ali, M.A. and Crouzy, R. (1968). Action spectrum and quantal thresholds of retinomotor responses in the brook trout, Salveli- nus fontinalis (Mitchill). Z. verg. Physiol. 59: 86–89.

    Google Scholar 

  • Ali, M.A. & Hoar, W.S. (1959). Retinal responses of pink salmon associated with its downstream migration. Nature 184: 106–107.

    PubMed  Google Scholar 

  • Ali, M.A. & Muntz, W.R.A. (1975). Electroretinography as a tool for studying fish vision. In: Vision in Fishes, New Approaches to Research, p. 159–167, ed. M.A. Ali. Plenum Press, New York.

    Google Scholar 

  • Ali, M.A., Ryder, R.A. & Anetil, M. (1977). Photoreceptors and visual pigments as related to behavioral responses and preferred habitats of perches (Peroa spp.) and pikeperches (Stizostedion spp.) J. Fish. Res. Board Can. 34: 1475–1480.

    Google Scholar 

  • Allen, D.M. & McFarland, W.N. (1973).. The effect of temperature on rhodopsin-porphyropsin ratios in a fish. Vision Res. 13: 1303–1309.

    Google Scholar 

  • Allen, D.M., McFarland, W.N., Münz, F.W. & Poston, H.A. (1973). Changes in the visual pigments of trout. Can. J. Zool. 51: 901–914.

    PubMed  Google Scholar 

  • Anetil, M. (1975). Prospects in the study of interrelationships between vision and bioluminescence. In: Vision in Fishes: New Approaches in Research, p. 657–671, ed. M.A. Ali. Plenum Press, New York.

    Google Scholar 

  • Anetil, M. & Ali, M.A. (1970). Retina of Exocoetus volitans and Fodiator acutus ( Pisces Exocoetidae ). Copeia No. 1, 43–48.

    Google Scholar 

  • Anetil, M. & Ali, M.A. (1976). Cone droplets of mitochondrial origin in the retina of Fundulus hetevoolitus (Pisces: Cyprinodontidae). Zoomorphol. 84: 103–111.

    Google Scholar 

  • Ashmore, J.F. & Falk, G. (1976). Absolute sensitivity of rod bipolar cells in a dark-adapted retina. Nature 263: 248–249.

    PubMed  Google Scholar 

  • Autrum, H. (1968). Colour vision in man and animals. Naturwiss. 55: 10–18.

    PubMed  Google Scholar 

  • Backus, R.H., Craddock, J.E., Haedrich, R.L., Shores, D.L., Teal, J.M., Wing, A.S., Mead, G.M. & Clarke, W.D. (1968). Ceratoseopelus maderensis: peculiar sound-scattering layer identified with this myctophid fish. Science 160: 991–993.

    PubMed  Google Scholar 

  • Barham, E.G. (1970). Deep-sea fishes: lethargy and vertical orientation. In: Proc. Intern. Symp. Biol. Sound Scattering in the Ocean, p. 100–118, ed. G.B. Farquhar. Maury Center for Ocean Science, Washington.

    Google Scholar 

  • Baylor, D.A. & Fettiplace, R. (1977). Transmission from photoreceptors to ganglion cells in turtle retina. J. Physiol. Lond. 271: 391–424.

    PubMed  Google Scholar 

  • Baylor, D.A. & Fuortes, M.G.F. (1970). Electrical responses of single cones in the retina of the turtle. J. Physiol. 207: 77–92.

    PubMed  Google Scholar 

  • Baylor, D.A. & Hodgkin, A.L. (1973). Detection and resolution of visual stimuli by turtle photoreceptors. J. Physiol. Lond. 234: 163–198.

    PubMed  Google Scholar 

  • Baylor, D.A. & Hodgkin, A.L. (1974). Changes in time scale and sensitivity in turtle photoreceptors. J. Physiol. 242: 729–758.

    PubMed  Google Scholar 

  • Baylor, D.A., Hodgkin, A.L. & Lamb, T.D. (1974a). The electrical response of turtle cones to flashes and steps of light. J. Physiol. 242: 686–727.

    Google Scholar 

  • Beatty, I.D. (1975). Rhodopsin - Porphysopsin changes in paired-pigment fishes. In: Vision in Fishes: New Approaches to Research, p. 635–644, ed. M.A. Ali. Plenum Press, New York.

    Google Scholar 

  • Berger, E. P. (1966). On the mitochondrial origin of oil drops in the retinal double cone inner segments. J. Ultrastruct. Bes. 14: 143–157.

    Google Scholar 

  • Blaxter, J.H.S. (1970). Light. In: Marine Ecology, p. 213–285, ed. O. Kinne. Wiley, London. Blaxter, J.H.S. (ed.) ( 1974 ). The Early Life History of Fish. Springer-Verlag, New York.

    Google Scholar 

  • Blaxter, J.H.S. (1975). The eyes of larval fish. In:Vision in Fishes: New Approaches in Research, p. 427–443, ed. M.A. Ali. Plenum Press, New York.

    Google Scholar 

  • Boden, E.P., Kampa, E.M. (1967). The influence of natural light on the vertical migrations of animal community in the sea. Symp. Zool. Soc. Lond. 19: 15–26.

    Google Scholar 

  • Borwein, B. & Hollenberg, M.J. (1973). The photoreceptors of the four-eyed fish, Anableps anableps L. J. Morphol. 140: 405–442.

    Google Scholar 

  • Brauer, A. (1908). BLe Tiefseefische. 11. Anatomische teil. B. Augen, 266p. Wissenchaftliche ergebnisse der Deutschen Tiefsee-expedition auf dem Dampier “Valdivia” 1898–1899, Bd. 15. Gustav-Fisher, Jena.

    Google Scholar 

  • Bridges, C.D.B. (1972). The rhodopsin-porphyropsin visual system. In: Handbook of Sensory Physiology, Vol. VII/1, Photochemistry of Vision, p. 417–480, ed. H.J.A. Lärtnall. Springer-Verlag, New York.

    Google Scholar 

  • Bridges, C.D.B. & Delisle, C.E. (1974). Evolution of visual pigments. Exp. Eye Res. 18: 323–332.

    PubMed  Google Scholar 

  • Burnside, B. (1976). Microtubules and actin filaments in teleost visual cone elongation and contraction. J. Supramol. Struct. 5: 257–275.

    PubMed  Google Scholar 

  • Case, JJ., Warner, J., Barnes, A.T. &Lowenstine, M. (1977). Bioluminescence of lantern fish CMyctophidae) in response to changes in light intensity. Nature 265: 179–181.

    Google Scholar 

  • Cervetto, L. (1973). Influence of sodium potassium and chloride ions on the intracellular responses of turtle photoreceptors. Nature, 241: 401–403.

    PubMed  Google Scholar 

  • Cervetto, L., Pasino, E. & Torre, V. (1977). Electrical responses of rods in the retina of Bufo marinus. J. Physiol. 267: 17–51.

    PubMed  Google Scholar 

  • Chun, C. (1903). Deutsche Tiefsee-Expedition “Valdivia”. Verh. Dtsch. Zool. Ges. 13: 67. GustavFiseher, Jena, 1910-1915. English translation by Israel Program for Scientific Translations Jersalem, 1975.

    Google Scholar 

  • Church, P. (1970). Bioluminescence: the sea’s living light. Oceans Mag. 3: 20–29.

    Google Scholar 

  • Clarke, W.D. (1963). Function of bioluminescence in mesopelagic organisms. Nature 198: 1244–1246.

    Google Scholar 

  • Baylor, D.A., Hodgkin, A.L. & Lamb, T.D. (1974 b). Reconstruction of the electrical responses of turtle cones to flashes and steps of light. J. Physiol. 242: 759–791.

    Google Scholar 

  • Crescitelli, F. (1972). The visual cells and visual pigments of the vertebrate eye. In: Handbook of Sensory Physiology, Vol. VII/1, Photochemistry of Vision, p. 245–263, ed. H.J.A. Dartnall. Springer-Verlag, New York.

    Google Scholar 

  • Danon, A. & Stoeckenius, W. (1974). Photophosphorylation in Halobacterium halobium. Proc. Nat. Acad. Sci. U.S.A. 71: 1234–1238.

    Google Scholar 

  • Denton, E.J., Gilpin-Brown, J.B. & Wright, P.G. (1972). The angular distribution of the light produced by some mesopelagic fish in relation to their camouflage. Proc. R. Soc. Lond. B. 182: 145–158.

    Google Scholar 

  • Denton, E.J. & Nicol, J.A.C. (1966). A survey of reflectivity in silvery teleosts. J. Mar. Biol. Ass. U.K. 46: 685–722.

    Google Scholar 

  • Denton, E.J. & Warren, F.J. (1957). The photosensitive pigments in the retinae of the deep-sea fish. J. Mar. Biol. Ass. U.K. 36: 651–662.

    Google Scholar 

  • Eakin, R.M. (1972). Structure of invertebrate photoreceptors. In: Handbook of Sensory Physiology, Vol. VII/1, Photochemistry of Vision, p. 625–684, ed. H.J.A. Dartnall. Springer-Verlag, New York.

    Google Scholar 

  • Fain, G.L. (1976). Sensitivity of toad rods: dependence on wave-length and background illumination. J. Physiol. 261: 71–101.

    PubMed  Google Scholar 

  • Fernandez, H.R. & Tsui, F.I. (1976). Photopigment and spectral sensitivity in the bioluminescent fish, Porichthys notatus. Mar. Biol. 34: 101–107.

    Google Scholar 

  • Fineran, B.H. & Nicol, J.A.C. (1976). Novel cones in the retina of the anchovy (Anchoa). J. Ultrastruct. Res. 54: 295–303.

    Google Scholar 

  • Fineran, B.H. & Nicol, J.A.C. (1977). Studies on the eyes of anchovies Anohoa mitchelli and A. hepsetus (Engraulidae) with particular reference to the pigment epithelium. Phil. Trans. R. Soc. Lond. B. 276: 321–350.

    Google Scholar 

  • Fuortes, M.G.F. (1959). Initiation of impulses in visual cells of Limulus. J. Physiol. 148: 14–28.

    PubMed  Google Scholar 

  • Fuortes, M.F.G. (ed.) (1972). Handbook of Sensory Physiology. Vol, VII/2: Physiology of Photoreceptor organs. Springer- Verlag, New York.

    Google Scholar 

  • Goldsmith, T.H. (1972). The natural history of invertebrate visual pigments. In: Handbook of Sensory Physiology, Vol. VII/1, Photochemistry of Vision, p. 685–719, ed. H.J.A. Dartnall. Springer-Verlag, New York.

    Google Scholar 

  • Hagins, W.A. (1972). The visual process: excitatory mechanisms in the primary receptor cells. Ann. Rev. Biophys. Bioeng. 1, 131–158.

    Google Scholar 

  • Hartline, H.K. (1934). Intensity and duration in the excitation of single photoreceptor units. J. Cell. Comp. Physiol. 5: 229–247.

    Google Scholar 

  • Hartline, H.K., Wagner, H.G. & MacNichol, E.F. (1952). The perispheral origin of nervous activity in the visual system. Cold Spring Harb. Symp. Quant. Biol. 17: 125–141.

    PubMed  Google Scholar 

  • Hodgkin. A.L. & Bryan, P.M. (1977). Internal recording of the early receptor potential in turtle cones. J. Physiol. 267: 737–766.

    Google Scholar 

  • Horridge, G.A. (1968). Pigment movement and the crystalline threads of the firefly eye. Nature 218: 778–779.

    PubMed  Google Scholar 

  • Horridge, G.A. (1969). The eye of the firefly Photuris. Proc. R. Soc. Series B. 171: 445–463.

    Google Scholar 

  • Kleinholz, L. (1959). Purines and pteridines fron the reflecting pigment of the arthropod retina. Biol. Bull Mar. Biol. Lab. Woods Hole 116: 125–135.

    Google Scholar 

  • Kobayashi, H. (1962). A comparative study on electroretinogram in fish, with special reference to ecological aspects. J. Shimonoseki Coll. Fish. 11: 407–538.

    Google Scholar 

  • Korenbrot, J.I. & Cone, R.A. (1972). Dark ionic flux and the effects of light in isolated rod outer segments. J. Gen. Physiol. 60: 20–45.

    PubMed  Google Scholar 

  • Krasne, F.B. & Lawrence, P.A. (1966). Structure of the photoreceptors in the compound eyespots of Branohiomma vesioulosum. J. Cell. Sei. 11: 239–248.

    Google Scholar 

  • Land, M.F. (1966). A multilayer interference reflector in the eye of the scallop (Pecten maximus). J. Exp. Biol. 45: 433–447.

    Google Scholar 

  • Land, M.F. (1968). Functional aspects of the optical and retinal organisation of the mollusc eye. Symp. Zool. Soc. Lond. 23: 75–96.

    Google Scholar 

  • Land, M.F. (1976). Superposition images are formed by reflection in the eyes of some oceanic decapod crustacea. Nature 263: 764–765.

    PubMed  Google Scholar 

  • Lawry, J.V. (1974). Lantern fish compare downwelling light and bioluminescence. Nature 247: 155–157.

    Google Scholar 

  • Liebman, P.A. (1972). Microspectrophotometry of photoreceptors. In: Handbook of Sensory Physiology, Vol. VII/1, Photochemistry of Vision p. 481–528, ed. H.J.A. Dartnall. Springer-Verlag, New York.

    Google Scholar 

  • Liebman, P.A. & Granda, A.M. (1971). Microspectrophotometric measurements of visual pigments in two species of turtle, Pseudemys scripta and Chelonia my das. Vision Res. 11: 105–114.

    PubMed  Google Scholar 

  • Locket, N.A. (1970). Deep-sea fish retinas. Brit. Med. Bull. 26: 107–111.

    PubMed  Google Scholar 

  • Lythgoe, J.N. (1972). The adaptation of visual pigments to the photic environment. In: Handbook of Sensory Physiology VII/1, Photochemistry of Vision, p. 566–603, ed. H.J.A. Dartnall. Springer-Verlag, New York.

    Google Scholar 

  • Lythgoe, J.N. (1975). The ecology function and phylogeny of iridescent multilayers in fish corneas. In: Light as an Ecological Factor: II, 16th Symposium Brit. Ecol. Soc. 26–28 Mar. 1974. Eds. G.C. Evans, R. Bainbridge and O. Rackham. Blackwell, Oxford.

    Google Scholar 

  • MacNichol, E.F. Jr., Feinberg, R. & Harosi, F.I. (1973). Colour discrimination processes in the retina. Proc. 2nd Congress Internat. Colour Ass. Colour 73: 191–251.

    Google Scholar 

  • Adam Hilger, London. McFarland, W.N. & Allen, D.M. (1977). The effect of extrinsic factors on two distinctive rhodopsin-porohyropsin systems. Can. J. Zool. 55: 1000–1009.

    Google Scholar 

  • McFarland, W.N. & Münz, F.W. (1975a). The photic environment of clear tropical seas during the day. Vision Res. 15: 1063–1070.

    PubMed  Google Scholar 

  • McFarland, W.N. & Munz, F.W. (1975b). The evolution of photopic visual pigments in fishes. Vision Res. 15: 1071–1080.

    PubMed  Google Scholar 

  • Marks, W.B., Dobelle, W.H. & MacNichol, E.F. (1964). Visual pigments of single primate cones. Science, 143: 1181–1183.

    PubMed  Google Scholar 

  • Matthiews, B.H.C. (1931). The response of a single end organ. J. Physiol., Lond. 71: 64–110.

    Google Scholar 

  • Messenger, J.B. (1977). Evidence that Octopus is colour blind. J. Exp. Biol. 70: 49–56.

    Google Scholar 

  • Messenger, J.B., Wilson, A.P. & Hedge, A. (1973). Some evidence for colour-blindness in Octopus. J. Exp. Biol. 59: 77–94.

    PubMed  Google Scholar 

  • Miller, W.H. (1976). Optical guiding by photoreceptor cells. Fed. Proc. 35: 37–43.

    PubMed  Google Scholar 

  • Miller, W.H. & Snyder, A.W. (1977). The tiered vertebrate retina. Vision Res. 17: 239–255.

    PubMed  Google Scholar 

  • Millott, N. (1968). The dermal light sense. Symp. Zool. Soc. Lond. 23: 1–36.

    Google Scholar 

  • Münk, O. (1966). Ocular anatomy of some deep-sea teleosts. Dana rep. 70: 1–62.

    Google Scholar 

  • Müntz, W.R.A. (1972). Inert absorbing and reflecting pigments. In: Handbook of Sensory Physiology, Vol. VII/1, Photochemistry of Vision, p. 529–565, ed. H.J.A. Dartnall. Springer-Verlag, New York.

    Google Scholar 

  • Müntz, W.R.A. (1975). Visual pigments and their environment. In: Vision in Fishes: New Approaches in Research, p. 565–578, ed. M.A. Ali. Plenum Press, New York.

    Google Scholar 

  • Müntz, W.R.A. (1976). On yellow lenses -in mesopelagic animals. J. Mar. Biol. Assoc. U.K. 56: 963–976.

    Google Scholar 

  • Munz, F.W. & McFarland, W.N. (1973). The significance of spectral position in the rhodopsins of tropical marine fishes. Vision Res. 13: 1829–1874.

    PubMed  Google Scholar 

  • Munz, F.W. & McFarland, W.N. (1975). Presumptive cone pigments extracted from tropical marine fishes. Vision Res. 15: 1045–1062.

    PubMed  Google Scholar 

  • Newell, P.F. & Newell, G.E. (1968). The eye of the slug, Agviolimax reticulatus (Mllll). Symp. Zool. Soc. Lond. 23: 97–111.

    Google Scholar 

  • Nicol, J.A.C. (1950). Responses of Branchiomma vesiculosum (Montagu) to photic stimulation. J. Mar. Biol. Assoc. U.K. 29: 303–320.

    Google Scholar 

  • Nicol, J.A.C. (1967). The luminescence of fishes. Symp. Zool. Soc. Lond. 19: 27–55.

    Google Scholar 

  • Niwa, H. & Tamura, T. (1969). Investigation of fish vision by means of S-potential. II. Spectral sensitivity and colour vision. Rev. Can. Biol. 28: 79–88.

    PubMed  Google Scholar 

  • O’Day, W.T. & Fernandez, H.R. (1974). Aristostomias sointillens (Malacosteidae): a deep-sea fish with visual pigments apparently adapted to its own bioluminescence. Vision Res. 14: 545–550.

    PubMed  Google Scholar 

  • O’Day, W.T. & Fernandez, H.R. (1976). Vision in the lanternfish Stenobvaohius leuoopsarus (Myctophidae). Mar. Biol. 37: 187–195.

    Google Scholar 

  • Oesterhelt, D. & Stoeckenius, W. (1971). Rhodopsin-like protein from the purple membrane of Halobaeterivm hatobium. Nature New Biology 233: 149–152.

    PubMed  Google Scholar 

  • Raynauld, J.-P. (1975). A model for the ganglionic receptive field organisation. In: Vision in Fishes: New Approaches in Research, p. 91–98, ed. M.A. Ali. Plenum Press, New York.

    Google Scholar 

  • Rodieck, R.W. (1973). The Vertebrate Retina: Principles of Structure and Function. Freeman, San Francisco.

    Google Scholar 

  • Ryder, R.A. (1977). Effects of ambient light variations on behavior of yearling subadult, and adult walleyes (Stizostedion vitrevm vitreim). J. Fish. Res. Board Can. 34: 1481–1491.

    Google Scholar 

  • Schwanzara, S.A. (1967). The visual pigments of freshwater fishes. Vision Res. 7: 121–148.

    PubMed  Google Scholar 

  • Scott, S. & Mote, M.I. (1974). Spectral sensitivity in some marine crustacea. Vision Res. 14: 659–663.

    PubMed  Google Scholar 

  • Somiya, H. (1976). Functional significance of the yellow lens in the eyes of Argyropelecus affinis. Mar. Biol. 34: 93–99.

    Google Scholar 

  • Steven, D.M. (1963). The dermal light sense. Biol. Rev. 38: 204–240.

    PubMed  Google Scholar 

  • Svaetichin, G.K., Negishi, K. & Fatehchand, R. (1965). Cellular mechanism of a Young-Hering visual system. In: Colour Vision, Physiology and Experimental Psychology. Little, Brown, Boston, Mass. (Ciba Found. Symp. Colour Vision p. 178–207 ).

    Google Scholar 

  • Tett, P.B. & Kelly, M.G. (1973). Marine bioluminescence. Oceanogr. Mar. Biol. Ann. Rev. 11: 89–173.

    Google Scholar 

  • Tomita, T. (1965). Electrophysiological study of the mechanism subserving color coding in the fish retina. Cold Spring Harb. Symp. Quant. Biol. 30: 559–566.

    PubMed  Google Scholar 

  • Wald, G. & Rayport, S. (1977). Vision in annelid worms. Science 196: 1434–1439.

    PubMed  Google Scholar 

  • Wales, W. (1975). Extraretinal photosensitivity in fish larvae. In: Vision in Fishes: New Approaches to Research, p. 445–450, ed. M.A. Ali. Plenum Press, New York.

    Google Scholar 

  • Walls, G.L. (1942). The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science Bull. 19: 785 p.

    Google Scholar 

  • Waterman, T.H. (1975). Natural polarized light and e-vector discrimination by vertebrates. In: Light as an Ecological Factor II, 16th Symposium of Brit. Ecol. Soc., 26–28 March 1974. Eds. G.C. Evans., R. Bainbridge and O. Rackham. Blackwell, Oxford.

    Google Scholar 

  • Waterman, T.H. & Hashimoto, H. (1974). E-vector discrimination by the goldfish optic tectum. J. Comp. Physiol. 95: 1–12.

    Google Scholar 

  • Wolken, J.J. (1975). Photoprocesses, Photoreceptors and Evolution. Academic Press, New York. 317 p.

    Google Scholar 

  • Yamamoto, T., Tasaki, K., Sugaware, Y. & Tonosaki, A. (1965). Fine structure of the octopus retina. J. Cell. Biol. 25: 345–359.

    PubMed  Google Scholar 

  • Young, R.E. (1973). Information feedback from photophores and ventral countershading in midwater squid. Pacif. Sci. 27: 1–7.

    Google Scholar 

  • Young, R.E. (1975). Transitory eye shapes and the vertical distribution of two midwater squids. Pacif. Sci. 29: 243–255.

    Google Scholar 

  • Young, R.E. (1977). Ventral bioluminescent countershading in midwater cephalopods. Symp. Zool. Soc. Lond. 38: 161–190.

    Google Scholar 

  • Young, R.E. & Roper, F.E. (1976). Bioluminescent countershading in midwater animals: evidence from living squid. Science 191: 1046–1048.

    PubMed  Google Scholar 

  • Young, R.E. & Roper, F.E. (1977). Intensity regulation of bioluminescence during countershading in living midwater animals. Fish. Bull. 75: 239–252.

    Google Scholar 

  • Zyznar, E.S. & Ali, M.A. (1975). An interpretative study of the organization of the visual cells and tapetum lucidum of Stizostedion. Can. J. Zool. 53: 180–196.

    Google Scholar 

  • Zyznar, E.S. & Nicol, J.A.C. (1971). Ocular reflecting pigments of some malacostraca. J. Exp. Biol. Ecol. 6: 235–248.

    Google Scholar 

  • Zyznar, E.S. & Nicol, J.A.C. (1973). Reflecting materials in the eyes of three teleosts, Orthopristes chrysopterusj Ibrosoma cepedianion and Anohoa mitchilti. Proc. R. Soc. Lond. 184: 15–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Ali, M.A., Anctil, M., Cervetto, L. (1978). Photoreception. In: Ali, M.A. (eds) Sensory Ecology. NATO Advanced Study Institutes Series, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3363-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3363-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3365-4

  • Online ISBN: 978-1-4684-3363-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics