Skip to main content

Magnetic Cumulation Generator Parameters and Means to Improve Them

  • Chapter
Megagauss Physics and Technology

Abstract

Some major means to increase magnetic cumulation generator (MCG) energy and output energy, namely, strong magnetic field (about 1 MG) locali­zation on a moving conductor surface, explosive and magnetic laws correlation and multielement MCG battery formation are treated.

The upper energy limit for a single MCG is estimated to be of the order of 100 ÷ 1000 MJ. This limitations is lifted if multielement MCG battery is formed. Specific energy of up to 100 MJ/m3 and efficiency of up to 30% have been obtained on the experimental MCG device with a cone central tube. Mag­netic energy of 50 MJ at load inductance of 2 µ H has been produced using a battery composed of four helical MCG’s.

Ways to increase MCG power are described. The upper power limit for a single MCG is estimated to be equal to 10 ÷ 100 TW. Experimental evidence is available of possibility to achieve specific power of about 10 TW/m3.

A method to obtain large energy amplification factors is reported, which consists in decreasing inductance L and resistance R according to the relation −L = 2α R where α < 1 is an arbitrary constant (L (t) is an exponent).

Some principles are considered of designing compromise MCG versions characterized by high energy and high energy amplification factors simultane­ously. The principle of a constant amplitude wave running ahead of a conduc­tor is discussed. This wave is electric at the initial part and magnetic at the final part of a MCG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Physics of High Energy Density,edited by P. Caldirola and by H. Knoepfel, Academic Press New York and London, 1971.

    Google Scholar 

  2. G. Linhart, H. Knoepfel, C. Gourland, Nuclear Fusion, 1962, Supplement Part 2., p. 733.

    Google Scholar 

  3. M. Cowan, J. Freeman, J. Appl. Phys, Vol. 44, 4, 1973.

    Article  Google Scholar 

  4. B. Bernstein, and I. Smith, IEEE Trans., 1973, NS-20, 3, Pt. 1, 294.

    Google Scholar 

  5. Carder, Gagnon, “Energy Storage Options for Shiva Upgrade,” Proc. IEEE Int. Pulsed Power Conf., Lubbock, Tex. 1976, New York, N.Y. 1976.

    Google Scholar 

  6. C.M. Fowler, W.B. Garn and Caird, J. Appl. Phys., 31, 588 (1960).

    Google Scholar 

  7. D.B. Cummings, J. Appl. Phys., 40, 4146 (1969).

    Article  ADS  Google Scholar 

  8. A.E. Voitenko et al., Pribory i Tekn. Eksper. N. 3 (1973) 177.

    Google Scholar 

  9. F. Herlach and H. Knoepfel, Rev. Sci. Instr., 36, 1088 (1965).

    Article  ADS  Google Scholar 

  10. N.N. Kalitkin, L.S. Tsareva, Magnitnaya Gidrodinamika, N. 3 (1968) 9.

    Google Scholar 

  11. E.I. Bichenkov, Dokl. Akad. Nauk SSSR, N. 4 (1967), 779.

    Google Scholar 

  12. R. Conger, J. Appl. Phys., 38, 2275 (1967).

    Article  ADS  Google Scholar 

  13. J.W. Shearer et al., J. Appl. Phys, 39, 2102 (1968).

    Article  ADS  Google Scholar 

  14. J.C. Crawford and R.A. Damerow, J. Appl. Phys., 39, 5224 (1968).

    Article  ADS  Google Scholar 

  15. H. Knoepfel, Pulsed High Magnetic Fields, North-Holland Publishing Company Amsterdam, London, 1970.

    Google Scholar 

  16. M. Cowan et al., Proc. 6th Symposium on Engineering Problems of Fusion Research, San Diego, USA, Nov. 18–21, 1975, p. 308.

    Google Scholar 

  17. R.Z. Lydaez, A.S. Yuryzhev, B.A. Bojko, A.S. Seregin, “Explosive Magnetic Generator,” Bull. OIPOTZ N. 33, 1969, 178.

    Google Scholar 

  18. E.J. Bichenkov, Zh. Prikl. Mekh. i Fekn. Friz. N. 4, (1976) 121.

    Google Scholar 

  19. A.I. Pavlovskii et al., “A Multiwire Helical Magnetic Cumulation Generators,” (these proceedings).

    Google Scholar 

  20. A.I. Pavlovskii et al., “Transformer Energy Output Magnetic Cumulation Generators,” (these proceedings).

    Google Scholar 

  21. A.I. Pavlovskii et al., “Formation and Transmission of Magnetic Cumulation Generators Electromagnetic Energy Pulses,” (these proceedings).

    Google Scholar 

  22. A.I. Pavlovskii et al., “Reproducible Generation of Multimegagauss Magnetic Fields,” (these proceedings) .

    Google Scholar 

  23. A. Bowersy, Electrische Hochtspannungen, Berlin, 83, 1939.

    Google Scholar 

  24. A.I. Pavlovskii, V.S. Bosamykin, Atomnaya Energiya, 37, V.3, (1974), 228.

    Google Scholar 

  25. M.N. Bystrov et al., Report at joint seminar USSR-USA, “Iduktivnye nakopiteli energii hommutazionnaya apparatura dlya termoyadernykh ustanovok,” L; N. IIEFA, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Pavlovskii, A.I. et al. (1980). Magnetic Cumulation Generator Parameters and Means to Improve Them. In: Turchi, P.J. (eds) Megagauss Physics and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1048-8_53

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1048-8_53

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1050-1

  • Online ISBN: 978-1-4684-1048-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics