Skip to main content

Antioxidant Mechanisms of Secondary Natural Products

  • Chapter
Oxidative Stress and Antioxidant Defenses in Biology

Abstract

Atmospheric oxygen is unusual among stable molecules in that its ground state has two unpaired electrons. This permits it to enter into energetically favorable reactions (eq. 6.1) with many organic free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, N.S. (1980) Interaction of phenolic antioxidants with hindered piperidine compounds: a spectrophotometric study. Makromol. Chem. Rapid Commun. 1, 235–24.

    Article  CAS  Google Scholar 

  • Ames, B. N., Cathcart, R., Schwiers, E. and Hochstein, P. (1981) Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc. Natl. Acad. Sci. USA 78, 6858–6862.

    Article  PubMed  CAS  Google Scholar 

  • Ariga, T. and Hamano, M. (1990) Radical scavenging action and its mode in procyanidins B-1 and B-3 from azuki beans to peroxyl radicals. Agric. Biol. Chem. 54, 2499–2504.

    Article  CAS  Google Scholar 

  • Asada, K. and Kanematsu, S. (1976) Reactivity of thiols with superoxide radicals. Agric. Biol. Chem. 40, 1891–1892.

    Article  CAS  Google Scholar 

  • Barclay, L.R.C., Locke, S.J. and MacNeil, J.M. (1985) Autoxidation in micelles. Synergism of vitamin C with lipid-soluble vitamin E and water-soluble Trolox. Can. J. Chem. 63, 366–374.

    Article  CAS  Google Scholar 

  • Barclay, L.R.C., Locke, S.J., MacNeil, J.M., Van Kessel, J., Burton, G.W. and Ingold, K.U. (1984) Autoxidation of micelles and model membranes. Quantitative kinetic measurements can be made by using either water-soluble or lipid-soluble initiators with water-soluble or lipid-soluble chain-breaking antioxidants. J. Am. Chem. Soc. 106, 2479–2481.

    Article  CAS  Google Scholar 

  • Bendich, A., Machlin, L.J., Scandurra, O., Burton, G.W. and Ingold, K.U. (1986) The antioxidant role of vitamin C. Adv. Free Rad. Biol. Med. 2, 419–444.

    Article  CAS  Google Scholar 

  • Boozer, C.E., Hammond, G.S., Hamilton, C.E. and Sen, J.N. (1955) Air oxidation of hydrocarbons. II. The stoichiometry and fate of inhibitors in benzene and chlorobenzene. J. Am. Chem. Soc. 77, 3233–3237.

    Article  CAS  Google Scholar 

  • Brown, D.W., Graupner, P.R., Sainsbury, M. and Shertzer, H.G. (1991) New antioxidants incorporating indole and indoline chromophores. Tetrahedron 47, 4383–4408.

    Article  CAS  Google Scholar 

  • Buettner, G.R. (1988) In the absence of catalytic metals ascorbate does not autoxidize at pH 7. Ascorbate as a test for catalytic metals, J. Biochem. Biophys. Meth. 16, 27–40.

    Article  PubMed  CAS  Google Scholar 

  • Burton, G.W. and Ingold, K.U. (1981) Autoxidation of biological molecules. I. The antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J. Am. Chem. Soc. 103, 6472–6477.

    Article  CAS  Google Scholar 

  • Burton, G.W. and Ingold, K.U. (1981) Beta-carotene: an unusual type of lipid antioxidant. Science 224, 569–573.

    Article  Google Scholar 

  • Buxton, G.V., Greenstock, C.L., Helman, W.P. and Ross, A.B. (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms, and hydroxyl radicals in aqueous solution. J. Phys. Chem. Ref. Data 17, 514–886.

    Article  Google Scholar 

  • Cabelli, D.E. and Bielski, B.H.J. (1983) Kinetics and mechanism for the oxidation of ascorbic acid/ascorbate by HO2/O2 radicals. A pulse radiolysis and stopped-flow photolysis study. J. Phys. Chem. 87, 1809–1817.

    Article  CAS  Google Scholar 

  • Cabrini, L., Pasquali, P., Tadolini, B., Sechi, A.M. and Landi, L. (1986) Antioxidant behavior of ubiquinone and p-carotene incorporated in model membranes. Free Rad. Res. Commun. 2, 85–92.

    Article  CAS  Google Scholar 

  • Cadenas, E., Simic, M.G. and Sies, H. (1989) Antioxidant activity of 5-hydroxytryptophan, 5-hydroxyindole, and DOPA against microsomal lipid peroxidation and its dependence on vitamin E. Free Rad. Res. Commun. 6, 11–17.

    Article  CAS  Google Scholar 

  • Chimi, H., Cillard, J., Cillard, P. and Rahmani, M. (1991) Peroxyl and hydroxyl radical scavenging activity of some natural phenolic antioxidants. J. Am. Oil Chem. Soc. 68, 307–312.

    Article  CAS  Google Scholar 

  • Chou, P.-T. and Khan, A.U. (1983) L-ascorbate quenching of singlet delta molecular oxygen in aqueous media: a generalized antioxidant property of vitamin C. Biochem. Biophys. Res. Commun. 115, 932–937.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, A.M., Aberdroth, R.E. and Hochstein, P. (1984) Inhibition of free radical-induced DNA damage by uric acid. FEBS Lett. 174, 147.

    Article  PubMed  CAS  Google Scholar 

  • Conn, P.F., Lambert, C., Land, E.J., Schalch, W. and Truscott, T.G. (1992) Carotene-oxygen radical interaction. Free Rad. Res. Commun. 16, 401–408.

    Article  CAS  Google Scholar 

  • Cotelle, N., Bernier, J.L., Henichart, J.P., Catteau, J.P., Guydou, E. and Wallet, J.C. (1992) Scavenger and antioxidant properties of ten synthetic flavones. Free Rad. Biol. Med. 13, 211–219.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, T.A., Midden, W.R. and Hartman, P.E. (1988) Some prevalent biomolecules as defenses against singlet oxygen damage. Photochem. Photobiol. 47, 357–362.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, R.S. and Trethewey, K.R. (1976) The role of the excited singlet state of dyes in dye-sensitized photooxidation reactions. J. Am. Chem. Soc. 98, 4008–4009.

    Article  CAS  Google Scholar 

  • Doba, T., Burton, G.W. and Ingold, K.U. (1985) Antioxidant and co-oxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analogue, upon the peroxidation of aqueous multilamellar phospholipid liposomes. Biochim. Biophys. Acta 835, 298–303.

    PubMed  CAS  Google Scholar 

  • Douglas, D.E. (1991) Higher aliphatic 2,4-diketones: a ubiquitous lipid class with chelating properties, in search of a physiological function. J. Lipid Res. 32, 553–558.

    PubMed  CAS  Google Scholar 

  • Fahrenholtz, S.R., Doleiden, F.H., Trozzolo, A.M. and Lamola, A. (1974) On the quenching of singlet oxygen by α-tocopherol. Photochem. Photobiol. 20, 505–509.

    Article  PubMed  CAS  Google Scholar 

  • Foote, C.S., Denny, R.W., Weaver, L., Chong, Y. and Peters, J. (1970) Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection. J. Am. Chem. Soc. 92, 5216–5219.

    Article  PubMed  CAS  Google Scholar 

  • Gorman, A.A., Hamblett, I., Smith, K. and Standen, M.C. (1984) Strychnine: a fast physical quencher of singlet oxygen. Tetrahedron Lett. 25, 581–584.

    Article  CAS  Google Scholar 

  • Graf, E., Empson, K.L. and Eaton, J.W. (1987) Phytic acid, a natural antioxidant. J. Biol. Chem. 262, 11647–11650.

    PubMed  CAS  Google Scholar 

  • Hartman, Z. and Hartman, P.E. (1987) Interception of some direct-acting mutagens by ergothioneine. Environ. Molec. Mutagen. 10, 3–15.

    Article  CAS  Google Scholar 

  • Hodnick, W.F., Milosavljevic, E.B., Nelson, J.H. and Pardini, R.S. (1988) Electrochemistry of flavonoids. Relationships between redox potentials, inhibition of mitochondrial respiration, and production of oxygen radicals by flavonoids. Biochem. Pharmacol., 37, 2607–2611.

    Article  PubMed  CAS  Google Scholar 

  • Howard, J.A. and Yamada, T. (1981) Absolute rate constants for hydrocarbon autoxidation. 31. Autoxidation of cumene in the presence of tertiary amines. J. Am. Chem. Soc. 103, 7102–7106.

    Article  CAS  Google Scholar 

  • Hudson, B.J.F. and Lewis, J.I. (1983a) Polyhydroxy flavonoid antioxidants for edible oils. Structural criteria for activity. Food Chem. 10, 47–55.

    Article  CAS  Google Scholar 

  • Hudson, B.J.F. and Lewis, J.I. (1983b) Polyhydroxy flavonoid antioxidants for edible oils. Phospholipids as synergists. Food Chem. 10, 111–120.

    Article  CAS  Google Scholar 

  • Hudson, B.J.F. and Mahgoub, S.E.O. (1981) Synergism between phospholipids and naturally-occurring antioxidants in leaf lipids. J. Sci. Food Agric. 32, 208–210.

    Article  CAS  Google Scholar 

  • Husain, S.R., Cillard, J. and Cillard, P. (1987) Hydroxyl radical scavenging activity of flavonoids. Phytochemistry 26, 2489–2491.

    Article  CAS  Google Scholar 

  • Katbab, A.A., Ogunbanjo, A. and Scott, G. (1985) Mechanisms of antioxidant action; antidegradant activities of phenols and quinones derived from phenolic sulfides in a peroxide vulcanizate. Polym. Degr. Stabil. 12, 333–347.

    Article  CAS  Google Scholar 

  • Kennedy, T.A. and Liebler, D.C. (1992) Peroxyl radical scavenging by (3-carotene in lipid bilayers. J. Biol. Chem. 267, 4658–4663.

    PubMed  CAS  Google Scholar 

  • Larson, R.A. and Marley, K.A. (1984) Quenching of singlet oxygen by alkaloids and related nitrogen heterocycles. Phytochemistry 23, 2351–2354.

    Article  CAS  Google Scholar 

  • Loth, H. and Diedrich, H. (1967) Redoxpotentiale einiger 3,4-dihydroxylierter Flavon- und Flavonolderivate. Arch. Pharm. 301, 103–110.

    Article  Google Scholar 

  • Mellors, A. and Tappel, A.L. (1966) The inhibition of mitochondrial peroxidation by ubiquinone and ubiquinol. J. Biol. Chem. 241, 4353–4356.

    PubMed  CAS  Google Scholar 

  • Mukai, K., Daifuku, K., Ozabe, K., Tanigaki, T. and Inouye, K. (1991) Structure-activity relationships in the quenching reaction of singlet oxygen by tocopherol (vitamin E) derivatives and related phenols. Finding of linear correlation between the rates of quenching os singlet oxygen and scavenging of peroxyl and phenoxyl radicals in solution. J. Org. Chem. 56, 4189–4192.

    Article  Google Scholar 

  • Niki, E., Saito, T. and Kamiya, Y. (1983) The role of vitamin C as an antioxidant. Chem. Lett., 631–632.

    Google Scholar 

  • Niki, E., Saito, M., Yoshikawa, Y., Yamamoto, Y. and Kamiya, Y. (1986) Oxidation of lipids. XII. Inhibition of oxidation of soybean phosphatidylcholine and methyl linoleate in aqueous dispersions by uric acid. Bull. Chem. Soc. Japan 59, 471–477.

    Article  CAS  Google Scholar 

  • Niki, E., Tsuchiya, J., Tanamura, R. and Kamiya, Y. (1982) Oxidation of lipids. II. Rate of inhibition of oxidation by a-tocopherol and hindered phenols measured by chemiluminescence. Bull. Chem. Soc. Japan 55, 1551–1555.

    Article  CAS  Google Scholar 

  • Osawa, T., Ramanatham, M., Kawakishi, S. and Namiki, M. (1992) Antioxidant defense systems generated by phenolic plant constituents. Am. Chem. Soc. Symp. 507, 122–134.

    CAS  Google Scholar 

  • Packer, J.E., Mahood, J.S., Mora-Arellano, V.O., Slater, T.F., Willson, R.L. and Wolfenden, B.S. (1981) Free radicals and singlet oxygen scavengers: reaction of a peroxy radical with beta-carotene, diphenylfuran, and 1,4-diazabicyclo [2.2.2]octane. Biochem. Biophys. Res. Commun. 98, 901–906.

    Article  PubMed  CAS  Google Scholar 

  • Packer, J.E., Slater, T.F. and Willson, R.L. (1979) Direct observation of a free radical intermediate between vitamin E and vitamin C. Nature 278, 737–738.

    Article  PubMed  CAS  Google Scholar 

  • Palozza, P. and Krinsky, N.I. (1992) Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch. Biochem. Biophys. 297, 291–295.

    Article  PubMed  CAS  Google Scholar 

  • Pryor, W.A., Strickland, T. and Church, D.F. (1988) Comparison of the efficiencies of several natural and synthetic antioxidants in aqueous sodium dodecyl sulfate micelle solutions. J. Am. Chem. Soc. 110, 2224–2229.

    Article  CAS  Google Scholar 

  • Ricardo da Silva, J.M., Darmon, N., Fernandez, Y. and Mitjavila, S. (1991) Oxygen free radical scavenger capacity in aqueous models of different procyanidins from grape seeds. J. Agric. Food Chem. 39, 1549–1552.

    Article  Google Scholar 

  • Robak, J. and Gryglewski, R.J. (1988) Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 37, 837–841.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer, D.T., Calderwood, J.S., Johlman, C.L. and Wilkins, C.L. (1985) Oxidation by superoxide ion of catechols, ascorbic acid, dihydrophenazine, and reduced flavins to their respective anion radicals. A common mechanism via a sequential proton-hydrogen atom transfer. J. Org. Chem. 50, 1409–1412.

    Article  CAS  Google Scholar 

  • Sorata, Y., Takahama, U. and Kimura, M. (1984) Cooperation of quercetin with ascorbate in the protection of photosensitized lysis of human erythrocytes in the presence of hematoporphyrin. Biochim. Biophys. Acta 799, 313–317.

    Article  PubMed  CAS  Google Scholar 

  • Speisky, H., Cassels, B.K., Lissi, E. and Videla, L.A. (1991) Antioxidant properties of the alkaloid boldine in systems undergoing lipid peroxidation and enzyme inactivation. Biochem. Pharmacol. 41, 1575–1581.

    Article  PubMed  CAS  Google Scholar 

  • Steenken, S. and Neta, P. (1982) One-electron redox potentials of phenols. Hydroxy- and aminophenols and related compounds of biological interest. J. Phys. Chem. 86, 3661–3667.

    Article  CAS  Google Scholar 

  • Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N. and Ames, B.N. (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043–1046.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, Y.J., Tsuchiya, M. and Packer, L. (1991) Thioctic acid and dihydrolipoic acid are novel antioxidants which interact with reactive oxygen species. Free Rad. Res. Commun. 15, 255–263.

    Article  CAS  Google Scholar 

  • Taira, J., Ikemoto, T., Yoneya, T., Hagi, A., Murakami, A. and Makinko, K. (1992) Essential oil phenyl propanoids: useful as OH scavengers? Free Rad. Res. Commun. 16, 197–204.

    Article  CAS  Google Scholar 

  • Tajima, K., Sakamoto, M., Okada, K., Mukai, K., Ishizu, K., Sakurai, H. and Mori, H. (1983) Reaction of biological phenolic antioxidants with superoxide generated by cytochrome P-450 model system. Biochem. Biophys. Res. Commun. 115, 1002–1008.

    Article  PubMed  CAS  Google Scholar 

  • Terao, J. (1989) Antioxidant activity of p-carotene-related carotenoids in solution. Lipids 24, 659–661.

    Article  PubMed  CAS  Google Scholar 

  • Terce, F., Tocanne, J.-F. and Laneelle, G. (1982) Interaction of ellipticine with model or natural membranes. A spectrophotometric study. Eur. J. Biochem. 125, 203–207.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, M., Williams, C.R. and Elliott, G.E.P. (1976) Stability of flavonoid complexes of copper(II) and flavonoid antioxidant activity. Anal. Chim. Acta 85, 375–381.

    Article  PubMed  CAS  Google Scholar 

  • Toda, S., Miyase, T., Arichi, H., Tanizawa, H. and Takino, Y. (1985) Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem. Pharm. Bull. 33, 1725–1728.

    Article  PubMed  CAS  Google Scholar 

  • Torel, J., Cillard, L. and Cillard, P. (1986) Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry 25, 383–385.

    Article  CAS  Google Scholar 

  • Wagner, G.R., Youngman, R.J. and Elstner, E.F. (1988) Inhibition of chloroplast photo-oxidation by flavonoids and mechanisms of the antioxidative action. J. Photochem. Photobiol. B 1, 451–460.

    Article  CAS  Google Scholar 

  • Weng, X.C. and Gordon, M.H. (1992) Antioxidant activity of quinones extracted from tanshen (Salvia miltiorrhiza Bunge). J. Agric. Food Chem. 40, 1331–1336.

    Article  CAS  Google Scholar 

  • Wilkinson, F. and Brummer, J.G. (1981) Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. J. Phys. Chem. Ref. Data 10, 809–999.

    Article  CAS  Google Scholar 

  • Yuting, C., Rongliang, Z., Zhongjian, J. and Yong, J. (1990) Flavonoids as superoxide scavengers and antioxidants. Free Rad. Biol. Med. 9, 19–21.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Chapman & Hall

About this chapter

Cite this chapter

Larson, R.A. (1995). Antioxidant Mechanisms of Secondary Natural Products. In: Ahmad, S. (eds) Oxidative Stress and Antioxidant Defenses in Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9689-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9689-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9691-2

  • Online ISBN: 978-1-4615-9689-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics