Skip to main content

A Kinetic Model for the Reduction in Surface Area during Initial Stage Sintering

  • Chapter
Sintering and Catalysis

Part of the book series: Materials Science Research ((MSR,volume 10))

Abstract

Recent morphology calculations1–3 have demonstrated the usefulness of geometric parameters other than neck size in monitoring sintering progression. These calculations have provided the first precise relationship between neck size and the specific surface area based on a minimum surface energy consideration in a sphere-to-sphere configuration. Also, shrinkage in particle size or interparticle distance has been directly related to the neck size for the surface- and bulk-transport mechanism,1,2 respectively. Similar relations have been found from an analysis of the sintering of wires.3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. German and Z. A. Munir, “Morphology Changes During Surface-Transport Controlled Sintering,” accepted, Met. Trans., 1975.

    Google Scholar 

  2. R. M. German and Z. A. Munir, “Morphology Changes During Bulk-Transport Sintering,” submitted, Met. Trans., 1974.

    Google Scholar 

  3. R. M. German and Z. A. Munir, “The Geometry of Sintering Wires,” accepted, J. Mat. Sci., 1975.

    Google Scholar 

  4. R. M. German and Z. A. Munir, “The Identification of the Initial-Stage Sintering Mechanism: A New Approach,” published in these proceedings.

    Google Scholar 

  5. G. C. Kuczynski, Trans. AIME, vol. 185, p. 169, 1949.

    Google Scholar 

  6. J. G. R. Rockland, Acta Met., vol. 14, p. 1273, 1966.

    Article  CAS  Google Scholar 

  7. J. G. R. Rockland, Acta Met., vol. 15, p. 277, 1967.

    Article  CAS  Google Scholar 

  8. W. D. Kingery and M. Berg, J. Appl. Phys., vol. 26, p. 1205, 1955.

    Article  CAS  Google Scholar 

  9. G. C. Kuczynski, Advan. Colloid Interface Sci., vol. 3, p. 275, 1972.

    Article  CAS  Google Scholar 

  10. D. L. Johnson and I. B. Cutler, J. Amer. Ceram. Soc, vol. 46, p. 541, 1963.

    Article  CAS  Google Scholar 

  11. R. L. Coble, J. Amer. Ceram. Soc, vol. 41, p. 55, 1958.

    Article  CAS  Google Scholar 

  12. W. G. Schlaffer, C. R. Adams, and J. N. Wilson, J. Phys. Chem., vol. 69, p. 1530, 1965.

    Article  CAS  Google Scholar 

  13. F. N. Rhines, R. T. DeHoff and R. A. Rummel, Agglomeration, W. A. Knepper (editor), Interscience, New York, p. 351, 1962.

    Google Scholar 

  14. F. N. Rhines, R. T. DeHoff and J. Kronsbein, A Topological Study of the Sintering Process, Final Report, U.S. Atomic Energy Commission Contract Number AT-(40-l)-2581, University of Florida, Gainesville, 1969.

    Google Scholar 

  15. R. T. DeHoff, R. A. Rummell, H. P. LaBuff and F. N. Rhines, Modern Developments in Powder Metallurgy, vol. 1, H. H. Hausner (editor), Plenum Press, New York, p. 310, 1966.

    Chapter  Google Scholar 

  16. R. Watanabe and Y. Masuda, Trans. Japan Inst. Metals, vol. 13, p. 134, 1972.

    Google Scholar 

  17. H. H. G. Jellinek and S. H. Ibrahim, J. Colloid Interface Sci., vol. 25, p. 245, 1967.

    Article  CAS  Google Scholar 

  18. A. C. Nyce and W. M. Shafer, Inter. J. Powder Met., vol. 8 (4), p. 171, 1972.

    CAS  Google Scholar 

  19. S. Prochazka and R. L. Coble, Phys. Sintering, vol. 2 (1), p. 1, 1970.

    Google Scholar 

  20. S. Prochazka and R. L. Coble, Phys. Sintering, vol. 2(2), p. 15, 1970.

    CAS  Google Scholar 

  21. F. A. Nichols and W. W. Mullins, J. Appl. Phys., vol. 36, p. 1826, 1965.

    Article  Google Scholar 

  22. L. C. Grayton and H. J. Fraser, J. Geol., vol. 43, p. 785, 1935.

    Article  Google Scholar 

  23. E. Manegold, R. Hofman and K. Solf, Roll. Z., vol. 56, p. 142, 1931.

    CAS  Google Scholar 

  24. E. Manegold and W. Von Engelhardt, Koll. Z., vol. 62, p. 285, 1933.

    Article  CAS  Google Scholar 

  25. E. Manegold and W. Von Engelhardt, Koll. Z., vol. 63, p. 12, 1933.

    Article  CAS  Google Scholar 

  26. C. Herring, J. Appl. Phys., vol. 21, p. 301, 1950.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

German, R.M., Munir, Z.A. (1975). A Kinetic Model for the Reduction in Surface Area during Initial Stage Sintering. In: Kuczynski, G.C. (eds) Sintering and Catalysis. Materials Science Research, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0934-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0934-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0936-9

  • Online ISBN: 978-1-4684-0934-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics