Skip to main content

Relationship Between Steady Redox State and Brain Activation-Induced NAD/NADH Redox Responses

  • Chapter
Oxygen Transport to Tissue-V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 169))

Abstract

It is well recognized that activation of the brain leads to an overwhelming increase in cerebral blood flow (CBF), oxygen, and glucose consumption (Siesjö, 1978; Sokoloff, 1981). Because ATP usage is augmented, the ratio of ATP/ADP decreases, and according to the in vitro data of Chance and Williams (1955), the rate of mitochondrial electron transport and ADP phosphorylation will be accelerated. Consequently, mitochondrial NADH should be oxidized (Chance and Williams, 1955). The increased need of mitochondrial electron transport for reducing equivalents is matched by the increased production of pyruvate via stimulation of glycogenolysis and glycolysis (Siesjö, 1978; Sokoloff, 1981). Though it is unlikely that brain suffers from hypoxia under augmented electrical activity (Siesjö, 1978), a considerable amount of pyruvate is converted into lactate, and NADH accumulates in the cytosol (Howse and Duffy, 1975; Siesjö, 1978). This NADH reduction is explained as being due to the restriced capability of the so-called “H-shuttle” mechanisms to transfer H+ from cytosolic NADH to mitochondrial NAD (Howse and Duffy, 1975; Siesjö, 1978). Interestingly, when the mitochondrial NAD/NADH ratio has been determined with the oxidized-reduced substrate ratio method during epileptic seizures, discernible NADH oxidation was not obtained (Siesjö, 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bashford, C.L., Barlow, C.H., Chance, B., Haselgrove, J., and Sorge, J., 1982, Optical measurements of oxygen delivery and consumption in gerbil cerebral cortex, Am. J. Physiol., 242: C365.

    Google Scholar 

  • Brauser, B., Bücher, T., and Dolivo, M., 1970, Redox transitions of cytochromes and pyridine nucleotides upon stimulation of an isolated rat ganglion, FEBS Lett., 8: 297.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., and Williams, R.G., 1955, Respiratory enzymes in oxidative phosphorylation. III. The steady state, J. Biol. Chenu, 217: 409.

    CAS  Google Scholar 

  • Cummins, J.B., 1971, Spectral changes in respiratory intermediates of brain cortex in response to depolarizing pulses, Biochim. Biophys. Acta, 253: 39.

    Article  PubMed  CAS  Google Scholar 

  • Dorá, E., and Koväch, A.G.B., 1978, Electrically evoked cerebrocortical NADH fluorescence changes influenced by the steady state redox level, Fed. Proc, 37: 498.

    Google Scholar 

  • Dorá, E., and Kovách, A.G.B., 1979, Reactivity of the cerebrocortical vasculature and energy metabolism to direct cortical stimulation in hemorrhagic shock, Acta Physiol. Acad. Sci. Hung., 54: 347.

    PubMed  Google Scholar 

  • Dorá, E., and Kovách, A.G.B., 1982, Effect of acute arterial hypo-and hypertension on cerebrocortical NAD/NADH redox state and vascular volume, J. Cereb. Blood Flow Metab., 2: 209.

    Article  PubMed  Google Scholar 

  • Dorá, E., Satori, O., Szabo, L., and Kovách, A.G.B., 1980, Shock-induced cytoplasmic NADH fluorescence changes in living cat brain cortex, Acta Physiol. Acad. Sci. Hung., 56: 219.

    PubMed  Google Scholar 

  • Dorá, E., Zeuthen, T., Silver, I., Chance, B., and Kovách, A.G.B., 1979, Effect of various severity of arterial hypoxia on cere-brocortical redox state, vascular volume, oxygen tension, electrical activity and potassium ion concentration, Acta Physiol. Acad. Sci. Hung., 54: 319.

    PubMed  Google Scholar 

  • Eke, A., Hutiray, G., and Kovách A.G.B., 1979, Induced hemodilution detected by reflectometry for measuring microregional blood flow and blood volume in cat brain cortex, Am. J. Physiol., 236: H759.

    PubMed  CAS  Google Scholar 

  • Gjedde, A., Hansen, A.J., and Quistorff, B., 1981, Blood-brain glucose transfer in spreading depression, J. Neurochem., 37: 807.

    Article  PubMed  CAS  Google Scholar 

  • Gyulai, L., Dorá, E., and Kovách, A.G.B., 1982, NAD/NADH redox state changes on cat brain cortex during stimulation and hypercapnia, Am. J. Physiol., in press.

    Google Scholar 

  • Harbig, K., Chance, B., Kovách, A.G.B., and Reivich, M., 1976, In vivo measurement of pyridine nucleotide fluorescence from cat brain cortex, J. Appl. Physiol., 41: 480.

    PubMed  CAS  Google Scholar 

  • Hempel, F.G., and Jöbsis, F.F., 1979, Comparison of cerebral NADH and cytochrome aa3 redox shifts during anoxia and hemorrhagic hypotension, Life Sci., 25: 1145.

    Article  PubMed  CAS  Google Scholar 

  • Hempel, F.G., Kariman, K., and Saltzman, H., 1980, Redox transitions in mitochondria of cat cerebral cortex with seizures and hemorrhagic hypotension, Am. J. Physiol., 238: H249.

    PubMed  CAS  Google Scholar 

  • Howse, D.C., and Duffy, T.E., 1975, Control of the redox state of the pyridine nucleotide in rat cerebral cortex. Effect of electro-shock-induced seizures, J. Neurochem., 24: 935.

    Article  PubMed  CAS  Google Scholar 

  • Jöbsis, F.F., O’Connor, M., Vitale, A., and Vreman, H., 1971, Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity, J. Neurophysiol., 34: 735.

    PubMed  Google Scholar 

  • Kontos, H.A., Wei, E.P., Raper, A.J., Rosenblum, W.I., Navari, R.M., and Patterson, J.L., 1978, Role of tissue hypoxia in local regulation of cerebral microcirculation, Am. J. Physiol., 234: H582.

    PubMed  CAS  Google Scholar 

  • Lipton, P., 1973, Effects of membrane depolarization on nicotinamide nucleotide fluorescence in brain slices, Biochem. J., 136: 999.

    PubMed  CAS  Google Scholar 

  • Mayevsky, A., and Chance, B., 1975, Metabolic responses of awake cerebral cortex to anoxia, hypoxia, spreading depression and epileptiform activity, Brain Res., 98: 149.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal, M., LaManna, J.C., Jöbsis, F.F., Levasseur, H.A., Kontos, H.A., and Patterson, J.L., 1976, Effects of respiratory gases on cytochrome a in intact cerebral cortex: is there a critical Po2, Brain Res., 108: 143.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal, M., and Somjen, G., 1973, Spreading depression, sustained potential shifts, and metabolic activity of cerebral cortex of cats, J. Neurophysiol., 36: 739.

    PubMed  CAS  Google Scholar 

  • Siesjö, B.K., 1978, “Brain Energy Metabolism”, John Wiley & Sons, Chichester-New York-Brisbane-Toronto.

    Google Scholar 

  • Sokoloff, L., 1981, Relationships among local functional activity, energy metabolism, and blood flow in the central nervous system, Fed, Proc., 40: 2311.

    CAS  Google Scholar 

  • Wahl, M., and Kuschinsky, W., 1976, The dilatatory action of adenosine on pial arteries of cats and its inhibition by theophylline, Pflügers Arch., 362: 55.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Kovách, A.G.B., Dorá, E., Gyulai, L. (1984). Relationship Between Steady Redox State and Brain Activation-Induced NAD/NADH Redox Responses. In: Lübbers, D.W., Acker, H., Leniger-Follert, E., Goldstrick, T.K. (eds) Oxygen Transport to Tissue-V. Advances in Experimental Medicine and Biology, vol 169. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1188-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1188-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1190-4

  • Online ISBN: 978-1-4684-1188-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics