Skip to main content

Ultraviolet Radiation Effects on the Human Eye

  • Chapter
Photochemical and Photobiological Reviews

Abstract

Many papers and reviews in the past have focused their attention on the question of ultraviolet (UV) radiation damage to ocular tissues. Unfortunately, all of these works have dealt with damage to specific tissues, and to get a comprehensive view of the field, the reader has been required to consult many references. In this chapter, we will comprehensively cover what is known about UV radiation damage to all ocular tissues. For clarity and for completeness, some repetition of older work is necessary, but the study of UV radiation effects on the eye has only begun to unfold in recent years, and therefore the emphasis here is on recent work. While UV radiation effects on the cornea have been established for many years, the question of UV damage to the retina has only recently been seriously entertained and established. The literature on the effects on the retina, therefore, is still scant. The question of UV radiation-induced aging or damage to the lens is a topic of much controversy and speculation. As the latest example of possible solar radiation-induced aging of a human tissue, this is perhaps one of the most exciting new directions in ophthalmology and human biology research. We will therefore study this question in depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachern, A., 1956, Ophthalmic ultraviolet action spectra, Am. J. Ophthalmol. 41:969–974.

    Google Scholar 

  • Bando, A., 1973, The relationship between coloration and fluorescence in the human lens, Acta Soc. Ophthalmol. Jpn. 77:873–876.

    Google Scholar 

  • Barron, C., Rubin, L., and Steelman, R., 1972, Clorpromazine of the eye of the dog. III. Natural daylight versus artificial light, Exp. Mol. Pathol. 16:158–162.

    Article  Google Scholar 

  • Bridges, B. A., 1971, Genetic damage induced by 254 nm UV light in Escherichia coli: 8-Methoxypsoralen as protective agent and repair inhibitor, Photochem. Photobiol. 14:659–662.

    Article  Google Scholar 

  • Carlson, J. G., and Hollaender, A., 1948, Mitotic effects of UV radiation of the 2250 Ã… region, with special reference to the spindle and cleavage, J. Cell. Comp. Physiol. 31:149–173.

    Article  Google Scholar 

  • Cassen, T., and Kearns, D. R., 1969, Phosphorescence and energy transfer in enzymes, Biochim. Biophys. Acta 194:203–212.

    Google Scholar 

  • Claesson, S., Wettermark, G., and Juklin, L., 1959, Action of ultraviolet light on skin: Effect of the histamine liberator 48/80 and methotrimeprazine, Nature (London) 183:1451–1452.

    Article  Google Scholar 

  • Cogan, D. G., 1950, Lesions of the eye from radiant energy, J. Am. Med. Assoc. 142:145–151.

    Article  Google Scholar 

  • Cogan, D. G., and Kinsey, V. E., 1946, Action spectrum of keratitis produced by ultraviolet radiation, Arch. Ophthalmol. 35:670–677.

    Article  Google Scholar 

  • Dartnall, H. J. A., 1957, The Visual Pigments, Methuen, New York.

    Google Scholar 

  • Dilley, K. J., and Pirie, A., 1974, Changes to proteins of the human lens nucleus in cataract, Exp. Eye Res. 19:59–72.

    Article  Google Scholar 

  • Dose, K., 1968, The photolysis of free cystine in the presence of aromatic amino acids, Photochem. Photobiol. 8:331–335.

    Article  Google Scholar 

  • Duke-Elder, S., 1954, Textbook of Ophthalmology, Vol. VI: Injuries, Chapter LXX, pp. 6443–6467, C. V. Mosby, St. Louis.

    Google Scholar 

  • Ellinger, F., 1951, Die Histaminhypothese der biologischen Strahlenwirkungen, Schweiz. Med. Wochenschr. 81:61–65.

    Google Scholar 

  • Feitelson, J., 1971, The formation of hydrated electrons from the excited state of indole derivatives, Photochem. Photobiol. 13:87–96.

    Article  Google Scholar 

  • Freeman, R. G., 1966, Morphologic changes resulting from photosensitization of the eye with 8-methoxypsoralen—A comparison with conventional ultraviolet injury, Tex. Rep. Biol. Med. 24:588–596.

    Google Scholar 

  • Freeman, R. G., and Knox, J., 1964, Ultraviolet induced corneal tumors in different species and strains of animals, J. Invest. Dermatol. 43:431–436.

    Google Scholar 

  • Friedenwald, J. S., Buschke, W., Crowell, J., and Hollaender, A., 1948, The effects of ultraviolet irradiation on the corneal epithelium, J. Cell. Comp. Physiol. 32:161–173.

    Article  Google Scholar 

  • Genter, E. I., 1971, Resistance of the corneal epithelium to UV radiation, Tsitologiia 13:206–211.

    Google Scholar 

  • Ghiron, C. A., Volkert, W., and Lahmeyer, H., 1971, Studies on the mechanism of cystine destruction and inactivation of trypsin irradiated with 280 nm light, Photochem. Photobiol. 13:431–436.

    Article  Google Scholar 

  • Grof, P., and Kovacs, A., 1967, On the mode of action of UV light: Effect of UV rays on most cells in vivo, Acta Physiol. Acad. Sci. Hung. 32:35–44.

    Google Scholar 

  • Grossweiner, L., and Usui, Y., 1970, The role of the hydrated electron in photoreduction of cystine in the presence of indole, Photochem. Photobiol. 11:53–56.

    Article  Google Scholar 

  • Hamerski, W., 1969, Investigations on histochemical changes in experimental corneal lesions induced with UV radiation and on prevention of photophthalmia, Pol. Med. J. 8:1469–1476.

    Google Scholar 

  • Hamerski, W., 1971, Experimental studies of the content of nucleic acids in the cornea subjected to UV rays, Klin. Oczna 41:639–642.

    Google Scholar 

  • Hamerski, W., and Zajaczkowska, A., 1969, Electrophoretic investigations of proteins of the corneal epithelium in experimental photophthalmia, Pol. Med. J. 8:1464–1468.

    Google Scholar 

  • Harber, L. C., 1974, Photochemotherapy of psoriasis, N. Engl. J. Med. 291:1251–1252.

    Article  Google Scholar 

  • Helénè, C., 1973, Energy transfer between nucleic acid bases and tryptophan in aggregates and in oligopeptide-nucleic acid complexes, Photochem. Photobiol. 18:255–262.

    Article  Google Scholar 

  • Hemmingsen, E. A., and Douglas, E. I., 1970, UV radiation thresholds for corneal injury in Antarctic and temperate-zone animals, Comp. Biochem. Physiol. 32:593–600.

    Article  Google Scholar 

  • Hirabayashi, K., and Graham, J., 1969, Mediation of radiation erythema, Int. J. Radiat. Biol. 16:85–91.

    Article  Google Scholar 

  • Hopkins, T., and Lumry, R. W., 1972, Exciplex studies. V. Electron ejection from indole and methyl indole derivatives. Photochem. Photobiol. 15:555–556.

    Article  Google Scholar 

  • Jagger, J., 1967, Introduction to Research in Ultraviolet Photobiology, Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Kamel, I., and Parker, J., 1973, Protection from UV exposure in aphakic erythropsia, Can. J. Ophthalmol. 8:563–565.

    Google Scholar 

  • Kashet, E. R., and Brodie, A. F., 1963, Oxidative phosphorylation in fractionated bacterial systems. X. Different roles for the natural quinones of E. coli W in oxidative metabolism, J. Biol. Chem. 238:2564–2570.

    Google Scholar 

  • Kinsey, V. E., 1948, Spectral transmission of the eye to ultraviolet radiations, Arch. Ophthalmol. 39:508–513.

    Article  Google Scholar 

  • Konev, S. V., and Volotovskii, I. D., 1966, Investigation of the role of singlet and triplet excited states of tryptophan in the photoinactivation of trypsin, Biophysics 11:909–915.

    Google Scholar 

  • Kronman, M., and Holmes, L., 1971, The fluorescence of native, denatured and reduced-denatured proteins, Photochem. Photobiol. 14:113–134.

    Article  Google Scholar 

  • Kulczycka, N., 1961, Experimental investivation on the cataractogenic effects of UV rays in young mice. Acta Biol. Cracow 4:59–78.

    Google Scholar 

  • Kurzel, R. B., Wolbarsht, M. L., and Yamanashi, B. S., 1973a, Spectral studies on normal and cataractous intact human lenses, Exp. Eye Res. 17:65–71.

    Article  Google Scholar 

  • Kurzel, R. B., Wolbarsht, M. L., Yamanashi, B. S., Staton, G. W., and Borkman, R. F., 1973b, Tryptophan excited states and cataract in the human lens, Nature (London) 241:132–133.

    Article  Google Scholar 

  • Langham, M., 1967, The Cornea, p. 162, Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Lerman, S., 1972a, Lens proteins and fluorescence, Isr. J. Med. Sci. 8:1583–1589.

    Google Scholar 

  • Lerman, S., 1972b, Lens proteins in aging and cataract formation, in: Contemporary Ophthalmology—Honoring Sir Stewart Duke-Elder (J. G. Bellows, ed.), Williams and Wilkins, Baltimore.

    Google Scholar 

  • Marshall, J., Mellerio, J., and Palmer, D., 1972, Damage to pigeon retinae by moderate illumination from fluorescent lamps, Exp. Eye Res. 14:164–169.

    Article  Google Scholar 

  • Matuk, Y., Parker, J. A., and Goldlist, G. I., 1974, Wavelength dependent effect of near UV on C14-leucine incorporation into rat retina, J. Opt. Soc. Am. 64(10):1373.

    Google Scholar 

  • McLaren, A. D., and Takahashi, W. N., 1957, Inactivation of infectious nucleic acid from tobacco mosaic virus by ultraviolet light (2537 Ã…), Radiat. Res. 6:532–542.

    Article  Google Scholar 

  • McLaren, A. D., Gentile, P., Kirk, D. C., and Levin, N. A., 1953, Photochemistry of proteins. XVII. Inactivation of enzymes with ultraviolet light and photolysis of the peptide band, J. Polym. Sci. 10:333–334.

    Article  Google Scholar 

  • Noguchi, Y., 1973, Radiation effects of UV rays on the crystalline lens of rabbit eyes, Act. Soc. Ophthalmol. Jpn. 77:34–40.

    Google Scholar 

  • Oguchi, M., Shimizu, Y., Seki, H., Kawase, S., Sakurai, M., and Uchiyama, Y., 1973, On the fluorescent color of the crystalline lens, a new detection method for GSH, its distribution in the eye, and systemic embryology of the crystalline lens, Acta Soc. Ophthalmol. Jpn. 77:186–191.

    Google Scholar 

  • O’Steen, W. K., and Karcioglu, Z. A., 1974, Phagocytosis in the light damaged albino rat eye: Light and electron microscopic study, Am. J. Anat. 139:503–518.

    Article  Google Scholar 

  • Pailthorpe, M., and Nicholls, C., 1971, Indole N—H bond fission during the photolysis of tryptophan, Photochem. Photobiol. 14:135–145.

    Article  Google Scholar 

  • Parrish, J. A., Fitzpatrick, T., Tannenbaum, L., and Pathak, M., 1974, Photochemotherapy of psoriasis with oral methoxysalen and long wavelength UV light, TV. Engl. J. Med. 291:1207–1211.

    Article  Google Scholar 

  • Pathak, M., Worden, L., and Kaufman, K., 1967, Effects of structural alterations on the photosensitizing potency of furocoumarins (psoralens) and related compounds, J. Invest. Dermatol. 48:103–118.

    Google Scholar 

  • Patterson, P. S. P., Sweasey, D., Roberts, B. A., and Pattison, M., 1974, The protective effect of promethazine treatment against photoperoxidation of lipid in turkey eyes, Exp. Eye. Res. 19:267–272.

    Article  Google Scholar 

  • Pirie, A., 1968, Color and solubility of the proteins of human cataracts, Invest. Ophthalmol. 7:634–650.

    Google Scholar 

  • Pirie, A., 1972a, The effect of sunlight on proteins of the lens, in: Contemporary Ophthalmology—Honoring Sir Stewart Duke-Elder (J. G. Bellows, ed.), Williams and Wilkins, Baltimore, Md.

    Google Scholar 

  • Pirie, A., 1972b, Photooxidation of proteins and comparison of photooxidized proteins with those of the cataractous human lens, Isr. J. Med. Sci. 8:1567–1573.

    Google Scholar 

  • Pitts, D. G., 1976, UV Ocular Effects from 300 nm to 400 nm, NIOSH Contract CDC-99-74-12, Final Report.

    Google Scholar 

  • Pitts, D. G., and Gibbons, W., 1973, Corneal light scattering measurements of UV radiant exposures, Am. J. Optom. 50:187–194.

    Google Scholar 

  • Pitts, D. G., and Tredici, T., 1971, The effects of ultraviolet radiation on the eye, Am. Ind. Hyg. Assoc. J. 32:235–246.

    Article  Google Scholar 

  • Rohrschneider, W., 1936, Linsenschadigung durch ultraviolette Strahlen im Tierversuch, Arch. Ophthalmol. (Berlin) 135:282–292.

    Google Scholar 

  • Said, F. S., and Weale, R. A., 1959, The variation with age of the spectral transmissivity of the living human crystalline lens, Gerontologia 3:213–231.

    Article  Google Scholar 

  • Santus, R., Bogin, M., and Aubailly, M., 1972, Influence of energy transfer on the photoionization of tryptophan and tyrosine in basic media, Photochem. Photobiol. 15:61–69.

    Article  Google Scholar 

  • Sato, K., 1973, Fluorescence in human lenses, Exp. Eye Res. 16:167–172.

    Article  Google Scholar 

  • Sellers, D., and Ghiron, C. A., 1973, Role of the tryptophan fluorescent state in the UV induced inactivation of β-trypsin, Photochem. Photobiol. 18:393–402.

    Article  Google Scholar 

  • Setlow, R. B., 1960, Ultraviolet wavelength-dependent effects on proteins and nucleic acids, Radiation Res. Suppl. 2:276–289.

    Article  Google Scholar 

  • Sherashov, S. G., 1970, Spectral sensitivity of the cornea to ultraviolet radiation, Biofizika 15:543–544.

    Google Scholar 

  • Shimizu, O., 1973, Excited states in photodimerization of aqueous tyrosine at room temperature, Photochem. Photobiol. 18:125–133.

    Article  Google Scholar 

  • Sliney, D. H., 1972, The merits of an envelope action spectrum for ultraviolet radiation exposure criteria, Am. Ind. Hyg. Assoc. (October).

    Google Scholar 

  • Steen, H., 1974, Wavelength dependence of the quantum yield of fluorescence and photoionization of indoles, J. Chem. Phys. 61:3997–4002.

    Article  Google Scholar 

  • Stein, P. J., Henkens, R. W., Yamanashi, B. S., and Wolbarsht, M. L., 1977, Studies on brunescent cataract. II. Fluorescent studies on normal and brunescent lens proteins, Ophthalmic Res. (in press).

    Google Scholar 

  • Tomicic, H., Pieba, M., Romero, C., Soto, A., and Toha, J. C., 1973, Radioprotection (UV and gamma rays) of DNA molecule by indole and indole derivatives, A. Naturforsch.[c] 28:379–385.

    Google Scholar 

  • Trendelenberg, W., 1943, Der Desichtsinn, Springer-Verlag, Berlin.

    Google Scholar 

  • van Heyningen, R., 1970, Fluorescent glucosides in the human lens, Natue (London) 230:393–394.

    Article  Google Scholar 

  • van Heyningen, R., 1973a, Assay of fluorescent glucosides in the human lens, Exp. Eye Res. 15:121–126.

    Article  Google Scholar 

  • van Heyningen, R., 1973b, Photooxidation of lens proteins by sunlight in the presence of fluorescent derivatives of kynurenine, isolated from the human lens, Exp. Eye Res. 17:137–147.

    Article  Google Scholar 

  • Wald, G., 1952, Alleged effects of the near ultraviolet on human vision, J. Opt. Soc. Am. 42:171–177.

    Article  Google Scholar 

  • Walrant, P., and Santus, R., 1974, N-Formyl kynurenine, a tryptophan photooxidation product as a photodynamic sensitizer, Photochem. Photobiol. 19:411–417.

    Article  Google Scholar 

  • Walter, J., Voorhees, J., Kelsey, W., and Duell, E., 1973, Psoralen plus black light inhibits epidermal DNA synthesis, Arch. Dermatol. 107:861–865.

    Article  Google Scholar 

  • Weisse, I., and Stotzer, H., 1974, Age and light dependent changes in the rat eye, Virchows Arch. (Pathol. Anat. Physiol.) 362:145–156.

    Article  Google Scholar 

  • Weiter, J. J., and Finch, E. D., 1975, Paramagnetic species in cataractous human lenses, Nature (London) 254:536–537.

    Article  Google Scholar 

  • Wolbarsht, M. L., 1976, Function of intraocular color filters, Fed. Proc. 35:44–50.

    Google Scholar 

  • Wolbarsht, M. L., and Yamanashi, B. S., 1977, Intensity sharing, upper and lower limit and genetic dependence of visual pigment absorption spectra, Biophys. J. 17:17A.

    Article  Google Scholar 

  • Yamamoto, K., 1973, Aging of soluble lens proteins, Acta Soc. Ophthalmol. Jpn. 77:897–906.

    Google Scholar 

  • Zigler, J. S., Jr., Sidbury, J. B., Jr., Yamanashi, B. S., and Wolbarsht, M. L., 1977, Studies on brunescent cataract. I. Analysis of free and protein-bound amino acids, Ophthalmic Res. (in press).

    Google Scholar 

  • Zigman, S., and Bagley, S., 1971, New UV light effects on dogfish retinal rods, Exp. Eye Res. 12:155–157.

    Article  Google Scholar 

  • Zigman, S., and Vaughan, T., 1974, Near-UV effects on lenses and retinas of mice, Invest. Ophthalmol. 13:462–465.

    Google Scholar 

  • Zigman, S., Schultz, J., and Yulo, T., 1973, Possible roles of near UV light in the cataractous process, Exp. Eye Res. 15:201–208.

    Article  Google Scholar 

  • Zuclich, J. A., and Connolly, J. S., 1976, Ocular hazards of near-UV laser radiation, J. Opt. Soc. Am. 66:79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Kurzel, R.B., Wolbarsht, M.L., Yamanashi, B.S. (1977). Ultraviolet Radiation Effects on the Human Eye. In: Smith, K.C. (eds) Photochemical and Photobiological Reviews. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2577-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2577-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2579-6

  • Online ISBN: 978-1-4684-2577-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics