Skip to main content

Differentiation of Aggregating Brain Cell Cultures

  • Chapter
Tissue Culture of the Nervous System

Part of the book series: Current Topics in Neurobiology ((CTNB))

Abstract

Although nerve was the first tissue used for in vitro culture (Harrison, 1907), only recently have the techniques for the maintenance, growth, and development of nerve tissue in vitro advanced. Most studies of brain differentiation in vitro use small explants. These explants from various regions of fetal and newborn mouse brain can undergo structural and bioelectrical development during culture (Bornstein, 1964; Crain, 1966; Wolf, 1970). In addition, functional connections are formed between separated spinal cord, brain stem, and neocortex fragments (Crain et al., 1968). However, the absence of sensitive biochemical procedures for detecting picomoles of product formation, in addition to the small size of the explants, has primarily limited the study of biochemical differentiation in explants to histochemical observations (Hosli and Hosli, 1970).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian, G. K., and Bloom, F. E. 1967. The formation of synaptic junctions in developing rat brain: A quantitative electron microscopic study. Brain Res. 6:716–727.

    Article  PubMed  CAS  Google Scholar 

  • Amano, T., Richelson, E., and Nirenberg, M. 1972. Neurotransmitter synthesis by neuroblastoma clones. Proc. Natl. Acad. Sci. 69:258–263.

    Article  PubMed  CAS  Google Scholar 

  • Bagdasarian, G., and Hulanicka, D. 1965. Changes of mitochondrial glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase during brain development. Biochim. Biophys. Acta 99:367–369.

    PubMed  CAS  Google Scholar 

  • Barkley, D. S., Rakin, L. L., Chaffee, J. K., and Wong, D. L. 1972. Cell separation of newborn mouse cerebellum by velocity sedimentation. J. Cell Biol. 55:15a.

    Google Scholar 

  • Bennett, D. S., and Giarman, N. J. 1965. Schedule of appearance of 5-hydroxytryptamine (serotonin) and associated enzymes in the developing rat brain. J. Neurochem. 12: 911–918.

    Article  PubMed  CAS  Google Scholar 

  • Blume, A., Gilbert, F., Wilson, S., Farber, J., Rosenberg, R., and Nirenberg, M. 1970. Regulation of acetylcholinesterase in neuroblastoma cells. Proc. Natl. Acad. Sci. 67: 786–792.

    Article  PubMed  CAS  Google Scholar 

  • Bonavita, V., Ponte, F., and Amore, G. 1964. Lactic dehydrogenase isoenzymes in nervous tissue IV. An ontogenetic study on the rat brain. J. Neurochem. 11:39–47.

    Article  PubMed  CAS  Google Scholar 

  • Bornstein, M. B. 1964. Morphological development of neonatal mouse cerebral cortex in tissue culture, pp. 1–11. In P. Kellaway and T. Petersen (eds.). Neurological and Electroencephalographic Correlative Studies in Infancy. Grune & Stratton, New York.

    Google Scholar 

  • Bornstein, M. D., and Model, P. G. 1972. Development of synapses and myelin in cultures of dissociated embryonic mouse spinal cord, medulla and cerebrum. Brain Res. 37: 287–293.

    Article  Google Scholar 

  • Clark, R. B., and Perkins, J. P. 1971. Regulation of adenosine 3′:5′-cyclic monophosphate concentration in cultured human astrocytoma cells by catecholamines and histamine. Proc. Natl. Acad. Sci. 68:2757–2760.

    Article  PubMed  CAS  Google Scholar 

  • Crain, S. M. 1966. Development of“organotypic” bioelectric activities in central nervous tissues during maturation in culture. Internat. Rev. Neurobiol. 9:1–43.

    Article  CAS  Google Scholar 

  • Crain, S. M., and Bornstein, M. B. 1972. Organotypic bioelectric activity in cultured reaggregates of dissociated rodent brain cells. Science 176:182–184.

    Article  PubMed  CAS  Google Scholar 

  • Crain, S. M., Peterson, E. R., and Bornstein, M. B. 1968. Formation of functional interneuronal connexions between expiants of various mammalian central nervous tissues during development in vitro. pp. 13–40. In Growth of the Nervous System. Ciba Symposium; Little, Brown, Boston.

    Google Scholar 

  • DeLong, G. R. 1970. Histogenesis of fetal mouse isocortex and hippocampus in reaggregating cell cultures. Develop. Biol. 22:563–583.

    Article  PubMed  CAS  Google Scholar 

  • DeLong, G. R., and Sidman, R. L. 1970. Alignment defect of reaggregating cells in cultures of developing brains of reeler mutant mice. Develop. Biol. 22:584–600.

    Article  Google Scholar 

  • Fleischmajer, R., and Billingham, R. E. 1968. Epithelial-Mesenchymal Interactions. Williams & Wilkins, Baltimore. 326 pp.

    Google Scholar 

  • Garber, B. B., and Moscona, A. A. 1972a. Reconstruction of brain tissue from cell suspensions I. Aggregation patterns of cells dissociated from different regions of the developing brain. Develop. Biol. 27:217–234.

    Article  PubMed  CAS  Google Scholar 

  • Garber, B. B., and Moscona, A. A. 1972b. Reconstruction of brain tissue from cell suspensions. II. Specific enhancement of aggregation of embryonic cerebral cells by supernatant from homologous cell cultures. Develop. Biol. 27:235–243.

    Article  PubMed  CAS  Google Scholar 

  • Gilman, A. G. 1970. A Protein binding assay for adenosine 3′,5′-phosphate. Proc. Nat. Acad. Sci. 67:305–311.

    Article  PubMed  CAS  Google Scholar 

  • Gilman, A. G., and Nirenberg, M. 1971. Effect of catecholamines on the adenosine 3′:5′-cyclic monophosphate concentrations of clonal satellite cells of neurons. Proc. Natl. Acad. Sci. 68:2165–2168.

    Article  PubMed  CAS  Google Scholar 

  • Gilman, A. G., and Schrier, B. K. 1972. Adenosine cyclic 3′,5′-monophosphate in fetal rat brain cell cultures. I. Effect of catecholamines. Molec. Pharmacol. 8:410–416.

    CAS  Google Scholar 

  • Gray, E. G. 1959. Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study. J. Anat. 93:420–439.

    PubMed  CAS  Google Scholar 

  • Grobstein, C. 1964. Cytodifferentiation and its controls. Science 143:643–650.

    Article  PubMed  CAS  Google Scholar 

  • Haber, B., Kuriyama, K., and Roberts, E. 1970. L-Glutamic acid decarboxylase: A new type in glial cells and human brain gliomas. Science 168:598–599.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, R. G. 1907. Observations on the living developing nerve fiber. Proc. Soc. Exp. Biol. (N.Y.) 4:140–150.

    Google Scholar 

  • Hildebrand, J. G., Barker, D. L., Herbert, E., and Kravitz, E. A. 1971. Screening for neurotransmitters: A rapid radiochemical procedure. J. Neurobiol. 2:231–246.

    Article  PubMed  CAS  Google Scholar 

  • Himwich, W. H. 1964. Biochemical and neurophysiological development of the brain in the neonatal period. Internat. Rev. Neurobiol. 4:117–158.

    Article  Google Scholar 

  • Hösli, E., and Hösli, L. 1970. The presence of acetylcholinesterase in cultures of cerebellum and brain stem. Brain Res. 19:494–496.

    Article  PubMed  Google Scholar 

  • Humphreys, T. 1963. Chemical dissolution and in vitro reconstruction of sponge cell adhension. I. Isolation and functional demonstration of the components involved. Develop. Biol. 8:27–47.

    Article  CAS  Google Scholar 

  • Karlsson, U. 1967. Observations on the postnatal development of neuronal structures in the lateral geniculate nucleus of the rat by electron microscopy. J. Ultrastruct. Res. 17:158–175.

    Article  PubMed  CAS  Google Scholar 

  • Kuhlman, R. E., and Lowry, O. H. 1956. Quantitative histochemical changes during the development of the rat cerebral cortex. J. Neurochem. 1:173–180.

    Article  PubMed  CAS  Google Scholar 

  • Lehrer, G. M., Bornstein, M. B., Weiss, C., and Silides, D. J. 1970. Enzymatic maturation of mouse cerebral neocortex in vitro and in situ. Exptl. Neurol. 26:595–606.

    Article  CAS  Google Scholar 

  • Lilien, J. E. 1968. Specific enhancement of cell aggregation in vitro. Develop. Biol. 17:657–678.

    Article  PubMed  CAS  Google Scholar 

  • Maker, H. S., Lehrer, G. M., Weissbarth, S., and Bornstein, M. B. 1972. Changes in LDH isoenzymes of brain developing in situ and in vitro. Brain Res. 44:189–196.

    Article  PubMed  CAS  Google Scholar 

  • Margoliash, E., Schenck, J. R., Hargie, M. P., Burokar, S., Richter, W. R., Barlow, G. H., and Moscona, A. A. 1965. Characterization of specific cell aggregating materials from sponge cells. Biochem. Biophys. Res. Commun. 20:383–388.

    Article  CAS  Google Scholar 

  • McQuiddy, P., and Lilien, J. 1971. Sialic acid and cell aggregation. J. Cell Sci. 9:823–833.

    PubMed  CAS  Google Scholar 

  • Model, P. G., Bornstein, M. B., Crain, S. M., and Pappas, G. D. 1971. An electron microscopic study of the development of synapses in cultured fetal mouse cerebrum continuously exposed to xylocaine. J. Cell Biol. 40:362–371.

    Article  Google Scholar 

  • Morris, J. E., and Moscona, A. A. 1970. Induction of glutamine synthetase in embryonic retina: Its dependence on cell interactions. Science 167:1736–1738.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. E., and Moscona, A. A. 1971. The induction of glutamine synthetase in cell aggregates of embryonic neural retina: Correlations with differentiation and multicellular organization. Develop. Biol. 25:420–444.

    Article  PubMed  CAS  Google Scholar 

  • Moscona, A. 1956. Development of heterotypic combinations of dissociated embryonic chick cells. Proc. Soc. Exptl. Biol. 92:410–416.

    CAS  Google Scholar 

  • Moscona, A. 1957. The development in vitro of chimeric aggregates of dissociated embryonic chick and mouse cells. Proc. Natl. Acad. Sci. 43:184–193.

    Article  PubMed  CAS  Google Scholar 

  • Moscona, A. 1961. Effect of temperature on adhesion to glass and histogenetic cohesion of dissociated cells. Nature 190:408–409.

    Article  PubMed  CAS  Google Scholar 

  • Moscona, A. A. 1965. Recombination of dissociated cells and the development of cell aggregates, pp. 489–529. In B. M. Willmer (ed.). Cells and Tissues in Culture. Academic Press, New York.

    Google Scholar 

  • Moscona, A. A. 1971. Embryonic and neoplastic cell surfaces: Availability of receptors for concanavalin A and wheat germ agglutinin. Science 171:905–907.

    Article  PubMed  CAS  Google Scholar 

  • Moscona, M. H., and Moscona, A. A. 1963. Inhibitions of adhesiveness and aggregation of dissociated cells by inhibitors of protein and RNA synthesis. Science 142:1070–1071.

    Article  PubMed  CAS  Google Scholar 

  • Pessac, B., and Defendi, V. 1972. Cell aggregation: Role of acid mucopolysaccharides. Science 175:898–900.

    Article  PubMed  CAS  Google Scholar 

  • Rall, T. W., and Sattin, A. 1970. Factors influencing the accumulation of cyclic AMP in brain tissue, pp. 113–134. In P. Greengard and E. Costa (eds.). Role of Cyclic AMP in Cell function. Raven Press, New York.

    Google Scholar 

  • Roth, S., McGuire, E. J., and Roseman, S. 1971. An assay for intercellular adhesive specificity. J. Cell. Biol. 51:525–535.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, M. J., Palmer, E. C., Dettbarn, W.-D., and Robison, G. A. 1970. Cyclic AMP and adenyl cyclase in the developing rat brain. Develop. Biol. 3:53–67.

    CAS  Google Scholar 

  • Seeds, N. W. 1971. Biochemical differentiation in reaggregating brain cell culture. Proc. Natl. Acad. Sci. 68:1858–1861.

    Article  PubMed  CAS  Google Scholar 

  • Seeds, N. W. 1972. Reassembling the brain. New Scientist 54:12–14.

    Google Scholar 

  • Seeds, N. W. 1973. Biochemical differentiation in reaggregating brain cell culture. II. Monoamine oxidase, catechol-O-methyltransferase lactate dehydrogenase and S-100 protein. (Submitted for publication).

    Google Scholar 

  • Seeds, N. W., and Gilman, A. G. 1971. Norepinephrine stimulated increase of cyclic AMP levels in developing mouse brain cell cultures. Science 174:292.

    Article  PubMed  CAS  Google Scholar 

  • Seeds, N. W., and Vatter, A. E. 1971. Synaptogenesis in reaggregating brain cell culture. Proc. Natl. Acad. Sci. 68:3219–3222.

    Article  PubMed  CAS  Google Scholar 

  • Sidman, R. L., Green, M. C., and Appel, S. H. 1965. Catalog of the Neurological Mutants of the Mouse. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Silberstein, S. D., Shein, H. M., and Berv, K. R. 1972. Catechol-O-methyl transferase and monoamine oxidase activity in cultured rodent astrocytoma cells. Brain Res. 41:245–248.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, M. S. 1970. Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among population of embryonic cells. J. Exptl. Zool. 173:395–433.

    Article  CAS  Google Scholar 

  • Trinkaus, J. P., and Groves, P. W. 1955. Differentiation in culture of mixed aggregates of dissociated tissue cells. Proc. Natl. Acad. Sci. 41:787–795.

    Article  PubMed  CAS  Google Scholar 

  • Varon, S., and Raiborn, C. W., Jr. 1969. Dissociation, fractionation, and culture of embryonic brain cells. Brain Res. 12:180–199.

    Article  PubMed  CAS  Google Scholar 

  • Werner, I., Peterson, G. R., and Shuster, L. 1971. Choline acetyltransferase and acetylcholinesterase in cultured brain cells from chick embryos. J. Neurochem. 18:141–151.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, S. H. Schrier, B. K., Farber, J. L., Thompson, E. J., Rosenberg, R. N., Blume, A. J., and Nirenberg, M. W. 1972. Markers for gene expression in cultured cells from the nervous system. J. Biol. Chem. 247:3159–3169.

    PubMed  CAS  Google Scholar 

  • Wolf, M. K. 1970. Anatomy of cultured mouse cerebellum. Organotypic migration of granule cells demonstrated by silver impregnation of normal and mutant cultures. J. Comp. Neurol. 140:281–298.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, D. J., Hoffer, B. J., Siggins, G. R., and Bloom, F. E. 1971. The ontogenetic development of synaptic junctions, synaptic activation and responsiveness to neurotransmitter substances in rat cerebellar purkinje cells. Brain Res. 34:73–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Seeds, N.W. (1973). Differentiation of Aggregating Brain Cell Cultures. In: Sato, G. (eds) Tissue Culture of the Nervous System. Current Topics in Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2904-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2904-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2906-0

  • Online ISBN: 978-1-4684-2904-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics