Skip to main content

Part of the book series: Monographs in Lipid Research ((MLR))

Abstract

The brain is an extremely complex organ with its many cell types, myelinated axons, complex anatomical structure, and the so-called blood-brain barrier. Lipids account for approximately 33% of the dry weight of the grey matter of adult human brain and 55% of the white matter dry weight (Bowen et al., 1974). The lipid composition and metabolism vary greatly with age and development; some compartments, such as the myelin lipids, have a slow turnover, while other compartments are very active. The brain contains two major cell types: the neurons, which are the functionally active cells, and the glial cells that are generally divided into two major types, the astrocytes, which appear to have a nutritive role, and the oligodendrocytes, which form the myelin. All these factors combine, making it difficult to obtain pure subcellular fractions and to interpret metabolic findings in studies of lipid metabolism in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abra, R. M., and Quinn, P. J. 1975. A novel pathway for phosphatidylcholine catabolism in rat brain homogenates. Biochim. Biophys. Acta 380:436–441.

    PubMed  CAS  Google Scholar 

  • Aeberhard, E., and Menkes, J. H. 1968. Biosynthesis of long chain fatty acids by subcellular particles of mature brain. J. Biol. Chem. 243:3834–3840.

    PubMed  CAS  Google Scholar 

  • Ansell, G. B. 1973. Phospholipids and the nervous system, pp. 377–422. In G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson (eds.). Form and Function of Phospholipids, Vol. 3. Elsevier Scientific Publishing Co., New York.

    Google Scholar 

  • Ansell, G. B., and Chojnacki, T. 1962. Incorporation of 1-O-phosphoryl-2-dimethylaminoethanol and phosphorylcholine into the phospholipids of brain and liver dispersions. Nature 196:545–547.

    PubMed  CAS  Google Scholar 

  • Ansell, G. B., and Metcalfe, R. F. 1968. The labelling of brain phosphatidylethanolamine and ethanolamine plasmalogen from cytidine diphosphate ethanolamine in vitro. Biochem. J. 109:29P.

    Google Scholar 

  • Ansell, G. B., and Metcalfe, R. F. 1971. Studies on the CDP-ethanolamine-1,2-diglyceride ethanolaminephosphotransferase of rat brain. J. Neurochem. 18:647–665.

    PubMed  CAS  Google Scholar 

  • Ansell, G. B., and Spanner, S. 1965. The magnesium-ion-dependent cleavage of the vinyl ether linkage of brain ethanolamine plasmalogen. Biochem. J. 94:252–258.

    PubMed  CAS  Google Scholar 

  • Ansell, G. B., and Spanner, S. 1966. The incorporation of [2-14C]ethanolamine and [Me-14C]choline into brain phospholipids in vivo and in vitro. Biochem. J. 100:50P.

    Google Scholar 

  • Ansell, G. B., and Spanner, S. 1967. The metabolism of labelled ethanolamine in the brain of the rat in vivo. J. Neurochem. 14:873–885.

    CAS  Google Scholar 

  • Ansell, G. B., and Spanner, S. 1972. The metabolism of phosphatidylcholine in brain tissue, pp. 151–159. In J. Ganguly and R. M. S. Smellie (eds.). Current Trends in the Biochemistry of Lipids. Academic Press, New York.

    Google Scholar 

  • Ansell, G. B., Chojnacki, T., and Metcalfe, R. F. 1965. The incorporation of phosphorylpropanolamine and phosphorylethanolamine into the phospholipids of brain dispersions. J. Neurochem. 12:649–656.

    PubMed  CAS  Google Scholar 

  • Arce, A., Maccioni, H. J., and Caputto, R. 1971. The biosynthesis of gangliosides. The incorporation of galactose, N-acetylgalactosamine and N-acetylneuraminic acid into endogenous acceptors of subcellular particles from rat brain in vitro. Biochem. J. 121:483–493.

    CAS  Google Scholar 

  • Aronson, S. M., and Volk, B. (eds.). 1967. Proceedings of the Third International Symposium on the Cerebral Sphingolipidoses, (1965): Inborn Disorders of Sphingolipid Metabolism. 513 pp. Pergamon Press, New York.

    Google Scholar 

  • Bach, G., Cohen, M. M., and Kohn, G. 1975. Abnormal ganglioside accumulation in cultured fibroblasts from patients with mucolipidosis IV. Biochem. Biophys. Res. Commun. 66:1483–1490.

    PubMed  CAS  Google Scholar 

  • Baker, R. R., and Thompson, W. 1973. Selective acylation of 1-acylglycerophosphorylinositol by rat brain microsomes. Comparison with 1-acylglycerophosphorylcholine.J. Biol. Chem. 248:7060–7065.

    PubMed  CAS  Google Scholar 

  • Barenholz, Y., Roitman, A., and Gatt, S. 1966. Enzymatic hydrolysis of sphingolipids II. Hydrolysis of sphingomyelin by an enzyme from rat brain. J. Biol. Chem. 241:3731–3737.

    Google Scholar 

  • Basu, S., Kaufman, B., and Roseman, S. 1968. Enzymatic synthesis of ceramide-glucose and ceramide-lactose by glycosyltransferases from embryonic chicken brain. J. Biol. Chem. 243:5802–5807.

    PubMed  CAS  Google Scholar 

  • Basu, S., Schultz, A. M., Basu, M., and Roseman, S. 1971. Enzymatic synthesis of galacto-cerebroside by a galactosyltransferase from embryonic chicken brain. J. Biol. Chem. 246:4272–4279.

    PubMed  CAS  Google Scholar 

  • Basu, S., Kaufman, B., and Roseman, S. 1973. Enzymatic synthesis of glucocerebroside by a glucosyltransferase from embryonic chicken brain. J. Biol. Chem. 248:1388–1394.

    PubMed  CAS  Google Scholar 

  • Baumann, W. J., Madson, T. H., Chang, N., Bandi, P. C., and Schmid, H. H. O. 1975. On the substrate specificity of enol ether formation in rat brain. Metabolism of O-alkyl ethanediol phosphorylethanolamine. Biochem. Biophys. Res. Commun. 66:717–724.

    PubMed  CAS  Google Scholar 

  • Bazán, N. G., Jr. 1971. Phospholipases A1 and A2 in brain subcellular fractions. Acta Physiol. Lat. Am. 21:101–106.

    PubMed  Google Scholar 

  • Bell, O. E., Jr., and White, H. B., Jr. 1968. Plasmalogen metabolism in developing rat brain: Aldehydes as a direct precursor in the formation of the vinyl ether linkage. Biochim. Biophys. Acta 164:441–444.

    PubMed  CAS  Google Scholar 

  • Bell, O. E., Jr., Blank, M. L., and Snyder, F. 1971. The incorporation of 18O and 14C from long-chain alcohols into the alkyl and alk-1-enyl ethers of phospholipids of developing rat brain. Biochim. Biophys. Acta 231:579–583.

    PubMed  CAS  Google Scholar 

  • Bickerstaffe, R., and Mead, J. F. 1967. Metabolism of palmitaldehyde-1-14C in the rat brain. Biochemistry 6:655–662.

    PubMed  CAS  Google Scholar 

  • Bickerstaffe, R., and Mead, J. F. 1968. Metabolism of chimyl alcohol and phosphatidyl ethanolamine in the rat brain. Lipids 3:317–320.

    PubMed  CAS  Google Scholar 

  • Binaglia, L., Goracci, G., Porcellati, G., Roberti, R., and Woelk, H. 1973. The synthesis of choline and ethanolamine phosphoglycerides in neuronal and glial cells of rabbit in vitro. J. Neurochem. 21:1067–1082.

    PubMed  CAS  Google Scholar 

  • Binaglia, L., Roberti, R., Goracci, G., Francescangeli, E., and Porcellati, G. 1974. Enzymic synthesis of ethanolamine plasmalogens through ethanolaminephosphotransferase activity in neurons and glial cells of rabbit in vitro. Lipids 9:738–747.

    PubMed  CAS  Google Scholar 

  • Blank, M. L., Wykle, R. L., and Snyder, F. 1972. The biosynthesis of ethanolamine plasmalogens by a postmitochondrial fraction from rat brain. Biochem. Biophys. Res. Commun. 47:1203–1208.

    PubMed  CAS  Google Scholar 

  • Bleasdale, J. E., and Hawthorne, J. N. 1975. The effect of electrical stimulation on the turnover of phosphatidic acid in synaptosomes from guinea-pig brain. J. Neurochem. 24:373–379.

    PubMed  CAS  Google Scholar 

  • Boone, S. C., and Wakil, S. J. 1970. In vitro synthesis of lignoceric and nervonic acids in mammalian liver and brain. Biochemistry 9:1470–1479.

    PubMed  CAS  Google Scholar 

  • Bowen, D. M., and Radin, N. S. 1968. Hydroxy fatty acid metabolism in brain. Adv. Lipid Res. 6:255–272.

    PubMed  CAS  Google Scholar 

  • Bowen, D. M., Davison, A. N., and Ramsey, R. B. 1974. The dynamic role of lipids in the nervous system. Int. Rev. Sci. (Biochem. Ser. 1) 4:141–179.

    Google Scholar 

  • Brady, R. O. 1962. Studies on the total enzymatic synthesis of cerebrosides. J. Biol. Chem. 237:PC2416–PC2417.

    CAS  Google Scholar 

  • Brady, R. O. 1972. Disorders of lipid metabolism, pp. 113–127. In J. Ganguly and R. M. S. Smellie (eds.). Current Trends in the Biochemistry of Lipids. Academic Press, New York.

    Google Scholar 

  • Brady, R. O. 1974. The chemistry and control of hereditary lipid diseases. Chem. Phys. Lipids 13:271–282.

    PubMed  CAS  Google Scholar 

  • Brady, R. O., Bradley, R. M., Young, O. M., and Kaller, H. 1965. An alternative pathway for the enzymatic synthesis of sphingomyelin. J. Biol. Chem. 240:PC3693–PC3694.

    Google Scholar 

  • Brady, R. O., Kanfer, J. N., Mock, M. B., and Fredrickson, D. J. 1966. The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann-Pick disease. Proc. Natl. Acad. Sci. USA 55:366–369.

    PubMed  CAS  Google Scholar 

  • Brady, R. O., Gal, A. E., Bradley, R. M., and Mårtensson, E. 1967. The metabolism of ceramide trihexosides. I. Purification and properties of an enzyme that cleaves the terminal galactose molecule of galactosylgalactosylglucosylceramide.J. Biol. Chem. 242:1021–1026.

    PubMed  CAS  Google Scholar 

  • Braun, P. E., Moreli, P., and Radin, N. S. 1970. Synthesis of C18 - and C20-dihydrosphingosines, ketodihydrosphingosines, and ceramides by microsomal preparations from mouse brain. J. Biol. Chem. 245:335–341.

    PubMed  CAS  Google Scholar 

  • Brockerhoff, H., and Jensen, R. G. 1974. Lipolytic Enzymes. Academic Press, New York. 330 pp.

    Google Scholar 

  • Brophy, P. J., and Vance, D. E. 1975. Elongation of fatty acids by microsomal fractions from the brain of the developing rat. Blochem. J. 152:495–501.

    CAS  Google Scholar 

  • Cantrill, R. C., and Carey, E. M. 1975. Changes in the activities of de novo fatty acid synthesis and palmitoyl-CoA synthetase in relation to myelination in rabbit brain. Biochim. Biophys. Acta 380:165–175.

    PubMed  CAS  Google Scholar 

  • Caputto, R., Maccioni, H. J., and Arce, A. 1974. Biosynthesis of brain gangliosides. Mol. Cell. Blochem. 4:97–106.

    CAS  Google Scholar 

  • Carey, E. M. 1975. A comparative study of the metabolism of de novo synthesized fatty acids from acetate and glucose, and exogenous fatty acids, in slices of rabbit cerebral cortex during development.J. Neurochem. 24:237–244.

    PubMed  CAS  Google Scholar 

  • Carey, E. M., and Parkin, L. 1975. Fatty acid metabolism in the microsomal fraction of developing rabbit brain. Biochim. Biophys. Acta 380:176–189.

    PubMed  CAS  Google Scholar 

  • Carter, T. P., and Kanfer, J. 1974. Observations on the biosynthesis of rat brain sphingolipids in vivo: Formation of fatty acid amides. Chem. Phys. Lipids 13:340–351.

    PubMed  CAS  Google Scholar 

  • Chae, K., Piantadosi, C., and Snyder, F. 1973. An alternate enzymie route for the synthesis of the alkyl analog of phosphatidic acid involving alkylglycerol. Blochem. Biophys. Res. Commun. 51:119–124.

    CAS  Google Scholar 

  • Chang, M., and Ballou, C. E. 1967. Specificity of ox brain triphosphoinositide Phosphomonoesterase. Blochem. Biophys. Res. Commun. 26:199–205.

    CAS  Google Scholar 

  • Chang, N., and Schmid, H. H. O. 1975. Structural specificity in ether lipid biosynthesis. Formation of hydroxyalkyl and oxoalkyl glycerophosphatides.J. Biol. Chem. 250:4877–4882.

    CAS  Google Scholar 

  • Chesterton, C. J. 1968. Distribution of cholesterol precursors and other lipids among rat liver intracellular structures. Evidence for the endoplasmic reticulum as the site of cholesterol and cholesterol ester synthesis.J. Biol. Chem. 243:1147–1151.

    PubMed  CAS  Google Scholar 

  • Chien, J-I., Williams, T., and Basu, S. 1973. Biosynthesis of a globoside-type glycosphingolipid by a β-N-acetylgalactosaminyltransferase from embryonic chicken brain.J. Biol. Chem. 248:1778–1785.

    PubMed  CAS  Google Scholar 

  • Clarenburg, R., Chaikoff, I. L., and Morris, M. D. 1963. Incorporation of injected cholesterol into the myelinating brain of 17-day-old rabbit. J. Neurochem. 10:135–143.

    PubMed  CAS  Google Scholar 

  • Coleman, P. L., Fishman, P. H., Brady, R. O., and Todaro, G. J. 1975. Altered ganglioside biosynthesis in mouse cell cultures following transformation with chemical carcinogens and X-irradiation. J. Biol. Chem. 250:55–60.

    PubMed  CAS  Google Scholar 

  • Colodzin, M., and Kennedy, E. P. 1965. Biosynthesis of diphosphoinositide in brain. J. Biol. Chem. 240:3771–3780.

    PubMed  CAS  Google Scholar 

  • Cook, H. W., and Spence, M. W. 1973a. Formation of monoenoic fatty acids by desaturation in rat brain homogenate. Some properties of the enzyme system of 10-day-old brain. J. Biol. Chem. 248:1786–1793.

    PubMed  CAS  Google Scholar 

  • Cook, H. W., and Spence, M. W. 1973b. Formation of monoenoic fatty acids by desaturation in rat brain homogenate. Effects of age, fasting, and refeeding, and comparison with liver enzyme.J. Biol. Chem. 248:1793–1796.

    PubMed  CAS  Google Scholar 

  • Cook, H. W., and Spence, M. W. 1974. Biosynthesis of fatty acids in vitro by homogenate of developing rat brain: Desaturation and chain-elongation. Biochim. Biophys. Acta 369:129–141.

    PubMed  CAS  Google Scholar 

  • Cooper, M. F., and Webster, G. R. 1970. The differentiation of phospholipase A1 and A2 in rat and human nervous tissues.J. Neurochem. 17:1543–1554.

    PubMed  CAS  Google Scholar 

  • Cooper, M. F., and Webster, G. R. 1972. On the phospholipase A2 activity of human cerebral cortex. J. Neurochem. 19:333–340.

    PubMed  CAS  Google Scholar 

  • Costantino-Ceccarini, E., and Moreli, P. 1972. Biosynthesis of brain sphingolipids and myelin accumulation in the mouse. Lipids 7:656–659.

    PubMed  CAS  Google Scholar 

  • Curtino, J. A., and Caputto, R. 1972. Enzymatic synthesis of glucosylsphingosine by rat brain. Lipids 7:525–527.

    PubMed  CAS  Google Scholar 

  • Curtino, J. A., and Caputto, R. 1974. Enzymic synthesis of cerebroside from glycosylsphingo-sine and stearoyl-CoA by an embryonic chicken brain preparation. Biochem. Biophys. Res. Commun. 56:142–147.

    PubMed  CAS  Google Scholar 

  • D’Adamo, A. F., Jr. 1970. Fatty acids. Handb. Neurochem. 3:525–546.

    Google Scholar 

  • D’Amato, R. A., Horrocks, L. A., and Richardson, K. E. 1975. Kinetic properties of plasmalogenase from bovine brain.J. Neurochem. 24:1251–1255.

    PubMed  Google Scholar 

  • Davison, A. N. 1965. Brain sterol metabolism. Adv. Lipid Res. 3:171–196.

    PubMed  CAS  Google Scholar 

  • Davison, A. N. 1970a. Lipid metabolism in nervous tissue. Compr. Biochem. 18:293–328.

    CAS  Google Scholar 

  • Davison, A. N. 1970b. Cholesterol metabolism. Handb. Neurochem. 3:547–560.

    Google Scholar 

  • Davison, A. N. 1972. Metabolism of myelin lipids in the developing brain, pp. 129–139. In J. Ganguly and R. M. S. Smellie (eds.). Current Trends in the Biochemistry of Lipids. Academic Press, New York.

    Google Scholar 

  • Davison, A. N., Dobbing, J., Morgan, R. S., and Payling Wright, G. 1959. Metabolism of myelin: The persistence of [4-14C]cholesterol in the mammalian central nervous system. Lancet 1:658–660.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., and Thompson, W. 1964. The triphosphoinositide Phosphomonoesterase of brain tissue. Biochem. J. 91:244–250.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., Freinkel, N., Jungalwala, F. B., and Clarke, N. 1971. The enzymic formation of myoinositol 1:2-cyclic phosphate from phosphatidylinositol. Biochem. J. 122:605–607.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., Jungalwala, F. B., Miller, E., and McMurray, W. C. 1972. Synthesis and exchange of phospholipids within brain and liver cells, pp. 365–376. In J. Ganguly and R. M. S. Smellie (eds.). Current Trends in the Biochemistry of Lipids, Academic Press, New York.

    Google Scholar 

  • Dawson, G., Stoolmiller, A. C., and Radin, N. S. 1974. Inhibition of β-glucosidase by N-(n-hexyl)-O-glucosylsphingosine in cell strains of neurological origin. J. Biol. Chem. 249:4638–4646.

    PubMed  CAS  Google Scholar 

  • Debuch, H., Müller, J., and Fürniss, H. 1971. Über die Bildung der Plasmalogene zur Zeit der Myelinisierung bei der Ratte, IV. Einbau von 14C-markiertem O-(1-Alkyl-sn-glycerin-3-phosphoryl)äthanolamin—ein direkter Vorläufer der Plasmalogene. Hoppe Seyler’s Z. Physiol. Chem. 352:984–990.

    PubMed  CAS  Google Scholar 

  • De Medio, G. E., Gaiti, A., Goracci, G., and Porcellati, G. 1973. The base-exchange pathway for phospholipid synthesis in nervous membranes. Biochem. Soc. Trans. 1:348–352.

    Google Scholar 

  • Den, H., Kaufman, B., McGuire, E. J., and Roseman, S. 1975. The sialic acids. XVIII. Subcellular distribution of seven glycosyltransferases in embryonic chicken brain. J. Biol. Chem. 250:739–746.

    PubMed  CAS  Google Scholar 

  • Dhopeshwarkar, G. A. 1975a. Metabolism of linolenic acid in developing brain: I. Incorporation of radioactivity from 1-14C linolenic acid into brain fatty acids. Lipids 10:238–241.

    CAS  Google Scholar 

  • Dhopeshwarkar, G. A. 1975b. Metabolism of 1-14C linolenic acid in developing brain: II. Incorporation of radioactivity from 1-14C linolenate into brain lipids. Lipids 10:242–247.

    CAS  Google Scholar 

  • Dhopeshwarkar, G. A., and Mead, J. F. 1973. Uptake and transport of fatty acids into the brain and the role of the blood-brain barrier system. Adv. Lipid Res. 11:109–142.

    PubMed  CAS  Google Scholar 

  • Dhopeshwarkar, G. A., and Subramanian, C. 1973. Metabolism of 1,2-(1-14C) dipalmitoyl phosphatidylcholine in the developing brain. Lipids 8:753–758.

    PubMed  CAS  Google Scholar 

  • Dhopeshwarkar, G. A., Subramanian, C., and Mead, J. F. 1971. Rapid uptake of [1-14C] acetate by the adult rat brain 15 seconds after carotid injection. Biochim. Biophys. Acta 248:41–47.

    PubMed  CAS  Google Scholar 

  • Dils, R. R., and Hübscher, G. 1961. Metabolism of phospholipids. III. The effect of calcium ions on the incorporation of labelled choline into rat-liver microsomes. Biochim. Biophys. Acta 46:505–513.

    PubMed  CAS  Google Scholar 

  • Diringer, H., and Koch, M. A. 1973. Biosynthesis of sphingomyelin. Transfer of phosphorylcholine from phosphatidylcholine to erythro-ceramide in a cell-free system. Hoppe-Seyler’s Z. Physiol. Chem. 354:1661–1665.

    PubMed  CAS  Google Scholar 

  • Diringer, H., Marggraf, W. D., Koch, M. A., and Anderer, F. A. 1972. Evidence for a new biosynthetic pathway of sphingomyelin in SV 40 transformed mouse cells. Biochem. Biophys. Res. Commun. 47:1345–1352.

    PubMed  CAS  Google Scholar 

  • Dobbing, J. 1963. The entry of cholesterol into developing rat brain. J. Neurochem. 10:739–742.

    CAS  Google Scholar 

  • Edmond, J. 1974. Ketone bodies as precursors of sterols and fatty acids in the developing rat. J. Biol. Chem. 249:72–80.

    PubMed  CAS  Google Scholar 

  • Edmond, J., and Popják, G. 1974. Transfer of carbon atoms from mevalonate to n-fatty acids.J. Biol. Chem. 249:66–71.

    PubMed  CAS  Google Scholar 

  • Eichberg, J., and Hauser, G. 1973. The subcellular distribution of polyphosphoinositides in myelinated and unmyelinated rat brain. Biochim. Biophys. Acta 326:210–223.

    PubMed  CAS  Google Scholar 

  • Eichberg, J., Hauser, G., and Karnovsky, M. L. 1969. Lipids of nervous tissue, pp. 185–287. In G. H. Bourne (ed.). The Structure and Function of Nervous Tissue, Vol. 3. Academic Press, New York.

    Google Scholar 

  • El-Bassiouni, E. A., Piantadosi, C., and Snyder, F. 1975. Metabolism of alkyldihydroxyacetone phosphate in rat brain. Biochim. Biophys. Acta 388:5–11.

    PubMed  CAS  Google Scholar 

  • Erwin, V. G., and Deitrich, R. A. 1966. Brain aldehyde dehydrogenase. Localization, purification, and properties. J. Biol. Chem. 241:3533–3539.

    PubMed  CAS  Google Scholar 

  • Erwin, V. G., Heston, W. D. W., and Tabakoff, B. 1972. Purification and characterization of an NADH-linked aldehyde reductase from bovine brain. J. Neurochem. 19:2269–2278.

    PubMed  CAS  Google Scholar 

  • Farrell, D. F., and McKhann, G. M. 1971. Characterization of cerebroside sulfotransferase from rat brain.J. Biol. Chem. 246:4694–4702.

    PubMed  CAS  Google Scholar 

  • Fishman, P. H. 1974. Normal and abnormal biosynthesis of gangliosides. Chem. Phys. Lipids 13:305–326.

    PubMed  CAS  Google Scholar 

  • Fishman, P. H., Max, S. R., Tallman, J. F. Brady, R. O., Maclaren, N. K., and Cornblath, M. 1975. Deficient ganglioside biosynthesis: A novel human sphingolipidosis. Science 187:68–70.

    PubMed  CAS  Google Scholar 

  • Friedel, R. O., Brown, J. D., and Durell, J. 1967. Monophosphatidyl inositol inositolphospho-hydrolase in guinea-pig brain. Biochim. Biophys. Acta 144:684–686.

    PubMed  CAS  Google Scholar 

  • Fujino, Y., and Negishi, T. 1968. Investigation of the enzymatic synthesis of sphingomyelin. Biochim. Biophys. Acta 152:428–430.

    PubMed  CAS  Google Scholar 

  • Fujino, Y., Nakano, M., Negishi, T., and Ito, S. 1968a. Substrate specificity for ceramide in the enzymatic formation of sphingomyelin.J. Biol. Chem. 243:4650–4651.

    PubMed  CAS  Google Scholar 

  • Fujino, Y., Negishi, T., and Ito, S. 1968b. Enzymie synthesis of sphingosylphosphorylcholine. Blochem. J. 109:310–311.

    CAS  Google Scholar 

  • Fulco, A. J. 1974. Metabolic alterations of fatty acids. Annu. Rev. Blochem. 43:215–241.

    CAS  Google Scholar 

  • Fürniss, H., Strosznajder, J., and Debuch, H. 1973. Über die Bildung der Hasmalogene zur Zeit der Myelinisierung bei der Ratte, VI. Einbau von 14C,32P-markiertem O-(1-Alkyl-sn-glycerin-3-phosphoryl)äthanolamin zu verschiedenen Zeiten. Hoppe-Seyler’s Z. Physiol. Chem. 354:697–704.

    PubMed  Google Scholar 

  • Gaiti, A., Goracci, G., De Medio, G. E., and Porcellati, G. 1972. Enzymic synthesis of plasmalogen and O-alkyl glycerolipid by base-exchange reaction in the rat brain. FEBS Lett. 27:116–120.

    PubMed  CAS  Google Scholar 

  • Gaiti, A., De Medio, G. E., Brunetti, M., Amaducci, L., and Porcellati, G. 1974. Properties and function of the calcium-dependent incorporation of choline, ethanolamine and serine into the phospholipids of isolated rat brain microsomes. J. Neurochem. 23:1153–1159.

    PubMed  CAS  Google Scholar 

  • Gaiti, A., Brunetti, M., and Porcellati, G. 1975. The relationships between the phospholipid pool and the base-exchange reaction in the Ca2+-stimulated incorporation of ethanolamine into brain microsomal phospholipids. FEBS Lett. 49:361–364.

    PubMed  CAS  Google Scholar 

  • Gallai-Hatchard, J., Magee, W. L., Thompson, R. H. S., and Webster, G. R. 1962. The formation of lysophosphatides from di-acylphosphatides by brain preparations. J. Neurochem. 9:545–554.

    PubMed  CAS  Google Scholar 

  • Galli, C., White, H. B., Jr., and Paoletti, R. 1970. Brain lipid modifications induced by essential fatty acid deficiency in growing male and female rats. J. Neurochem. 17:347–355.

    PubMed  CAS  Google Scholar 

  • Garattini, S., Paoletti, P., and Paoletti, R. 1959a. The incorporation of 2-14C mevalonic acid into cholesterol and fatty acids of brain and liver In vitro. Arch. Blochem. Blophys. 80:210–211.

    CAS  Google Scholar 

  • Garattini, S., Paoletti, P., and Paoletti, R. 1959b. Lipid biosynthesis in vivo from acetate-1-14C and mevalonic-2-14C acid. Arch. Blochem. Blophys. 84:253–255.

    CAS  Google Scholar 

  • Gatt, S. 1968. Purification and properties of phospholipase A1 from rat and calf brain. Blochim. Blophys. Acta. 159:304–316.

    CAS  Google Scholar 

  • Gatt, S., and Barenholz, Y. 1973. Enzymes of complex lipid metabolism. Annu. Rev. Biochem. 42:61–90.

    PubMed  CAS  Google Scholar 

  • Gatt, S., and Rapport, M. M. 1966. Isolation of β-galactosidase and β -glucosidase from brain. Blochim. Blophys. Acta 113:567–576.

    CAS  Google Scholar 

  • Gatt, S., Barenholz, Y., and Roitman, A. 1966. Isolation of rat brain lecithinase-A, specific for the α’-position of lecithin. Blochem. Blophys. Res. Commun. 24:169–178.

    CAS  Google Scholar 

  • Gaylor, J. L. 1972. Microsomal enzymes of sterol biosynthesis. Adv. Lipid Res. 10:89–141.

    PubMed  CAS  Google Scholar 

  • Gaylor, J. L., 1974. Enzymes of sterol biosynthesis. Int. Rev. Sci. (Biochem Ser. I) 4:1–37.

    Google Scholar 

  • Goldberg, I., Shechter, I., and Bloch, K. 1973. Fatty acyl-coenzyme A elongation in brain of normal and quaking mice. Science 182:497–499.

    PubMed  CAS  Google Scholar 

  • Goracci, G., Blomstrand, C., Arienti, G., Hamberger, A., and Porcellati, G. 1973. Base-exchange enzymie system for the synthesis of phospholipids in neuronal and glial cells and their subfractions: A possible marker for neuronal membranes. J. Neurochem. 20:1167–1180.

    PubMed  CAS  Google Scholar 

  • Hajra, A. K. 1969. Biosynthesis of alkyl-ether containing lipid from dihydroxyacetone phosphate. Biochem. Blophys. Res. Commun. 37:486–492.

    CAS  Google Scholar 

  • Hajra, A. K. 1970. Acyl dihydroxyacetone phosphate: Precursor of alkyl ethers. Blochem. Blophys. Res. Commun. 39:1037–1044.

    CAS  Google Scholar 

  • Hajra, A. K., and Radin, N. S. 1963. In vivo conversion of labeled fatty acids to the sphingolipid fatty acids in rat brain.J. Lipid Res. 4:448–453.

    PubMed  CAS  Google Scholar 

  • Hammarström, S. 1971. On the biosynthesis of cerebrosides containing non-hydroxy acids. Blochem. Blophys. Res. Commun. 45:459–467.

    Google Scholar 

  • Hammarström, S. 1972. On the biosynthesis of cerebrosides: Nonenzymatic N-acylation of psychosine by stearoyl coenzyme A. FEB S Lett. 21:259–263.

    Google Scholar 

  • Hauser, G., and Eichberg, J. 1973. Improved conditions for the preservation and extraction of polyphosphoinositides. Biochim. Biophys. Acta 326:201–209.

    PubMed  CAS  Google Scholar 

  • Hawkins, R. A., Williamson, D. H., and Krebs, H. A. 1971. Ketone-body utilization by adult and suckling rat brain in vivo. Biochem. J. 122:13–18.

    CAS  Google Scholar 

  • Hawthorne, J. N. 1972. Inositol lipid metabolism and the cell membrane, pp. 383–393. In J. Ganguly and R. M. S. Smellie (eds.). Current Trends in the Biochemistry of Lipids. Academic Press, New York.

    Google Scholar 

  • Hawthorne, J. N. 1973. Phospholipid metabolism and transport of materials across the cell membrane, pp. 423–440. In G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson (eds.). Form and Function of Phospholipids, Vol. 3. Elsevier Scientific Publishing Co., New York.

    Google Scholar 

  • Hawthorne, J. N., and Kai, M. 1970. Metabolism of phosphoinositides. Handb. Neurochem. 3:491–508.

    Google Scholar 

  • Hawthorne, J. N., and Kemp, P. 1964. The brain phosphoinositides. Adv. Lipid Res. 2:127–166.

    PubMed  CAS  Google Scholar 

  • Hill, E. E., and Lands, W. E. M. 1970. Phospholipid metabolism, pp. 185–277. In S. J. Wakil (ed.). Lipid Metabolism. Academic Press, New York.

    Google Scholar 

  • Ho, M. W. 1974. Glucocerebrosidase: A model of enzyme action in membrane, pp. 239–246. In J. M. Tager, G. J. M. Hooghwinkel, and W. Th. Daems (eds.). Enzyme Therapy in Lysosomal Storage Diseases. North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  • Ho, M. W. 1975. Specificity of low molecular weight glycoprotein effector of lipid glycosidase. FEBS Lett. 53:243–247.

    PubMed  CAS  Google Scholar 

  • Hokin, L. E. 1969. Phospholipid metabolism and functional activity of nerve cells, pp. 161 – 184. In G. H. Bourne (ed.). The Structure and Function of Nervous Tissue, Vol. III, Academic Press, New York.

    Google Scholar 

  • Hokin, L. E., and Hokin, M. R. 1958. Acetylcholine and the exchange of inositol and phosphate in brain phosphoinositide. J. Biol. Chem. 233:818–821.

    PubMed  CAS  Google Scholar 

  • Holub, B. J., Kuksis, A., and Thompson, W. 1970. Molecular species of mono-, di-, and triphosphoinositides of bovine brain. J. Lipid Res. 11:558–564.

    PubMed  CAS  Google Scholar 

  • Hooghwinkel, G. J. M. 1974. Classification of sphingolipidoses and mucopolysaccharidoses, pp. 13–24. In J. M. Tager, G. J. M. Hooghwinkel, and W. Th. Daems (eds.). Enzyme Therapy in Lysosomal Storage Diseases. North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  • Horrocks, L. A. 1972. Content, composition, and metabolism of mammalian and avian lipids that contain ether groups, pp. 177–272. In F. Snyder (ed.). Ether Lipids. Chemistry and Biology. Academic Press, New York.

    Google Scholar 

  • Horrocks, L. A., and Ansell, G. B. 1967. The incorporation of ethanolamine into ether-containing lipids in rat brain. Lipids 2:329–333.

    PubMed  CAS  Google Scholar 

  • Horrocks, L. A., and Radominska-Pyrek, A. 1972. Enzymic synthesis of ethanolamine plasmalogens from 1-alkyl-2-acyl-sn-glycero-3-(32P)-phosphorylethanolamines by microsomes from rat brain. FEBS Lett. 22:190–192.

    PubMed  CAS  Google Scholar 

  • Hoshi, M., and Kishimoto, Y. 1973. Synthesis of cerebronic acid from lignoceric acid by rat brain preparation. Some properties and distribution of the α-hydroxylation system.J. Biol. Chem. 248:4123–4130.

    PubMed  CAS  Google Scholar 

  • Hutton, D., and Steinberg, D. 1973. Identification of propionate as a degradation product of phytanic acid oxidation in rat and human tissues.J. Biol. Chem. 248:6871–6875.

    PubMed  CAS  Google Scholar 

  • Illingworth, D. R., and Portman, O. W. 1972. The uptake and metabolism of plasma lysophos-phatidylcholine in vivo by the brain of squirrel monkeys. Biochem. J. 130:557–567.

    PubMed  CAS  Google Scholar 

  • Illingworth, D. R., and Portman, O. W. 1973. Formation of choline from phospholipid precursors: A comparison of the enzymes involved in phospholipid catabolism in the brain of the rhesus monkey. Physiol. Chem. Phys. 5:365–373.

    PubMed  CAS  Google Scholar 

  • IUPAC-IUB Commission on Biochemical Nomenclature (CBN). 1967. The nomenclature of lipids. Eur. J. Biochem. 2:127–131.

    Google Scholar 

  • Jatzkewitz, H., and Stinshoff, K. 1973. An activator of cerebroside sulphatase in human normal liver and in cases of congenital metachromatic leukodystrophy. FEBS Lett. 32:129–131.

    PubMed  CAS  Google Scholar 

  • Johnson, W., and Brady, R. O. 1972. Ceramidetrihexosidase from human placenta. Methods Enzymol. 28:849–856.

    Google Scholar 

  • Johnson, R. C., and Shah, S. N. 1974. Microsomal synthesis of cholesterol from squalene, lanosterol, and desmosterol. Evidence for the presence of two noncatalytic activator proteins in the 105,000g supernatant fraction from brain, heart, and kidney. Arch. Biochem. Biophys. 164:502–510.

    PubMed  CAS  Google Scholar 

  • Jungalwala, F. B. 1974. Synthesis and turnover of cerebroside sulfate of myelin in adult and developing rat brain. J. Lipid Res. 15:114–123.

    PubMed  CAS  Google Scholar 

  • Jungalwala, F. B., Freinkel, N., and Dawson, R. M. C. 1971. The metabolism of phosphati-dylinositol in the thyroid gland of the pig. Biochem. J. 123:19–33.

    PubMed  CAS  Google Scholar 

  • Kabara, J. J. 1965. Brain cholesterol. XI. A review of biosynthesis in adult mice.J. Am. Oil Chem. Soc. 42:1003–1008.

    PubMed  CAS  Google Scholar 

  • Kabara, J. J. 1967. Brain cholesterol: The effect of chemical and physical agents. Adv. Lipid Res. 5:279–327.

    PubMed  CAS  Google Scholar 

  • Kai, M., White, G. L., and Hawthorne, J. N. 1966. The phosphatidylinositol kinase of rat brain. Biochem. J. 101:328–337.

    PubMed  CAS  Google Scholar 

  • Kai, M., Salway, J. G., and Hawthorne, J. N. 1968. The diphosphoinositide kinase of rat brain. Biochem. J. 106:791–801.

    PubMed  CAS  Google Scholar 

  • Kandutsch, A. A., and Saucier, S. E. 1972. Sterol and fatty acid synthesis in developing brains of three myelin-deficient mouse mutants. Biochim. Biophys. Acta 260:26–34.

    PubMed  CAS  Google Scholar 

  • Kanfer, J. N. 1972. Base exchange reactions of the phospholipids in rat brain particles.J. Lipid Res. 13:468–476.

    PubMed  CAS  Google Scholar 

  • Kanfer, J. N., and Bates, S. 1970. Sphingolipid metabolism II. The biosynthesis of 3-keto-dihydrosphingosine by a partially-purified enzyme from rat brain. Lipids 5:718–720.

    PubMed  CAS  Google Scholar 

  • Kanfer, J. N., and Spielvogel, C. H. 1975. Phospholipase C catalyzed formation of sphingomyelin-14C from lecithin and N-(14C)-oleoylsphingosine. Lipids 10:391–394.

    PubMed  CAS  Google Scholar 

  • Kanfer, J. N., Legier, G., Sullivan, J., Raghavan, S. S., and Mumford, R. A. 1975. The Gaucher mouse. Biochem. Biophys. Res. Commun. 67:85–90.

    PubMed  CAS  Google Scholar 

  • Karlsson, K.-A. 1970a. On the chemistry and occurrence of sphingolipid long-chain bases. Chem. Phys. Lipids 5:6–43.

    PubMed  CAS  Google Scholar 

  • Karlsson, K.-A. 1970b. Sphingolipid long chain bases. Lipids 5:878–891.

    PubMed  CAS  Google Scholar 

  • Kelley, R. E., Jr., and Joel, C.D. 1973. The activity of acetyl-coenzyme A carboxylase in rat brain. Biochem. Soc. Trans. 1:467–469.

    CAS  Google Scholar 

  • Kemp, P., Hübscher, G., and Hawthorne, J. N. 1961. Enzymic hydrolysis of inositol-containing phospholipids. Biochem. J. 79:193–200.

    PubMed  CAS  Google Scholar 

  • Keough, K. M. W., MacDonald, G., and Thompson, W. 1972. A possible relation between phosphoinositides and the diglyceride pool in rat brain. Biochim. Biophys. Acta 270:337–347.

    PubMed  CAS  Google Scholar 

  • Kiyasu, J. Y., and Kennedy, E. P. 1960. The enzymatic synthesis of plasmalogens. J. Biol. Chem. 235:2590–2594.

    PubMed  CAS  Google Scholar 

  • Klenk, E. 1969. On cerebrosides and gangliosides. Prog. Chem. Fats Other Lipids 10:409–431.

    CAS  Google Scholar 

  • Koeppen, A. H., Barron, K. D., and Mitzen, E. J. 1973. Fatty acid chain elongation in rat brain synaptosomes. Biochemistry 12:276–281.

    PubMed  CAS  Google Scholar 

  • Kopaczyk, K. C., and Radin, N. S. 1965. In vivo conversions of cerebroside and ceramide in rat brain.J. Lipid Res. 6:140–145.

    PubMed  CAS  Google Scholar 

  • Korey, S. R., and Orchen, M. 1959. Plasmalogens of the nervous system. I. Deposition in developing rat brain and incorporation of C14 isotope from acetate and palmitate into the α,β-unsaturated ether chain. Arch. Biochem. Biophys. 83:381–389.

    PubMed  CAS  Google Scholar 

  • Kurooka, S., Hosoki, K., and Yoshimura, Y. 1972. Some properties of long chain fatty acyl-coenzyme A thioesterase in rat organs.J. Biochem. 71:625–634.

    PubMed  CAS  Google Scholar 

  • Lapetina, E. G., and Hawthorne, J. N. 1971. The diglyceride kinase of rat cerebral cortex. Biochem. J. 122:171–179.

    PubMed  CAS  Google Scholar 

  • Lapetina, E. G., and Michell, R. H. 1973. A membrane-bound activity catalysing phosphati-dylinositol breakdown to 1,2-diacylglycerol, d-myoinositol 1:2-cyclic phosphate and D- myoinositol 1-phosphate. Biochem. J. 131:433–442.

    PubMed  CAS  Google Scholar 

  • LeBaron, F. N. 1970. Metabolism of myelin constituents. Handb. Neurochem. 3:561–573.

    Google Scholar 

  • Leibovitz, Z., and Gatt, S. 1968. Isolation of lysophospholipase, free of phospholipase activity, from rat brain. Biochim. Biophys. Acta 164:439–441.

    PubMed  CAS  Google Scholar 

  • Leibovitz-BenGershon, Z., Kobiler, I., and Gatt, S. 1972. Lysophospholipases of rat brain. J. Biol. Chem. 247:6840–6847.

    PubMed  CAS  Google Scholar 

  • Li, S.-C., and Li, Y.-T. 1974. Isolation and characterization of a heat-stable glycoprotein activating the hydrolysis of sphingoglycolipids. Fed. Proc. 33:1299. Abstr. 428.

    Google Scholar 

  • Li, Y.-T., Mazzotta, M. Y., Wan, C. -C., Orth, R., and Li, S.-C. 1973. Hydrolysis of Tay-Sachs ganglioside by β-hexosaminidase A of human liver and urine. J. Biol. Chem. 248:7512–7515.

    PubMed  CAS  Google Scholar 

  • Maccioni, H. J., Arce, A., and Caputto, R. 1971. The biosynthesis of gangliosides. Labelling of rat brain gangliosides in vivo. Biochem. J. 125:1131–1137.

    CAS  Google Scholar 

  • Macdonald, R. C., and Mead, J. F. 1968. The alpha -oxidation system of brain microsomes. Cofactors for alpha -hydroxy acid decarboxylation. Lipids 3:275–283.

    PubMed  CAS  Google Scholar 

  • Mandel, P., Nussbaum, J. L., Neskovic, N. M., Sarlieve, L. L., and Kurihara, T. 1972. Regulation of myelinogenesis. Adv. Enzyme Regul. 10:101–118.

    PubMed  CAS  Google Scholar 

  • Mapes, C. A., Suelter, C. H., and Sweeley, C. C. 1973. Isolation and characterization of ceramidetrihexosidases (form A) from human plasma.J. Biol. Chem. 248:2471–2479.

    PubMed  CAS  Google Scholar 

  • Marggraf, W-D., and Anderer, F. A. 1974. Alternative pathways in the biosynthesis of sphingomyelin and the role of phosphatidylcholine, CDPcholine and phosphorylcholine as precursors. Hoppe-Seyler’s Z. Physiol. Chem. 355:803–810.

    PubMed  CAS  Google Scholar 

  • Mårtensson, E. 1969. Glycosphingolipids of animal tissue. Prog. Chem. Fats Other Lipids 10:367–407.

    Google Scholar 

  • Max, S. R., Maclaren, N. K., Brady, R. O., Bradley, R. M., Rennels, M. B., Tanaka, J., Garcia, J. H., and Cornblath, M. 1974. GM3 (hematoside) sphingolipodystrophy. New. Eng. J. Med. 291:929–931.

    PubMed  CAS  Google Scholar 

  • McMurray, W. C. 1964a. Metabolism of phosphatides in developing rat brain—I. Incorporation of radioactive precursors.J. Neurochem. 11:287–299.

    PubMed  CAS  Google Scholar 

  • McMurray, W. C. 1964b. Metabolism of phosphatides in developing rat brain—II. Labelling of plasmalogens and other alkali-stable lipids from radioactive cytosine nucleotides.J. Neurochem. 11:315–326.

    PubMed  CAS  Google Scholar 

  • McMurray, W. C., and Magee, W. L. 1972. Phospholipid metabolism. Annu. Rev. Biochem. 41:129–160.

    PubMed  CAS  Google Scholar 

  • McMurray, W. C., Strickland, K. P., Berry, J. F., and Rossiter, R. J. 1957. Incorporation of 32P-labelled intermediates into the phospholipids of cell-free preparations of rat brain. Biochem. J. 66:634–644.

    PubMed  CAS  Google Scholar 

  • Mead, J. F., and Hare, R. S. 1971. Alpha oxidation of cerebronic acid in brains from scorbutic and ascorbic acid-supplemented guinea pigs. Biochem. Biophys. Res. Commun. 45:1451–1456.

    PubMed  CAS  Google Scholar 

  • Mead, J. F., and Hare, R. S. 1973. Fe requirement for decarboxylation of alpha-hydroxy long chain fatty acids. J. Am. Oil Chem. Soc. 50:91A–92A (Abstr. 113).

    Google Scholar 

  • Mestrallet, M. G., Cumar, F. A., and Caputto, R. 1974. On the pathway of biosynthesis of trisialogangliosides. Biochem. Biophys. Res. Commun. 59:1–7.

    PubMed  CAS  Google Scholar 

  • Michell, R. H. 1975. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415:81–147.

    PubMed  CAS  Google Scholar 

  • Michell, R. H., Hawthorne, J. N., Coleman, R., and Karnovsky, M. L. 1970. Extraction of polyphosphoinositides with neutral and acidified solvents. A comparison of guinea-pig brain and liver, and measurements of rat liver inositol compounds which are resistant to extraction. Biochim. Biophys. Acta 210:86–91.

    PubMed  CAS  Google Scholar 

  • Miller, E. K., and Dawson, R. M. C. 1972. Can mitochondria and synaptosomes of guinea-pig brain synthesize phospholipids? Biochem. J. 126:805–821.

    PubMed  CAS  Google Scholar 

  • Mohrhauer, H., and Holman, R. T. 1963. Alteration of the fatty acid composition of brain lipids by varying levels of dietary essential fatty acids.J. Neurochem. 10:523–530.

    PubMed  CAS  Google Scholar 

  • Moreli, P., and Braun, P. 1972. Biosynthesis and metabolic degradation of sphingolipids not containing sialic acid. J. Lipid Res. 13:293–310.

    Google Scholar 

  • Moreli, P., and Radin, N. S. 1969. Synthesis of cerebroside by brain from uridine diphosphate galactose and ceramide containing hydroxy fatty acid. Biochemistry 8:402–405.

    Google Scholar 

  • Moreli, P., and Radin, N. S. 1970. Specificity in ceramide biosynthesis from long chain bases and various fatty acyl coenzyme A’s by brain microsomes. J. Biol. Chem. 245:342–350.

    Google Scholar 

  • Moreli, P., Costantino-Ceccarini, E., and Radin, N. S. 1970. The biosynthesis by brain microsomes of cerebrosides containing nonhydroxy fatty acids. Arch. Biochem. Biophys. 141:738–748.

    Google Scholar 

  • Moser, H. W., and Karnovsky, M. L. 1959. Studies on the biosynthesis of glycolipids and other lipids of the brain. J. Biol. Chem. 234:1990–1997.

    PubMed  CAS  Google Scholar 

  • Muehlenberg, B. A., Sribney, M., and Duffe, M. K. 1972. Occurrence and biosynthesis of ceramide phosphorylethanolamine in chicken and rat liver. Can. J. Biochem. 50:166–173.

    PubMed  CAS  Google Scholar 

  • Murad, S., and Kishimoto, Y. 1975. α Hydroxylation of lignoceric acid to cerebronic acid during brain development.J. Biol. Chem. 250:5841–5846.

    PubMed  CAS  Google Scholar 

  • Muramatsu, T., and Schmid, H. H. O. 1973. Metabolism of l-hydroxy-2-ketoheptadecane in myelinating brain. Biochim. Biophys. Acta 296:265–270.

    PubMed  CAS  Google Scholar 

  • Natarajan, V., and Sastry, P. S. 1973. In vitro studies on the acylation of 1-O-alkenyl glycero-3-phosphorylethanolamine by rat brain preparations. FEB S Lett. 32:9–12.

    CAS  Google Scholar 

  • Natarajan, V., and Sastry, P. S. 1974. Enzymatic acylation of 1-alkyl-, 1-alkenyl- and 1-acyl glycero-3-phosphorylethanolamine in developing rat brain.J. Neurochem. 23:187–192.

    PubMed  CAS  Google Scholar 

  • Neskovic, N. M., Sarlieve, L. L., and Mandel, P. 1974. Purification and properties of UDP-galactosexeramide galactosyltransferase from rat brain microsomes. Biochim. Biophys. Acta 334:309–315.

    Google Scholar 

  • Nicholas, H. J., and Thomas, B. E. 1959. Intracerebral incorporation of [2-14C]mevalonic acid into adult rat brain squalene and cholesterol. Biochim. Biophys. Acta 36:583–585.

    PubMed  CAS  Google Scholar 

  • Nicholas, H. J., and Thomas, B. E. 1961. Cholesterol metabolism and the blood-brain barrier: An experimental study with [2-14C]-sodium acetate. Brain 84:320–328.

    PubMed  CAS  Google Scholar 

  • O’Brien, J. F., and Geison, R. L. 1971. The mass distribution of the phosphatidylcholines in subcellular fractions of rat brain. J. Neurochem. 18:1615–1623.

    PubMed  Google Scholar 

  • O’Brien, J. S., and Sampson, E. L. 1965. Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin.J. Lipid Res. 6:545–551.

    PubMed  Google Scholar 

  • Ong, D. E., and Brady, R. N. 1973. In vivo studies on the introduction of the 4-t-double bond of the sphingenine moiety of rat brain ceramides. J. Biol. Chem. 248:3884–3888.

    PubMed  CAS  Google Scholar 

  • Page, M. A., Krebs, H. A., and Williamson, D. H. 1971. Activities of enzymes of ketone-body utilization in brain and other tissues of suckling rats. Biochem. J. 121:49–53.

    PubMed  CAS  Google Scholar 

  • Paltauf, F. 1971. Biosynthesis of plasmalogens from alkyl- and alkyl-acyl-glycerophosphoryl ethanolamine in the rat brain. FEBS Lett. 17:118–120.

    PubMed  CAS  Google Scholar 

  • Paltauf, F. 1973. Synthesis of alkoxylipids. Chem. Phys. Lipids 11:270–294.

    CAS  Google Scholar 

  • Paltauf, F., and Holasek, A. 1973. Enzymatic synthesis of plasmalogens. Characterization of the 1-O-alkyl-2-acyl-sn-glycero-3-phosphorylethanolamine desaturase from mucosa of hamster small intestine.J. Biol. Chem. 248:1609–1615.

    PubMed  CAS  Google Scholar 

  • Paltauf, F., Prough, R. A., Masters, B. S. S., and Johnston, J. M. 1974. Evidence for the participation of cytochrome b 5 in plasmalogen biosynthesis.J. Biol. Chem. 249:2661–2662.

    CAS  Google Scholar 

  • Pfleger, R. O., Piantadosi, C., and Snyder, F. 1967. The biocleavage of isomeric glyceryl ethers by soluble liver enzymes in a variety of species. Biochim. Biophys. Acta 144:633–648.

    PubMed  CAS  Google Scholar 

  • Pieringer, R. A., and Hokin, L. E. 1962. Biosynthesis of lysophosphatidic acid from monoglyc-eride and adenosine triphosphate. J. Biol. Chem. 237:653–658.

    PubMed  CAS  Google Scholar 

  • Pollock, R. J., Hajra, A. K., and Agranoff, B. W. 1975. The relative utilization of the acyl dihydroxyacetone phosphate and glycerol phosphate pathways for synthesis of glyceroli-pids in various tumors and normal tissues. Biochim. Biophys. Acta 380:421–435.

    PubMed  CAS  Google Scholar 

  • Porcellati, G. 1972. Aspects of regulatory mechanisms in phospholipid biosynthesis of nervous tissue. Adv. Enzyme Regul. 10:83–100.

    PubMed  CAS  Google Scholar 

  • Porcellati, G., Biasion, M. G., and Pirotta, M. 1970. The labeling of brain ethanolamine phosphoglycerides from cytidine diphosphate ethanolamine in vitro. Lipids 5:734–742.

    CAS  Google Scholar 

  • Porcellati, G., Arienti, G., Pirotta, M., and Giorgini, D. 1971. Base-exchange reactions for the synthesis of phospholipids in nervous tissue: The incorporation of serine and ethanolamine into the phospholipids of isolated brain microsomes. J. Neurochem. 18:1395–1417.

    PubMed  CAS  Google Scholar 

  • Portman, O. W., Illingworth, D. F., and Alexander, M. 1973. Lysolecithin and sphingosine-phosphorylcholine in the metabolism of brain phospholipids of the rhesus monkey (Macaca mulatta): Effects of development. J. Neurochem. 20:1659–1667.

    PubMed  CAS  Google Scholar 

  • Possmayer, F., Meiners, B., and Mudd, J. B. 1973. Regulation by cytidine nucleotides of the acylation of sn-[14C] glycerol 3-phosphate. Regional and subcellular distribution of the enzymes responsible for phosphatidic acid synthesis de novo in the central nervous system of the rat. Biochem. J. 132:381–394.

    PubMed  CAS  Google Scholar 

  • Pritchard, E. T., and Nichol, N. E. 1964. Cholesterol esterase activity in developing rat brain. Biochim. Biophys. Acta 84:781–782.

    PubMed  CAS  Google Scholar 

  • Prottey, C., Salway, J. G., and Hawthorne, J. N. 1968. The structures of enzymically produced diphosphoinositide and triphosphoinositide. Biochim. Biophys. Acta 164:238–251.

    PubMed  CAS  Google Scholar 

  • Radin, N. S., and Akahori, Y. 1961. Fatty acids of human brain cerebrosides.J. Lipid Res. 2:335–341.

    CAS  Google Scholar 

  • Radin, N. S. Brenkert, A., Arora, R. C., Sellinger, O. Z., and Flangas, A. L. 1972. Brain Res. 39:163–169.

    PubMed  CAS  Google Scholar 

  • Radominska-Pyrek, A., and Horrocks, L. A. 1972. Enzymic synthesis of 1-alkyl-2-acyl-sn-glycero-3-phosphorylethanolamines by the CDP-ethanolamine:1-radyl-2-acyl-sn-glycerol ethanolaminephosphotransferase from microsomal fraction of rat brain. J. Lipid Res. 13:580–587.

    PubMed  CAS  Google Scholar 

  • Raghavan, S., Rhoads, D., and Kanfer, J. 1972. In vitro incorporation of [14C] serine, [14C]ethanolamine, and [14C]choline into phospholipids of neuronal and glial-enriched fractions from rat brain by base exchange. J. Biol. Chem. 247:7153–7156.

    PubMed  CAS  Google Scholar 

  • Ramsey, R. B., and Nicholas, H. J. 1972. Brain lipids. Adv. Lipid Res. 10:143–232.

    PubMed  CAS  Google Scholar 

  • Ramsey, R. B., Jones, J. P., and Nicholas, H. J. 1971a. The biosynthesis of cholesterol and other sterols by brain tissue. Distribution in subcellular fractions as a function of time after intracerebral injection of [2-14C]-mevalonic acid.J. Neurochem. 18:1485–1493.

    PubMed  CAS  Google Scholar 

  • Ramsey, R. B., Jones, J. P., Naqvi, S. H. M., and Nicholas, H. J. 1971b. The biosynthesis of cholesterol and other sterols by brain tissue: I. Subcellular biosynthesis in vitro. Lipids 6:154–161.

    PubMed  CAS  Google Scholar 

  • Ramsey, R. B., Aexel, R. T., and Nicholas, H. J. 1971c. Formation of methyl sterols in brain cholesterol biosynthesis. Sterol formation in vitro and in vivo in adult rat brain. J. Biol. Chem. 246:6393–6400.

    PubMed  CAS  Google Scholar 

  • Ramsey, R. B., Aexel, R. T., Jones, J. P., and Nicholas, H. J. 1972. Formation of methyl sterols in brain cholesterol biosynthesis. Sterol formation in vitro in actively myelinating rat brain.J. Biol. Chem. 247:3471–3475.

    PubMed  CAS  Google Scholar 

  • Roberti, R., Binaglia, L., Francescangeli, E., Goracci, G., and Porcellati, G. 1975. Enzymic synthesis of 1-alkyl-2-acyl-sn-glycero-3-phosphorylethanolamine through ethanolamine-phosphotransferase activity in the neuronal and glial cells of rabbit in vitro. Lipids 10:121–127.

    PubMed  CAS  Google Scholar 

  • Robinson, D. 1974a. Multiple forms of lysosomal enzymes. Statement of the problem, pp. 217 – 226. In J. M. Tager, G. J. M. Hooghwinkel, and W. Th. Daems (eds.). Enzyme Therapy in Lysosomal Storage Diseases. North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  • Robinson, D. 1974b. Multiple forms of glycosidases in the normal and pathological states. Enzyme 18:114–135.

    PubMed  CAS  Google Scholar 

  • Rock, C.O., and Snyder, F. 1974. Biosynthesis of 1-alkyl-sn-glycero-3-phosphate via adenosine triphosphate:1-alkyl-sn-glycerol phosphotransferase. J. Biol. Chem. 249:5382–5387.

    PubMed  CAS  Google Scholar 

  • Roots, B. I., and Johnston, P. V. 1968. Plasmalogens of the nervous system and environmental temperature. Comp. Biochem. Physiol. 26:553–560.

    PubMed  CAS  Google Scholar 

  • Rosenberg, A. 1970. Sphingomyelin: Enzymatic reactions. Handb. Neurochem. 3:453–466.

    Google Scholar 

  • Rossiter, R. J., and Strickland, K. P. 1970. Metabolism of phosphoglycerides. Handb. Neurochem. 3:467–489.

    Google Scholar 

  • Saito, M., and Kanfer, J. 1973. Solubilization and properties of a membrane-bound enzyme from rat brain catalyzing a base-exchange reaction. Biochem. Biophys. Res. Commun. 53:391–398.

    PubMed  CAS  Google Scholar 

  • Saito, M., and Kanfer, J. 1975. Phosphatidohydrolase activity in a solubilized preparation from rat brain particulate fraction. Arch. Biochem. Biophys. 169:318–323.

    PubMed  CAS  Google Scholar 

  • Saito, M., Bourque, E., and Kanfer, J. 1975. Studies on base-exchange reactions of phospholipids in rat brain particles and a “solubilized” system. Arch. Biochem. Biophys. 169:304–317.

    PubMed  CAS  Google Scholar 

  • Salway, J. G., Kai, M., and Hawthorne, J. N. 1967. Triphosphoinositide Phosphomonoesterase activity in nerve cell bodies, neuroglia and subcellular fractions from whole rat brain. J. Neurochem. 14:1013–1024.

    PubMed  CAS  Google Scholar 

  • Scallen, T. J., Condie, R. M., and Schroepfer, J. 1962. Inhibition by triparanol of cholesterol formation in the brain of the newborn mouse.J. Neurochem. 9:99–103.

    PubMed  CAS  Google Scholar 

  • Scallen, T. J., Srikantaiah, M. V., Skrdlant, H. B., and Hansbury, E. 1972. Characterization of native sterol carrier protein. FEBS Lett. 25:227–233.

    PubMed  CAS  Google Scholar 

  • Schacht, J., and Agranoff, B. W. 1974. Interaction of cholinergic agents with phospholipid metabolism in guinea pig cortex synaptosomes, pp. 121–129. In E. de Robertis and J. Schacht (eds.). Neurochemistry of Cholinergic Receptors. Raven Press, New York.

    Google Scholar 

  • Schettler, G. 1967. Lipids and Lipidoses. Springer-Verlag, New York. 622 pp.

    Google Scholar 

  • Schmid, H. H. O., and Takahashi, T. 1970. Reductive and oxidative biosynthesis of plasmalogens in myelinating brain.J. Lipid Res. 11:412–419.

    PubMed  CAS  Google Scholar 

  • Schmid, H. H. O., Muramatsu, T., and Su, K. L. 1972. On the nonconversion of alkyl acyl choline phosphatides to the corresponding plasmalogens in myelinating rat brain. Biochim. Biophys. Acta 270:317–323.

    PubMed  CAS  Google Scholar 

  • Schmid, H. H. O., Bandi, P. C., Chang, N., Madson, T. H., and Baumann, W. J. 1975. Ether lipid metabolism. Incorporation of O-hexadecyl ethanediol into rat brain lipids. Biochim. Biophys. Acta 409:311–319.

    PubMed  CAS  Google Scholar 

  • Schneider, P. B., and Kennedy, E. P. 1967. Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann-Pick disease. J. Lipid Res. 8:202–209.

    PubMed  CAS  Google Scholar 

  • Scot, T. G., and Barber, V. C. 1964. An enzyme histochemical and biochemical study of the effect of an inhibitor of cholesterol synthesis on myelinating mouse brain. J. Neurochem. 11:423–429.

    Google Scholar 

  • Shah, S. N. 1971. Glycosyl transferases of microsomal fractions from brain: Synthesis of glucosylceramide and galactosylceramide during development and the distribution of glucose and galactose transfer in white and gray matter. J. Neurochem. 18:395–402.

    PubMed  CAS  Google Scholar 

  • Shah, S. N. 1972. Conversion of squalene into sterols by microsomal fractions from brains of developing rats. FEBS Lett. 20:75–78.

    PubMed  CAS  Google Scholar 

  • Shah, S. N. 1973. UDP-glucose: Ceramide glycosyltransferase of rat brain: An association with smooth microsomes and requirement of an intact membrane for enzyme activity. Arch. Biochem. Biophys, 159:143–150.

    PubMed  CAS  Google Scholar 

  • Sinclair, A. J. 1975. Incorporation of radioactive polyunsaturated fatty acids into liver and brain of developing rat. Lipids 10:175–184.

    PubMed  CAS  Google Scholar 

  • Snyder, F. 1972. The enzymic pathways of ether-linked lipids and their precursors, pp. 121 – 156. In F. Snyder (ed.). Ether Lipids. Chemistry and Biology. Academic Press, New York.

    Google Scholar 

  • Snyder, F., Wykle, R. L., and Malone, B. 1969. A new metabolic pathway: Biosynthesis of alkyl ether bonds from glyceraldehyde-3-phosphate and fatty alcohols by microsomal enzymes. Biochem. Biophys. Res. Commun. 34:315–321.

    PubMed  CAS  Google Scholar 

  • Snyder, F., Rainey, W. T., Jr., Blank, M. L., and Christie, W. H. 1970. The source of oxygen in the ether bond of glycerolipids. 18O studies. J. Biol. Chem. 245:5853–5856.

    PubMed  CAS  Google Scholar 

  • Snyder, F., Blank, M. L., and Wykle, R. L. 1971a. The enzymic synthesis of ethanolamine plasmalogens. J. Biol. Chem. 246:3639–3645.

    PubMed  CAS  Google Scholar 

  • Snyder, F., Hibbs, M., and Malone, B. 1971b. Enzymie synthesis of O-alkyl glycerolipids in brain and liver of rats during fetal and postnatal development. Biochim. Biophys. Acta 231:409–411.

    PubMed  CAS  Google Scholar 

  • Sribney, M., and Kennedy, E. P. 1958. The enzymatic synthesis of sphingomyelin, J. Biol. Chem. 233:1315–1322.

    PubMed  CAS  Google Scholar 

  • Stanbury, J. B., Wyngaarden, J. B., and Fredrickson, D. S. (eds.) 1972. The Metabolic Basis of Inherited Disease. McGraw-Hill, New York, 1778 pp.

    Google Scholar 

  • Stoffel, W. 1971. Sphingolipids. Annu. Rev. Biochem. 40:57–82.

    PubMed  CAS  Google Scholar 

  • Stoffel, W., and Assmann, G. 1972. On the metabolism of sphinganyl- and sphingenyl-1-phosphorylcholine. Studies in vitro and in vivo. Hoppe-Seyler’s Z. Physiol. Chem. 353:65–74.

    PubMed  CAS  Google Scholar 

  • Stoffel, W., and Bister, K. 1974. Studies on the desaturation of sphinganine. Ceramide and sphingomyelin metabolism in the rat and in BHK 21 cells in tissue culture. Hoppe-Seyler’s Z. Physiol. Chem. 355:911–923.

    PubMed  CAS  Google Scholar 

  • Stoffel, W., and LeKim, D. 1971. Studies on the biosynthesis of plasmalogens. Precursors in the biosynthesis of plasmalogens: On the stereospecificity of the biochemical dehydro-genation of the 1-O-alkyl glyceryl to the 1-O-alk-1’-enyl glyceryl ether bond. Hoppe-Seyler’s Z. Physiol. Chem. 352:501–511.

    PubMed  CAS  Google Scholar 

  • Stoffel, W., LeKim, D., and Heyn, G. 1970. Metabolism of sphingosine bases, XIV. Sphinganine (dihydrosphingosine), an effective donor of the alk-1’-enyl chain of plasmalogens. Hoppe-Seyler’s Z. Physiol. Chem. 351:875–883.

    PubMed  CAS  Google Scholar 

  • Su, K. L., and Schmid, H. H. O. 1972. Metabolism of long-chain polyunsaturated alcohols in myelinating brain. J. Lipid Res. 13:452–457.

    PubMed  CAS  Google Scholar 

  • Sun, G. Y. 1972. Effects of a fatty acid deficiency on lipids of whole brain, microsomes, and myelin in the rat. J. Lipid Res. 13:56–62.

    PubMed  CAS  Google Scholar 

  • Sun, G. Y., and Horrocks, L. A. 1973. Metabolism of palmitic acid in the subcellular fractions of mouse brain. J. Lipid Res. 14:206–214.

    PubMed  CAS  Google Scholar 

  • Sun, G. Y., Winniczek, H., Go, J., and Sheng, S. L. 1975. Essential fatty acid deficiency: Metabolism of 20:3(n-9) and 22:3(n-9) of major phosphoglycerides in subcellular fractions of developing and mature mouse brain. Lipids 10:365–373.

    CAS  Google Scholar 

  • Suzuki, K. 1965. The pattern of mammalian brain gangliosides-III. Regional and developmental differences. J. Neurochem. 12:969–979.

    CAS  Google Scholar 

  • Suzuki, K., and Chen, G. C. 1967. Brain ceramide hexosides in Tay-Sachs disease and generalized gangliosidosis (G M2 -gangliosidosis).J. Lipid Res. 8:105–113.

    PubMed  CAS  Google Scholar 

  • Suzuki, Y., and Suzuki, K. 1974a. Glycosphingolipid β-galactosidases. I. Standard assay procedures and characterization by electrofocusing and gel nitration of the enzymes in normal human liver. J. Biol. Chem. 249:2098–2104.

    PubMed  CAS  Google Scholar 

  • Suzuki, Y., and Suzuki, K. 1974b. Glycosphingolipid β-galactosidase. H. Electrofocusing characterization of the enzymes in human globoid cell leukodystrophy (Krabbe’s disease).J. Biol. Chem. 249:2105–2108.

    PubMed  CAS  Google Scholar 

  • Suzuki, Y., and Suzuki, K. 1974c. Glycosphingolipid β-galactosidase. IV. Electrofocusing characterization in G M 1 -gangliosidosis. J. Biol. Chem. 249:2113–2117.

    PubMed  CAS  Google Scholar 

  • Svennerholm, L. 1963. Chromatographic separation of human brain gangliosides. J. Neurochem. 10:613–623.

    PubMed  CAS  Google Scholar 

  • Svennerholm, L. 1970. Ganglioside metabolism. Compr. Biochem. 18:201–227.

    CAS  Google Scholar 

  • Svennerholm, L., and Ställberg-Stenhagen, S. 1968. Changes in the fatty acid composition of cerebrosides and sulfatides of human nervous tissue with age.J. Lipid Res. 9:215–225.

    PubMed  CAS  Google Scholar 

  • Sweeley, C. C. (ed.) 1970. Chemistry and metabolism of sphingolipids. Chem. Phys. Lipids 5:1–300.

    Google Scholar 

  • Tabakoff, B., and Erwin, V. G. 1970. Purification and characterization of a reduced nicotinamide adenine dinucleotide phosphate-linked aldehyde reductase from brain.J. Biol. Chem. 245:3263–3268.

    PubMed  CAS  Google Scholar 

  • Tager, J. M., Hooghwinkel, G. J. M., and Daems, W. Th. (eds.). 1974. Enzyme Therapy in Lysosomal Storage Diseases. North Holland Publishing Company, Amsterdam. 308 pp.

    Google Scholar 

  • Taki, T., and Matsumoto, M. 1973. Study of exchange reaction between phospholipid-base and free base: Incorporation of L-serine into phospholipid and decarboxylation of phosphatidylserine. Jap. J. Exp. Med. 43:219–224.

    PubMed  CAS  Google Scholar 

  • Tallman, J. F. 1974. Hexosaminidases and ganglioside catabolism in the G M2 -gangliosides. Chem. Phys. Lipids 13:292–304.

    PubMed  CAS  Google Scholar 

  • Tallman, J. F., and Brady, R. O. 1972. The catabolism of Tay-Sachs ganglioside by rat brain lysosomes. J. Biol. Chem. 247:7570–7575.

    PubMed  CAS  Google Scholar 

  • Tallman, J. F., Pentchev, P. G., and Brady, R. O. 1974. An enzymological approach to the lipidoses. Enzyme 18:136–149.

    PubMed  Google Scholar 

  • Tatsumi, K., Kishimoto, Y., and Hignite, C. 1974. Stereochemical aspects of synthetic and naturally occurring 2-hydroxy fatty acids. Arch. Biochem. Biophys. 165:656–664.

    PubMed  CAS  Google Scholar 

  • Tatsumi, K., Murad, S., and Kishimoto, Y. 1975. Mechanism and stereospecificity of α-hydroxylation of lignoceric acid in rat brain. Arch. Biochem. Biophys. 171:87–92.

    PubMed  CAS  Google Scholar 

  • Thompson, W. 1967. The hydrolysis of monophosphoinositide by extracts of brain. Can. J. Biochem. 45:853–861.

    PubMed  CAS  Google Scholar 

  • Thompson, R. H. S. 1972. Fatty acid metabolism in multiple sclerosis, pp. 103–111. In J. Ganguly and R. M. S. Smellie (eds.). Current Trends in the Biochemistry of Lipids. Academic Press, New York.

    Google Scholar 

  • Thompson, W., and Dawson, R. M. C. 1964a. The hydrolysis of triphosphoinositide by extracts of ox brain. Biochem. J. 91:233–236.

    PubMed  CAS  Google Scholar 

  • Thompson, W., and Dawson, R. M. C. 1964b. Triphosphoinositide Phosphomonoesterase of brain tissue. Biochem. J. 91:244–250.

    PubMed  Google Scholar 

  • Ullman, M. D., and Radin, N. S. 1974. The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver.J. Biol. Chem. 249:1506–1512.

    PubMed  CAS  Google Scholar 

  • Van den Bosch, H. 1974. Phosphoglyceride metabolism. Annu. Rev. Biochem. 43:243–277.

    PubMed  Google Scholar 

  • Volk, B. W., and Aronson, S. M. (eds.) 1972. Sphingolipids, Sphingolipidoses, and Allied Disorders. Plenum Press, New York. 691 pp.

    Google Scholar 

  • Volpe, J. J., and Kishimoto, Y. 1972. Fatty acid synthetase of brain: Development, influence of nutritional and hormonal factors and comparison with liver enzyme.J. Neurochem. 19:737–753.

    PubMed  CAS  Google Scholar 

  • Volpe, J. J., and Vagelos, P. R. 1973a. Saturated fatty acid biosynthesis and its regulation. Annu. Rev. Biochem. 42:21–60.

    PubMed  CAS  Google Scholar 

  • Volpe, J. J., and Vagelos, P. R. 1973b. Fatty acid synthetase of mammalian brain, liver and adipose tissue. Regulation by prosthetic group turnover. Biochim. Biophys. Acta 326:293–304.

    PubMed  CAS  Google Scholar 

  • Volpe, J. J., Lyles, T. O., Roncan, D. A. K., and Vagelos, P. R. 1973. Fatty acid synthetase of developing brain and liver. Content, synthesis, and degradation during development. J. Biol. Chem. 248:2502–2513.

    PubMed  CAS  Google Scholar 

  • Waku, K., and Lands, W. E. M. 1968. Acyl coenzyme A:1-alkenyl-glycero-3-phosphorylcho-line acyltransferase action in plasmalogen biosynthesis.J. Biol. Chem. 243:2654–2659.

    PubMed  CAS  Google Scholar 

  • Walker, B. L. 1967. Maternal diet and brain fatty acids in young rats. Lipids 2:497–500.

    PubMed  CAS  Google Scholar 

  • Webster, G. P. 1970. Phospholipase A activities in nervous tissue. Biochem. J. 117:10P–11P.

    PubMed  CAS  Google Scholar 

  • Wenger, D. A. 1974. Studies on galactosyl ceramide and lactosyl ceramide β-galactosidase. Chem. Phys. Lipids 13:327–339.

    PubMed  CAS  Google Scholar 

  • Wiegandt, H. 1971. Glycosphingolipids. Adv. Lipid Res. 9:249–289.

    CAS  Google Scholar 

  • Williams, D. J., Spanner, S., and Ansell, G. B. 1973. A phospholipase C in brain tissue active towards phosphatidylethanolamine. Biochem. Soc. Trans. 1:466–467.

    CAS  Google Scholar 

  • Woelk, H., and Porcellati, G. 1973. Subcellular distribution and kinetic properties of rat brain phospholipases A1 and A2. Hoppe-Seyler’s Z. Physiol. Chem. 354:90–100.

    PubMed  CAS  Google Scholar 

  • Woelk, H., Fürniss, H., and Debuch, H. 1972. Enzymkinetische Untersuchungen Liver Phospholipase A1 Dargestellt aus Menschenhirn. Hoppe-Seyler’s Z. Physiol. Chem. 353:1111–1119.

    PubMed  CAS  Google Scholar 

  • Woelk, H., Goracci, G., Gaiti, A., and Porcellati, G. 1973. Phospholipase A1 and A2 activities of neuronal and glial cells of the rabbit brain. Hoppe-Seyler’s Z. Physiol. Chem. 354:729–736.

    PubMed  CAS  Google Scholar 

  • Woelk, H., Goracci, G., and Porcellati, G. 1974. The action of brain phospholipases A2 on purified, specifically labelled 1,2-diacyl-, 2-acyl-1-alk-1′-enyl- and 2-acyl-1-alkyl-ns-glycero-3-phosphorylcholine. Hoppe-Seyler’s Z. Physiol. Chem. 355:75–81.

    PubMed  CAS  Google Scholar 

  • Wykle, R. L., and Lockmiller, J. M. S. 1975. The biosynthesis of plasmalogens by rat brain: Involvement of the microsomal electron transport system. Biochim. Biophys. Acta 380:291–298.

    PubMed  CAS  Google Scholar 

  • Wykle, R. L., and Schremmer, J. M. 1974. A lysophospholipase D pathway in the metabolism of ether-linked lipids in brain microsomes. J. Biol. Chem. 249:1742–1746.

    PubMed  CAS  Google Scholar 

  • Wykle, R. L., and Snyder, F. 1976. Microsomal enzymes involved in the metabolism of ether-linked glycerolipids and their precursors in mammals, pp. 87–117. In A. Martonosi (ed.). The Enzymes of Biological Membranes, Vol. 2. Plenum Press, New York.

    Google Scholar 

  • Wykle, R. L., Blank, M. L., Malone, B., and Snyder, F. 1972. Evidence for a mixed function oxidase in the biosynthesis of ethanolamine plasmalogens from 1-alkyl-2-acyl-sn-glycero-3-phosphorylethanolamine. J. Biol. Chem. 247:5442–5447.

    PubMed  CAS  Google Scholar 

  • Yavin, E., and Gatt, S. 1969. Enzymatic hydrolysis of sphingolipids VII. Further purification and properties of rat brain ceramidase. Biochemistry 8:1692–1698.

    PubMed  CAS  Google Scholar 

  • Yavin, E., and Gatt, S. 1972a. Oxygen-dependent cleavage of the vinyl-ether linkage of plasmalogens. 1. Cleavage by rat-brain supernatant. Eur. J. Biochem. 25:431–436.

    PubMed  CAS  Google Scholar 

  • Yavin, E., and Gatt, S. 1972b. Oxygen-dependent cleavage of the vinyl-ether linkage of plasmalogens. 2. Identification of the low-molecular-weight active component and the reaction mechanism. Eur. J. Biochem. 25:437–446.

    PubMed  CAS  Google Scholar 

  • Yavin, E., and Menkes, J. H. 1974a. Polyenoic acid metabolism in cultured dissociated brain cells.J. Lipid Res. 15:152–157.

    CAS  Google Scholar 

  • Yavin, E., and Menkes, J. H. 1974b. Incorporation and metabolism of fatty acids by cultured dissociated cells from rat cerebrum. Lipids 9:248–253.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Wykle, R.L. (1977). Brain. In: Snyder, F. (eds) Lipid Metabolism in Mammals. Monographs in Lipid Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2832-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2832-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2834-6

  • Online ISBN: 978-1-4684-2832-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics