Skip to main content

Developmental Changes in Ionic Composition of the Brain in Hypo and Hyperthyroidism

  • Chapter
Drugs and the Developing Brain

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 8))

Abstract

Disturbances in the levels of thyroid hormones are known to affect the normal function of the central nervous system (CNS), manifested most dramatically when they occur during development. Lack of thyroid hormones at critical stages of CNS maturation can result in an irreversible condition, which, when not diagnosed and treated early, leads to severe mental retardation. With specific reference to the developing CNS, not only is the basic mode of action of thyroid hormones not known, but the particular alteration(s) that characterizes the cretinoid condition also remains to be established, despite reported findings from many laboratories that numerous biochemical parameters important to brain growth and differentiation are altered in hypothyroidism (see Geel and Timiras, 1970; Balázs et al., 1971; Hamburgh et al., 1971). One parameter of special significance to normal CNS growth and function is that of its ionic composition; maturational disturbances in the levels of various ions would be expected to have their repercussions on the development of specialized CNS functions. In the present study, the ionic composition of the “hypothyroid brain” is described and, in order to distinguish those alterations that are specific to neural tissue, ionic changes in other body tissues are presented in parallel and related to corresponding observations reported by others. The effects of exogenous thyroxine administration also are presented in order to ascertain the influence of the hormone on normal brain development and on the alterations induced by hypothyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aikawa, J.K., 1956, The nature of myxoedema: alterations in the serum electrolyte concentrations and radiosodium space and in the exchangeable sodium and potassium contents, Ann. Intern. Med. 44: 30.

    PubMed  CAS  Google Scholar 

  • Balâzs, R., Cocks, W.A., Eayrs, J.T. and Kovâcs, S., 1971, Biochemical effects of thyroid hormones on the developing brain, In: “Hormones in Development”, (M. Hamburgh and E.J.W. Barrington, eds.), p. 357, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Bonting, S.L., Caravaggio, L.L. and Hawkins, N.M., 1962, Studies on sodium-potassium-activated adenosine triphosphatase. IV. Correlation with cation transport sensitive to cardiac glycosides, Arch. Biochem. Biophys. 98: 413.

    CAS  Google Scholar 

  • Byrom, F.B., 1933, The nature of myxoedema, Clin. Sci. 1: 273.

    Google Scholar 

  • Care, A.D., 1968, Significance of the thyroid hormones in calcium homeostasis, Federation Proc. 27: 153.

    CAS  Google Scholar 

  • Deul, D.H. and Mcllwain, H., 1961, Activation and inhibition of adenosine triphosphatases of subcellular particles from the brain, J. Neurochem. 8: 246.

    Article  PubMed  CAS  Google Scholar 

  • Dine, R.F. and Lavietes, P.H., 1942, Serum magnesium in thyroid disease, J. Clin. Invest. 21: 781.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, B.B. and Glaser, G.H., 1968, Seizure threshold, adrenal- ectomy and sodium-potassium stimulated ATPase in rat brain, J. Neurochem. 15: 525.

    Article  PubMed  CAS  Google Scholar 

  • Geel, S.E. and Timiras, P.S., 1970, The role of hormones in cerebral protein metabolism, In: “Protein Metabolism of the Nervous System”, (A. Lajtha, ed.), p. 335, Plenum Press, New York.

    Chapter  Google Scholar 

  • Geschwind, I.I., 1961, Hormonal control of calcium, phosphorus, iodine, iron, sulfur and magnesium metabolism, In: “Mineral Metabolism”, (C.L. Comar and F. Bronner, eds.), p. 387, Vol. 1, Part B, Academic Press, New York.

    Google Scholar 

  • Goldberg, R.C. and Chaikoff, I.L., 1949, A simplified procedure for thyroidectomy, Endocrinology 45: 64.

    Article  PubMed  CAS  Google Scholar 

  • Green, K. and Matty, A.J., 1964, The effects of thyroid hormones on water permeability of the isolated bladder of the toad Bufo bufo, J. Endocr. 28: 205.

    Article  PubMed  CAS  Google Scholar 

  • Hamburgh, M., Mendoza, L.A., Burkart, J.F. and Weil, F., 1971, Thyroid dependent processes in the developing nervous system, In: “Hormones in Development”, (M. Hamburgh and E.J.W. Barrington, eds.), p. 403, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Ismail-Beigi, F. and Edelman, I.S., 1970, Mechanism of thyroid calorigenesis: role of active sodium transport, Proc. Nat. Acad. Sci. 67: 1071.

    Article  CAS  Google Scholar 

  • Ismail-Beigi, F. and Edelman, I.S., 1971, The mechanism of the calorigenic action of thyroid hormone, J. Gen. Physiol. 57: 710.

    Article  PubMed  CAS  Google Scholar 

  • Järnefelt, J., 1964, Conversion of the Na+ and K+ independent part of the brain microsomal ATPase to a form requiring added Na+and K+, Biochem. Biophys. Res. Comm. 17: 330.

    Article  Google Scholar 

  • Liu, C.T. and Overman, R.R., 1964, Effects of toxic doses of L-thyroxine on tissue 820 electrolytes and plasma proteins, Proc. Soc. Exp. Biol. Med. 117: 232.

    PubMed  CAS  Google Scholar 

  • Maclntyre, J. and Davidsson, O., 1958, The production of secondary potassium depletion, sodium hypercalcaemea by magnesium The production of secondary retention, nephrocalsinosis and deficiency, Biochem. J. 70: 456.

    Google Scholar 

  • Matty, A.J. and Green, K., 1962, Active sodium transport in response to thyroxine, Life Sci. No. 9, 487.

    Article  Google Scholar 

  • Pandazi, A.A., Herrington, J.K. and Schlueter, D.P., 1959, Sodium, potassium and magnesium distribution after thyroidectomy, Federation Proc. 18: 117.

    Google Scholar 

  • Peachey, C.D. and Greif, R.L., 1965, Alterations of mitochondrial structure induced by thyroid hormones in vivo and in vitro, Endocrinology 77: 61.

    Article  CAS  Google Scholar 

  • Pitt-Rivers, R. and Tata, J.R., 1959a, Physiological actions of thyroid hormones, In: “The Thyroid Hormones”, p. 75, Pergamon Press, London.

    Google Scholar 

  • Pitt-Rivers, R. and Tata, J.R., 1959b, Some current concepts of the mechanism of action of thyroid hormones, In: “The Thyroid Hormones”, p. 99, Pergamon Press, London.

    Google Scholar 

  • Raskin, N.H. and Fishman, R.A., 1966, Effects of thyroid on permeability, composition and electrolyte metabolism of brain and other tissue, Arch. Neurol. 14: 21.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, S.H. and Gardner, L.I., 1954, Ultrafiltration studies on serum magnesium, New Eng. J. Med. 250: 938.

    Article  PubMed  CAS  Google Scholar 

  • Skou, J.C., 1962, Preparation from mammalian brain and kidney of the enzyme system involved in active transport of Na+ and K+, Biochim. Biophys. Acta 58: 314.

    Article  PubMed  CAS  Google Scholar 

  • Skou, J.C., 1965, Enzymatic basis for active transport of Na+ and K+ across cell membrane, Physiol. Rev. 45: 596.

    PubMed  CAS  Google Scholar 

  • Soffer, L.J., Cohn, C., Grossman, E.B., Jacobs, M. and Sobotka, H., 1941, Magnesium partition studies in Graves’ disease and in clinical and experimental hypothyroidism, J. Clin. Invest. 20: 429.

    Article  PubMed  CAS  Google Scholar 

  • Szelényi, I., Nam, L.B., Rigs, J., Nemesânszky, E., Simon, G. and Pósch, E., 1968, Magnesium metabolism and thyroid function, Acta Physiol. Acad. Sci. Hung. 33: 83.

    PubMed  Google Scholar 

  • Timiras, P.S. and Woodbury, D.M., 1956, Effect of thyroid activity on brain function and brain electrolyte distribution in rats, Endocrinology 58: 181.

    Article  PubMed  CAS  Google Scholar 

  • Timiras, P.S., Woodbury, D.M. and Agarwall, S.L., 1955, Effect of thyroxine and triiodothyronine on brain function and electrolyte distribution in intact and adrenalectomized rats, J. Pharmac. Exp. Ther. 115: 154.

    CAS  Google Scholar 

  • Valcana, T. and Timiras, P.S., 1969, Effect of hypothyroidism on ionic metabolism and Na-K-activated ATP phosphohydrolase activity in the developing rat brain, J. Neurochem. 16: 935.

    Article  PubMed  CAS  Google Scholar 

  • Valcana, T. and Timiras, P.S., 1971, Effect of thyroid hormones on ionic metabolism of the developing rat brain, In: “Hormones in Development”, (M. Hamburgh and E.J.W. Barrington, eds.), p. 453, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Vernadakis, A. and Woodbury, D.M., 1962, Electrolyte and amino acid changes in rat brain during maturation, Am. J. Physiol. 203: 748.

    PubMed  CAS  Google Scholar 

  • Vitale, J.J., Hegsted, D.M., Nakamura, M. and Connors, P., 1957, The effect of thyroxine on Mg++ requirement, J. Biol. Chem. 226: 597.

    PubMed  CAS  Google Scholar 

  • Woodbury, D.M., 1958, Effect of hormones on brain excitability and electrolytes, Recent Prog. Horm. Res. 10: 65.

    Google Scholar 

  • Woodbury, D.M., Koch, A. and Vernadakis, A., 1958, Relation between excitability and metabolism in brain as elucidated by anticonvulsant drugs, Neurology 8: 113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Valcana, T. (1974). Developmental Changes in Ionic Composition of the Brain in Hypo and Hyperthyroidism. In: Vernadakis, A., Weiner, N. (eds) Drugs and the Developing Brain. Advances in Behavioral Biology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3063-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3063-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3065-3

  • Online ISBN: 978-1-4684-3063-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics