Skip to main content

Learning in Crustacea

  • Chapter
Invertebrate Learning

Abstract

The Crustacea have been called the “water-breathing insects of the sea” (Schmitt, 1965). Although they have invaded both freshwater and terrestrial habitats, this description gives a reasonable intuitive feeling for many of the general behavioral and morphological characteristics of the class.

The author wishes to thank Alan Barnebey, Jeff Wine, and Joan Bryan for help in preparing this manuscript as well as for the use of their unpublished data. The chapter was prepared with the aid of USPHS Grant No. 2-ROI-NS-8108-04.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agar, W. E., 1927, The regulation of behavior in water-mites and some other arthropods, J. Comp. Psychol., 7, 39–74.

    Google Scholar 

  • Allee, W. C., and Douglis, M. B., 1945, A dominance order in the hermit crab, Pagurus longicarpus Say, Ecology, 26, 411–412.

    Google Scholar 

  • Amsel, A., 1958, The role of frustrative non-reward in non-continuous reward situations, Psychol. Bull., 55, 102–119.

    PubMed  CAS  Google Scholar 

  • Appellöf, A., 1909, Untersuchungen über den Hommer, Bergens Museums Shrifter (N.S.), 1, 2–78.

    Google Scholar 

  • Applewhite, P. B., and Morowitz, H. J., 1966, The micrometazoa as model systems for studying the physiology of memory, Yale J. Biol. Med., 39, 90–105.

    PubMed  CAS  Google Scholar 

  • Arechiga, H., and Wiersma, C. A. G., 1969, Circadian rhythms of responsiveness in crayfish visual units, J. Neurobiol., 1, 71–85.

    PubMed  CAS  Google Scholar 

  • Atwood, H. L., 1967, Crustacean neuromuscular mechanisms, Am. Zoologist, 7, 527–551.

    Google Scholar 

  • Atwood, H. L., and Bittner, G. D., 1971, Matching of excitatory and inhibitory inputs to crustacean muscle fibers, J. Neurophysiol., 34, 157–170.

    PubMed  CAS  Google Scholar 

  • Atwood, H. L., and Wiersma, C. A. G., 1967, Command interneurons in the crayfish central nervous system, J. Exptl. Biol., 42, 249–261.

    Google Scholar 

  • Bainbridge, R., 1961, Migrations, in “The Physiology of Crustacea” (T. H. Waterman, ed.), Vol. II, pp. 431–455, Academic Press, New York.

    Google Scholar 

  • Barnes, R. D., 1968, “Invertebrate Zoology,” Saunders, Philadelphia.

    Google Scholar 

  • Barnwell, F. H., 1963, Observations on daily and tidal rhythms in some fiddler crabs from equatorial Brazil, Biol. Bull., 125, 399–415.

    Google Scholar 

  • Barnwell, F. H., 1968, The role of rhythmic systems in the adaptation of fiddler crabs in the intertidal zone, Am. Zoologist, 8, 569–583.

    Google Scholar 

  • Bethe, A., 1897, Vergleichende Untersuchungen über die Funktionen des Centralnervensystems der Arthropoden, Arch. Ges. Physiol. Pflügers, 68, 449–545.

    Google Scholar 

  • Bethe, A., 1898, Das Centralnervensystem von Carcinus maenas. II, Arch. Mikroskop. Anat., 51, 382–452.

    Google Scholar 

  • Birks, R. I., and Cohen, M. W., 1968, The action of sodium pump inhibitors on neuromuscular transmission, Proc. Roy. Soc. Ser. B, 170, 381–399.

    CAS  Google Scholar 

  • Bitterman, M. E., 1965, Phyletic differences in learning, Am. Psychologist, 20, 396–410.

    CAS  Google Scholar 

  • Blees, G. H. J., 1919, Phototropisme et expérience chez la Daphnie, Arch. Nierl. Physiol., 3, 279–306.

    Google Scholar 

  • Bock, A., 1942, Über das Lernvermögen bei Asseln, Z. Vergl. Physiol., 29, 595–637.

    Google Scholar 

  • Bonner, J. F., 1965, “The Molecular Biology of Development,” Oxford University Press, New York.

    Google Scholar 

  • Borradaile, L. A., Potts, F. A., Eastham, L. E. S., Saunders, J. T., and Kerkut, G. A., 1958, “The Invertebrata,” Cambridge University Press, Cambridge.

    Google Scholar 

  • Bovbjerg, R. V., 1953, Dominance order in the crayfish, Orconectes virilis (Hagen), Physiol. Zool., 26, 173–178.

    Google Scholar 

  • Brereton, J. LeG., 1957, The distribution of woodland isopods, Oikos, 8, 85–106.

    Google Scholar 

  • Brown, F. A., 1961, Physiological rhythms, in “The Physiology of Crustacea” (T. H. Waterman, ed.), Vol. II, pp. 401–430, Academic Press, New York.

    Google Scholar 

  • Bruner, J., and Kennedy, D., 1970, Habituation: Occurrence at a neuromuscular junction, Science, 169, 92–94.

    PubMed  CAS  Google Scholar 

  • Bruner, J., and Tauc, L., 1966, Habituation at the synaptic level in Aplysia, Nature, 210, 37.

    PubMed  CAS  Google Scholar 

  • Buchsbaum, R., and Milne, L. J., 1960, “The Lower Animals: Living Invertebrates of the World,” Doubleday, Garden City, N.Y.

    Google Scholar 

  • Buerger, A. A., and Fennessy, A., 1971, Long-term alteration of leg position due to shock avoidance by spinal rats, Exptl. Neurol., 30, 195–211.

    CAS  Google Scholar 

  • Bullock, T. H., and Horridge, G. A., 1965, “Structure and Function in the Nervous Systems of Invertebrates,” Freeman, San Francisco.

    Google Scholar 

  • Capretta, P. J., and Rea, R., 1967, Discrimination reversal learning in the crayfish, Anim. Behav., 15, 6–7.

    PubMed  CAS  Google Scholar 

  • Carthy, J. D., 1958, “An Introduction to the Behavior of Invertebrates,” Allen and Unwin, London.

    Google Scholar 

  • Castellucci, V., Pinsker, H., Kupfermann, I., and Kandel, E. R., 1970, Neuronal mechanisms of habituation and dishabituation of the gill withdrawal reflex in Aplysia, Science, 167, 1745–1748.

    PubMed  CAS  Google Scholar 

  • Chow, K. L., and Leiman, A. L., The photo-sensitive organs of crayfish and brightness learning, Personal communication and in preparation.

    Google Scholar 

  • Cohen, M. J., and Jacklet, J. W., 1965, Neurons of insects: RNA changes during injury and regeneration, Science, 148, 1237–1239.

    PubMed  CAS  Google Scholar 

  • Costa, H. H., 1966, Responses of Gammarus pulex (L.) to modified environment. I. Reactions to toxic substances, Crustaceana, 11, 245–255.

    Google Scholar 

  • Cowles, R. P., 1908, Habits, reactions, and associations in Ocypoda arenaria, Papers Tortugas Lab. Carnegie Inst. Wash., 2, 1–41.

    Google Scholar 

  • Crane, J., 1958, Aspects of social behavior in fiddler crabs, with special reference to Uca maracoani (Latreille), Zoologica, 43, 113–130.

    Google Scholar 

  • Creaser, E. P., and Travis, D., 1950, Evidence of a homing instinct in the Bermuda spiny lobster, Science, 112, 169–170.

    PubMed  CAS  Google Scholar 

  • Datta, L. G., Milstein, S., and Bitterman, M. E., 1960, Habit reversal in the crab, J. Comp. Physiol. Psychol., 53, 275–278.

    PubMed  CAS  Google Scholar 

  • Daumer, K., Jander, R., and Waterman, T. H., 1963, Orientation of the ghost-crab Ocypode in polarized light, Z. Vergl. Physiol., 47, 56–76.

    Google Scholar 

  • Davis, W. J., 1970, Motoneuron morphology and synaptic contacts: Determination by intracellular dye injection, Science, 168, 1358–1360.

    PubMed  CAS  Google Scholar 

  • Dembrowska, W. S., 1926, Study on habits of the crab Dromia vulgaris M. E., Biol. Bull., 50, 163–178.

    Google Scholar 

  • Doflein, F., 1910, Lebensgewohnheiten und Anpassungen bei dekapoden Krebsen, in “Festschrift zum 60 Geburtstag Richard Hertwigs,” Vol. 3, pp. 215–292, Fischer, Jena.

    Google Scholar 

  • Drzewina, A., 1908, Les réactions adaptives des Crabes, Bull. Inst. Gen. Psychol., 8, 235–256.

    Google Scholar 

  • Drzewina, A., 1910, Création d’associations sensorielles chez les crustacés, Compt. Rend. Soc. Biol. Paris, 68, 573–575.

    Google Scholar 

  • Dudel, J., and Kuffler, S. W., 1961, Mechanism of facilitation at the crayfish neuromuscular junction, J. Physiol., 155, 530–542.

    PubMed  CAS  Google Scholar 

  • Edds, M. V., Jr., 1967, Neuronal specificity in neurogenesis, in “The Neurosciences, A Study Program” (G. C. Quarton, T. Melnechuck, and F. O. Schmitt, eds.), pp. 230–240, and Rockefeller University Press, New York.

    Google Scholar 

  • Eisenstein, E. M., and Mill, P. J., 1965, Role of the optic ganglia in learning in the crayfish Procambarus clarkii (Girard), Anim. Behav., 13, 561–565.

    PubMed  CAS  Google Scholar 

  • Evoy, W. H., and Kennedy, D., 1967, The central nervous organization underlying control of antagonistic muscles in the crayfish. I. Types of command fibers, J. Exptl. Zool., 165(2), 223–248.

    Google Scholar 

  • Farel, P. B., Buerger, A. A., 1972, Instrumental conditioning of leg position in chronic spinal frog: Before and after sciatic section, Brain Res., 47, 345–351.

    PubMed  CAS  Google Scholar 

  • Farel, P. B., and Krasne, F. B., 1972, Maintenance of habituation by infrequent stimulation, Physiol. Behav., 8, 783–785.

    PubMed  CAS  Google Scholar 

  • Fernandez, H. L., Huneeus, F. C., and Davison, P. F., 1970, Studies on the mechanism of axoplasmic transport in the crayfish cord, J. Neurobiol., 1, 395–409.

    PubMed  CAS  Google Scholar 

  • Fink, H. K., 1941, Deconditioning of the “fright reflex” in the hermit crab, Pagurus longi-carpus, J. Comp. Psychol., 32, 33–39.

    Google Scholar 

  • Fraenkel, G. S., and Gunn, D. L., 1961, “The Orientation of Animals,” Dover, New York.

    Google Scholar 

  • Galeano, C., and Chow, K. L., 1970, Response of caudal photoreceptor of crayfish to continuous and intermittent photic stimulation, Can. J. Physiol. Pharmacol., 49, 699–706.

    Google Scholar 

  • Garcia, J., McGowan, B. K., Ervin, F. R., and Koelling, R. A., 1968, Cues: Their relative effectiveness as a function of the reinforcer, Science, 160, 794–795.

    PubMed  CAS  Google Scholar 

  • Gilhousen, H. C., 1927, The use of the vision and of the antennae in the learning of crayfish, Univ. Calif. (Berkeley) Publ. Physiol., 7, 73–89.

    Google Scholar 

  • Gregory, R. L., 1966, “Eye and Brain,” McGraw-Hill, New York.

    Google Scholar 

  • Gwilliam, G. F., 1966, The mechanism of the shadow reflex in Cirripedia. II. Photoreceptor cell response, second-order responses and motor cell output, Biol. Bull., 131, 244–256.

    Google Scholar 

  • Harker, J. E., 1964, “The Physiology of Diurnal Rhythms,” Cambridge University Press, Cambridge.

    Google Scholar 

  • Harless, M. E., 1967, Successive reversals of a position response in isopods, Psychon. Sci., 9, 123–124.

    Google Scholar 

  • Harris, J. E., 1963, The role of endogenous rhythms in vertical migration, J. Marine Biol. Ass. G.B., 43, 153–166.

    Google Scholar 

  • Hazlett, B. A., 1966, Temporary alteration of the behavioral repertoire of a hermit crab, Nature, 210, 1169–1170.

    PubMed  CAS  Google Scholar 

  • Hazlett, B. A., 1969, “Individual” recognition and agonistic behavior in Pagurus bernhardus, Nature, 222, 268–269.

    CAS  Google Scholar 

  • Hazlett, B. A., 1971, Influence of rearing conditions on initial shell entering behavior of a hermit crab (Decapoda Paguridea), Crustaceana, 20(2), 167–170.

    Google Scholar 

  • Hazlett, B. A., and Provenzano, A. J., 1965, Development of behavior in laboratory reared hermit crabs, Bull. Marine Sci., 15, 616–633.

    Google Scholar 

  • Held, R., and Hein, A., 1963, Movement-produced stimulation in the development of visually guided behavior, J. Comp. Physiol. Psychol., 56, 872–876.

    PubMed  CAS  Google Scholar 

  • Herrnkind, W. F., 1968, Adaptive visually-directed orientation in Uca pugilator, Am. Zoologist, 8, 583–598.

    Google Scholar 

  • Hertz, M., 1932, Verhalten des Einsiedlerkrebses Clibanarius misanthropicus gegenüber verschiedener Gehäuseformen, Z. Vergl. Physiol., 18, 597–621.

    Google Scholar 

  • Hertz, M., 1933, Über figurale Intensitäten und Qualitäten in der optischen Wahrenehmung der Biene, Biol. Zbl., 53, 10–40.

    Google Scholar 

  • Hertz, M., 1934, Zur Physiologie des Formen und Bewegungssehens. III. Figurale Unterscheidung und reziproke Dressuren bei der Biene, Z. Vergl. Physiol., 21, 604–615.

    Google Scholar 

  • Hodos, W., 1970, Evolutionary interpretation of neural and behavioral studies of living vertebrates, in “The Neurosciences. Second Study Program” (G. C. Quarton, T. Melnechuck, and G. Adelman, eds.), pp. 26–39, Rockefeller University Press, New York.

    Google Scholar 

  • Horn, A. L. D., and Horn, G., 1969, Modification of leg flexion in response to repeated stimulation in a spinal amphibian (Xenopus mullerei), Anim. Behav., 17, 618–623.

    PubMed  CAS  Google Scholar 

  • Horn, G., 1967, Neuronal mechanisms of habituation, Nature, 215, 707–711.

    PubMed  CAS  Google Scholar 

  • Horridge, G. A., 1966a, Optokinetic memory in the crab, Carcinus, J. Exptl. Biol., 44, 233–245.

    CAS  Google Scholar 

  • Horridge, G. A., 1966b, Optokinetic responses of the crab, Carcinus, to a single moving light, J. Exptl. Biol., 44, 263–214.

    CAS  Google Scholar 

  • Horridge, G. A., 1966c, Direct response of the crab, Carcinus, to the movement of the sun, J. Exptl. Biol., 44, 275–283.

    CAS  Google Scholar 

  • Horridge, G. A., 1968, “Interneurons,” Freeman, San Francisco.

    Google Scholar 

  • Hoy, R., Bittner, G., and Kennedy, D., 1967, Regeneration in crustacean motoneurons: Evidence for axonal fusion, Science, 156, 251–252.

    PubMed  CAS  Google Scholar 

  • Hughes, G. M., 1965, Neuronal pathways in the insect central nervous system, in “The Physiology of the Insect Central Nervous System” (J. E. Treherne and J. W. L. Beament, eds.), pp. 79–112, Academic Press, New York.

    Google Scholar 

  • Hughes, R. N., 1966, Some observations of correcting behavior in woodlice (Porcellio scaber), Anim. Behav., 14, 319.

    Google Scholar 

  • Iwahara, S., 1963, Inhibition vs. thigmotropism vs. centrifugal swing as determinates of the initial turn alternation phenomenon in Armadillidium vulgare, Ann. Anim. Psychol. Tokyo, 13, 1–15.

    Google Scholar 

  • Jacobson, M., 1970, Development, specification and diversification of neuronal connections, in “The Neurosciences. Second Study Program” (G. C. Quarton, T. Melnechuk, and G. Adelman, eds.), pp. 116–129, Rockefeller University Press, New York.

    Google Scholar 

  • Katz, B., 1971, Quantal mechanism of neural transmitter release, Science, 173, 123–126.

    PubMed  CAS  Google Scholar 

  • Kennedy, D., and Preston, J. B., 1963, Post activation changes in excitability and spontaneous firing of crustacean interneurons, Comp. Biochem. Physiol., 8, 173–179.

    Google Scholar 

  • Kennedy, D., Evoy, W. H., and Fields, H. L., 1966a, The unit basis of some crustacean reflexes, in “Nervous and Hormonal Mechanisms of Integration,” Vol. 20, pp. 75–109, Symp. Soc. Exptl. Biol., Academic Press, New York.

    Google Scholar 

  • Kennedy, D., Evoy, W. H., and Hanawalt, J. F., 1966b, Release of coordinated behavior in crayfish by single central neurons, Science, 154, 917.

    PubMed  CAS  Google Scholar 

  • Kennedy, D., Selverston, A. I., and Remler, M. P., 1969, Analysis of restricted neural networks, Science, 164, 1488–1496.

    PubMed  CAS  Google Scholar 

  • Krasne, F. B., 1969, Excitation and habituation of the crayfish excape reflex: The depolarizing response in lateral giant fibers of the isolated abdomen, J. Exptl. Biol., 50, 29–46.

    CAS  Google Scholar 

  • Krasne, F. B., and Roberts, A. M., 1967, Habituation of the crayfish escape response during release from inhibition induced by picrotoxin, Nature, 215, 769–770.

    PubMed  CAS  Google Scholar 

  • Krasne, F. B., and Woodsmall, K. S., 1969, Waning of the crayfish escape response as a result of repeated stimulation, Anim. Behav., 17, 416–424.

    PubMed  CAS  Google Scholar 

  • Kühl, H., 1933, Die Fortbewegung der Schwimmkrabben mit Bezug auf die Plastizität des Nervensystems, Z. Vergl. Physiol., 19, 489–521.

    Google Scholar 

  • Kupfermann, I., 1966, Turn alternation in the pill bug (Armadillidium vulgare), Anim. Behav., 14, 68–72.

    PubMed  CAS  Google Scholar 

  • Lagerspetz, K. Y. H., and Kivivuori, L., 1970, The rate and retention of the habituation of the shadow reflex in Balanus improvisus (Cirripedia), Anim. Behav., 18, 616–620.

    PubMed  CAS  Google Scholar 

  • Larimer, J., Eggleston, A., Masukawa, L., and Kennedy, D., 1971, The different connections and motor outputs of lateral and medial giant fibers in the crayfish, J. Exptl. Biol., 54, 391–402.

    CAS  Google Scholar 

  • Lindauer, M., 1961, “Communication Among Social Bees,” Havard University Press, Cambridge, Mass.

    Google Scholar 

  • Lindberg, R. G., 1955, Growth, population dynamics, and field behavior in the spiny lobster Panulirus interrupts (Randall), Univ. Calif. Publ. Zool., 59, 157–247.

    Google Scholar 

  • Lowe, M. E., 1956, Dominance-subordinance relationships in Cambarellus shufeldtii, Tulane Stud. Zool., 4, 139–170.

    Google Scholar 

  • Luther, W., 1930, Versuche über die Chemorezeptoren der Brachyuran, Z. Vergl. Physiol., 12, 177–205.

    Google Scholar 

  • MacGinitie, G. E., and MacGinitie, N., 1949, “Natural History of Marine Animals,” McGraw-Hill, New York.

    Google Scholar 

  • Maynard, D. M., 1955, Activity in a crustacean ganglion. II. Pattern and interaction in burst formation, Biol. Bull., 109, 420–436.

    Google Scholar 

  • Mikhailoff, S., 1920, Expérience réflexologique—L’activité neuro-psychique (formation des réflexes associés) est-elle possible sans l’écorce cérébrale? (Première communication préliminaire). Analyse de l’état actuel de la question et expériences nouvelles sur Pagurus striatus, Bull. Inst. Océanograph. Monaco, No. 375.

    Google Scholar 

  • Mikhailoff, S., 1922, Expérience réflexologique: Expériences nouvelles sur Pagurus striatus Bull. Inst. Océanograph. Monaco, No. 418.

    Google Scholar 

  • Mikhailoff, S., 1923, Expérience réflexologique: Expériences nouvelles sur Pagurus striatus, Leander xiphiaas et treillianus, Bull, Inst. Océanograph. Monaco, No. 422.

    Google Scholar 

  • Milne, L. J., and Milne, M., 1961, Scanning movements of the stalked compound eyes in crustaceans of the order Stomatopoda, in “Progress in Photobiology” (B. C. Christensen and B. Buchmann, eds.) pp. 422-426, Proc. Third Internat. Congr. Photobiol., Copenhagen, 1960.

    Google Scholar 

  • Morrow, J. E., 1966, Learning in an invertebrate with two types of negative reinforcement, Psychon. Sci., 5, 131.

    Google Scholar 

  • Morrow, J., and Smithson, B., 1968, Learning in an invertebrate with a positive reinforcement of water, Psychol. Rep., 22, 1203.

    PubMed  CAS  Google Scholar 

  • Morrow, J. E., and Smithson, B. L., 1969, Learning sets in an invertebrate, Science, 164, 850–851.

    PubMed  CAS  Google Scholar 

  • Otsuka, M., Kravitz, E. A., and Potter, D. D., 1967, Physiological and chemical architecture of a lobster ganglion with particular reference to gamma-aminobutyrate and glutamate, J. Neurophysiol., 30, 725–752.

    PubMed  CAS  Google Scholar 

  • Pardi, L., 1960, Innate components in the solar orientation of littoral amphipods, Cold Spring Harbor Symp. Quant. Biol., 25, 395–341.

    PubMed  CAS  Google Scholar 

  • Pardi, L., and Papi, F., 1961, Kinetic and tactic responses, in “The Physiology of Crustacea” (T. H. Waterman, ed.), Vol. II, pp. 365–399, Academic Press, New York.

    Google Scholar 

  • Pieron, H., 1910, “L’Evolution de la Memoire,” Flammarion, Paris.

    Google Scholar 

  • Pittendrigh, C. S., 1960, Circadian rhythms and the circadian organization of living systems, Cold Spring Harbor Symp. Quant. Biol., 25, 159–184.

    PubMed  CAS  Google Scholar 

  • Reese, E. S., 1963, The behavioral mechanisms underlying shell selection by hermit crabs, Behaviour, 21, 78–126.

    Google Scholar 

  • Remler, M., Selverston, A., and Kennedy, D., 1968, Lateral giant fibers of crayfish: Location of somata by dye injection, Science, 162, 281–283.

    PubMed  CAS  Google Scholar 

  • Roberts, A., 1968, Recurrent inhibition in the giant-fibre system of the crayfish and its effect on the excitability of the escape response, J. Exptl. Biol., 48, 545–567.

    CAS  Google Scholar 

  • Sachs, L. B., Klopfer, F. D., and Morrow, J. E., 1965, Reactive inhibition in the sow bug, Psychol. Rep., 17, 739–743.

    PubMed  CAS  Google Scholar 

  • Schmitt, W. L., 1965, “Crustaceans,” University of Michigan Press, Ann Arbor.

    Google Scholar 

  • Schöne, H., 1954, Statocystenfunktion und statische Lageorientierung bei dekapoden Krebsen, Z. Vergl. Physiol., 36, 241–260.

    Google Scholar 

  • Schöne, H., 1961a, Complex behavior, in The Physiology of Crustacea (T. H. Waterman, ed.), Vol. II, pp. 465–520, Academic Press, New York.

    Google Scholar 

  • Schöne, H., 1961b, Learning in the spiny lobster Panulirus argus, Biol. Bull., 121, 354–365.

    Google Scholar 

  • Schöne, H., 1964, Release and orientation of behavior and the role of learning as demonstrated in Crustacea, in “Learning and Associated Phenomena in Invertebrates” (W. H. Thorpe and D. Davenport, eds.), Anim. Behav. Suppl., 1, 135–143.

    Google Scholar 

  • Schwartz, B., and Safir, S. R., 1915, Habit formation in the fiddler crab, J. Anim. Behav., 5, 226–239.

    Google Scholar 

  • Seabrook, W. D., and Nesbitt, H. H. J., 1966, The morphology and structure of the brain of Orconectes virilis (Hagen) (Crustacea, Decapoda), Can. J. Zool., 44, 1–21.

    PubMed  CAS  Google Scholar 

  • Sherman, R. G., and Atwood, H. L., 1971, Synaptic facilitation: Long-term neuromuscular facilitation in crustaceans, Science, 171, 1248–1250.

    PubMed  CAS  Google Scholar 

  • Spaulding, E. G., 1904, An establishment of association in hermit crabs, Eupagurus longicarpus, J. Comp. Neurol. Psychol., 14, 49–61.

    Google Scholar 

  • Stretton, A. O. W., and Kravitz, E. A., 1968, Neuronal geometry: Determination with a technique of intracellular dye injection, Science, 162, 132–134.

    PubMed  CAS  Google Scholar 

  • Takeda, K., and Kennedy, D., 1964, Soma potentials and modes of activation of crayfish motoneurons, J. Cell. Comp. Physiol., 64, 165–181.

    CAS  Google Scholar 

  • Takeda, K., and Kennedy, D., 1965, The mechanism of discharge pattern formation in crayfish interneurons, J. Gen. Physiol., 48, 435–453.

    PubMed  CAS  Google Scholar 

  • Taylor, R. C., 1970, Environmental factors which control the sensitivity of a single crayfish interneuron, Comp. Biochem. Physiol., 33, 911–921.

    Google Scholar 

  • Ten Cate-Kazejewa, B., 1934, Quelques observations sur les Bernards l’Ermite (Pagurus arrosor), Arch. Neerl. Physiol. Ser. 3c, 19, 502–508.

    Google Scholar 

  • Thompson, R., 1957, Successive reversal of a position habit in an invertebrate, Science, 126, 163–164.

    PubMed  CAS  Google Scholar 

  • Thorpe, W. H., 1956, “Learning and Instinct in Animals,” Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • van der Heyde, A., 1920, Über die Lernfähigheit der Strandkrabbe Carcinus maenas, Biol. Zentr., 40, 503–514.

    Google Scholar 

  • Volz, P., 1938, Studien über das Knallen der Alpheiden, nach Untersuchungen an Ahpheus dentipes Guérin und Synalpheus laeuimanus (Heller), Z. Morphol. Ökol. Tiere, 34.

    Google Scholar 

  • von Buddenbrock, W., 1953, Nervenphysiologie, in “Vergleichende Physiologie,” Vol. 2, Birkhauser, Basel.

    Google Scholar 

  • von Frisch, K., 1953, “The Dancing Bees,” Harcourt, Brace, New York.

    Google Scholar 

  • Warren, J. M., 1965, Primate learning in comparative perspective, in “Behavior of Nonhuman Primates” (A. M. Schrier, H. F. Harlow, and F. Stollnitz, eds.), Vol. I, pp. 249–281, Academic Press, New York.

    Google Scholar 

  • Watanabe, M., and Iwata, K. S., 1956, Alternative turning response of Armadillidium vulgare, Ann. Anim. Psychol. Tokyo, 6, 75–82.

    Google Scholar 

  • Waterman, T. H., and Chace, F. A., Jr., 1960, General crustacean biology, in “The Physiology of Crustacea” (T. H. Waterman, ed.), Vol. I, pp. 1–33, Academic Press, New York.

    Google Scholar 

  • Waterman, T. H., Wiersma, C. A. G., and Bush, B. M. H., 1964, Afferent visual responses in the optic nerve of the crab, Podophthalamus, J. Cell. Comp. Physiol., 63, 135–155.

    CAS  Google Scholar 

  • Wiersma, C. A. G., 1947, Giant nerve fiber systems of the crayfish. A contribution to comparative physiology of synapse, J. Neurophysiol., 10, 23–38.

    PubMed  CAS  Google Scholar 

  • Wiersma, C. A. G., 1957, On the number of nerve cells in a crustacean central nervous system, Acta Physiol. Pharm. Neerl., 6, 135–142.

    CAS  Google Scholar 

  • Wiersma, C. A. G., 1961, Reflexes and the central nervous system, in “The Physiology of Crustacea” (T. H. Waterman, ed.), Vol. II, pp. 241–279, Academic Press, New York.

    Google Scholar 

  • Wiersma, C. A. G., 1970, Reactivity changes in crustacean neural systems, in “Short-Term Changes in Neural Activity and behavior” (G. Horn and R. A. Hinde, eds.), pp. 211–236, Cambridge University Press., Cambridge.

    Google Scholar 

  • Wilson, D. M., and Davis, W. J., 1965, Nerve impulse patterns and reflex control in the motor system of the crayfish claw, J. Exptl. Biol., 43, 193–210.

    Google Scholar 

  • Wilson, D. P., 1949, Notes from the Plymouth Aquarium, J. Marine Biol. Ass. U.K., 29, 345–351.

    Google Scholar 

  • Wine, J. J., 1971, Hyperreflexia in the crayfish abdomen following denervation: Evidence for supersensitivity in an invertebrate central nervous system, Ph. D. dissertation, University of California, Los Angeles.

    Google Scholar 

  • Wine, J. J., 1973, Invertebrate central neurons: Orthograde degeneration and retrograde changes after axotomy, Exptl. Neurol., in press.

    Google Scholar 

  • Wine, J. J., and Krasne, F. B., 1969, Independence of inhibition and habituation in the crayfish lateral giant fiber escape reflex, Proc. Seventy-seventh Ann. Convention A.P.A., pp. 237-238.

    Google Scholar 

  • Wine, J. J., and Krasne, F. B., 1972, The organization of escape behavior in the crayfish, J. Exptl. Biol., 56, 1–18.

    CAS  Google Scholar 

  • Woodworth, R. S., and Schlosberg, H., 1956, “Experimental Psychology,” Henry Holland, New York.

    Google Scholar 

  • Wrede, W. L., 1929, Versuche über die Chemoreception bei Eupagurus bernhardus, Tijdschr. Ned. Dierk. Ver Leiden., 3, 109–112.

    Google Scholar 

  • Yerkes, R., 1902, Habit formation in the green crab, Biol. Bull., 3, 241–244.

    Google Scholar 

  • Yerkes, R. M., and Huggins, G. E., 1903, Habit formation in the crawfish, Cambarus affinis, Harvard Psychol. Stud., 1, 565–577.

    Google Scholar 

  • Zucker, R. S., 1972, Crayfish escape behavior and central synapses. I. Neural circuit exciting lateral giant fiber, II. Physiological mechanisms underlying behavioral habituation, III. Electrical junctions and dendritic spikes in fast flexor motoneurons, J. Neurophysiol., 35, 599–651.

    PubMed  CAS  Google Scholar 

  • Zucker, R. S., Kennedy, D., and Selverston, A. I., 1971, Neuronal circuit mediating escape responses in crayfish, Science, 173, 645–650.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Krasne, F.B. (1973). Learning in Crustacea. In: Corning, W.C., Dyal, J.A., Willows, A.O.D. (eds) Invertebrate Learning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3009-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3009-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3011-0

  • Online ISBN: 978-1-4684-3009-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics