Skip to main content

Gliding Motility

  • Chapter
Algal Cell Motility

Part of the book series: Current Phycology ((CP))

Abstract

Active motility is one of the fundamental characteristics of many microorganisms and involves the interplay of a number of cellular functions that enable an organism to move in a coordinated fashion. Therefore, cell motility is a very complex and broad topic in research, one that involves problems associated with motor design, steering and control, and energy supply and distribution. As early as the Precambrian era, organisms in aquatic habitats developed two basic types of motility: flagellar and gliding motility. The first one is the subject of other chapters in this volume; the second one is the topic of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adanson, M. 1767. Un mouvement particulier découvet dans piante appellée tremella. Mem. Acad. Sci. Paris: 415–431.

    Google Scholar 

  • Allen, M. M. 1968. Ultrastructure of the cell wall and cell division of unicellular green algae. J. Bacteriol. 96: 842–852.

    Google Scholar 

  • Anderson, R. A., Medlin, L. K., and Crawford, R. M. 1986. An investigation of the cell wall components of Actinocyclus subtilis (Bacillariophyceae). J. Phycol. 22: 466–479.

    Google Scholar 

  • Bean, B. 1984. Microbial geotaxis. In G. Colombetti and F. Lenci, (eds.), Membranes and Sensory Transduction. Plenum, New York, pp. 163–198.

    Google Scholar 

  • Bloodgood, R. A. 1977. Motility occurring in association with the surface of the Chlamydomonas flagellum. J. Cell Biol. 75: 983–989.

    Google Scholar 

  • Bloodgood, R. A. 1981. Flagella-dependent gliding motility in Chlamydomonas. Protoplasma 106: 183–192.

    Google Scholar 

  • Bloodgood, R. A. 1988. Gliding motility and the dynamics of flagellar membrane glycoproteins in Chlamydomonas reinhardtii. J. Protozool. 35: 552–558.

    Google Scholar 

  • Bloodgood, R. A. 1989. Gliding motility and the flagellar surface. In R. A. Bloodgood, (ed.), Ciliary and Flagellar Membranes. Plenum Press, New York.

    Google Scholar 

  • Bredt, W., and Radestock, U. 1977. Gliding motility of Mycoplasma pulmonis. J. Bacteriol. 130: 937–938.

    Google Scholar 

  • Brokaw, C. J. 1962. Flagella. In R. A. Lewin (ed.), Physiology and Biochemistry of Algae. Academic Press, New York, pp. 595–601.

    Google Scholar 

  • Burchard, A. C., Burchard, R. P., and Kloetzel, J. A. 1977. Intracellular periodic structures in the gliding bacterium Myxococcus xanthus. J. Bacteriol. 132: 666–672.

    Google Scholar 

  • Burchard, R. P. 1981. Gliding motility. Ann. Rev. Microbiol. 35: 497–529.

    Google Scholar 

  • Burchard, R. P. 1986. The effect of surfactants on the motility and adhesion of gliding bacteria. Arch. Microbiol. 146: 147–150.

    Google Scholar 

  • Burkholder, P. R. 1934. Movement in Cyanophyceae. Quart. Rev. Biol. 9: 438–459.

    Google Scholar 

  • Butler, R. D., and Allsopp, A. 1972. Ultrastructural investigations in the Stigonemataceae. Arch. Microbiol. 82: 283–299.

    Google Scholar 

  • Castenholz, R. W. 1968. The behavior of Oscillatoria terebriformis in hot springs. J. Phycol. 4: 132–139.

    Google Scholar 

  • Castenholz, R. W., and Pierson, B. K. 1981. Isolation of members of the family Chloroflexaceae. In M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (eds.), The Prokaryotes. Springer-Verlag, Berlin, pp. 290–298.

    Google Scholar 

  • Chardard, R. 1977. La secretion de mucilage chez quelques desmidiales I. Les pores. Prostistologica 13: 241–251.

    Google Scholar 

  • Cohen, Y., Padan, E., and Shilo, M. 1975. Facultative anoxygenie photosynthesis in the cyanobacterium Oscillatoria limnetica J. Bacteriol. 123: 855–861.

    Google Scholar 

  • Correns, C. 1897. Uber die Membran und die Bewegung der Oscillatorien. Ber. Dtsch. Bot. Ges. 15: 139–148.

    Google Scholar 

  • Costerton, J. W., Geesey, G. G., and Cheng, K. J. 1978. How bacteria stick. Sci. Am. 238: 86–95.

    Google Scholar 

  • Costerton, J. W. F., Murray, R. G. E., and Robinow, C. F. 1961. Observations on the motility and the structure of Vitreoscilla. Can.J. Microbiol. 7: 329–339.

    Google Scholar 

  • Desikachary, T. V. 1959. Cyanophyta. New Delhi Agricultural Research, pp. 1–687. New Delhi, India.

    Google Scholar 

  • Dick, H., Stewart, W. D. P. 1980. The occurrence of fimbriae on a N2-fixing cyanobacterium which occurs in lichen symbiosis. Arch. Microbiol. 124: 107–109.

    Google Scholar 

  • Dobson, W. J., and McCurdy, H. D. 1979. The function of fimbriae in Myxococcus xanthus. I. Purification and properties of M. xanthus fimbriae. Can. J. Microbiol. 25: 1152–1160.

    Google Scholar 

  • Dobson, W. J., McCurdy, H. D., and MacRae, T. H. 1979. The function of fimbriae in Myxococcus xanthus. II. The role of fimbriae in cell-cell interactions. Can. J. Microbiol. 25: 1359–1372.

    Google Scholar 

  • Doetsch, R. N., and Hageage, G. J. 1968. Motility in prokaryotic organisms: Problems, points of view and perspectives. Biol. Rev. 43: 317–362.

    Google Scholar 

  • Drawert, H., and Metzner-Küster, I. 1958. Fluoreszenz- und elektronenmikroskopische Untersuchungen an Beggiatoa alba und Thiothrix nivea. Arch. Microbiol. 31: 422–434.

    Google Scholar 

  • Drawert, H., and Metzner-Küster, I. 1961. Licht und elektronenmikroskopische Untersuchungen an Desmidiaceen. I. Mitt. Zellwand und Gallertstrukturen bei einigen Arten. Planta 56: 213–228.

    Google Scholar 

  • Drews, G. 1959. Beiträge zur Kenntnis der phototaktischen Reaktionen der Cyanophyceen. Arch. Protistenk. 104: 389–430.

    Google Scholar 

  • Drews, G. 1973. Fine structure and chemical composition of the cell envelopes. In N. G. Carr and B. A. Whitton (eds.), The Biology of Blue-Green Algae. Blackwell, Oxford, pp. 96–116.

    Google Scholar 

  • Drews, G., and Nultsch, W. 1962. Spezielle Bewegungsmechanismen bei Einzellern (Bakterien, Algen). In W. Ruhland (ed.), Handbuch der Pflanzenphysiologie, Vol. 17/2. Springer-Verlag, Berlin, pp. 876–919.

    Google Scholar 

  • Drews, G., and Weckesser, J. 1982. Function, structure and composition of cell walls and external layers. In N. G. Carr, and B. A. Whitton, (eds.), The Biology of Cyanobacteria. Blackwell, London, pp. 333–358.

    Google Scholar 

  • Drum, R. W., Hopkins, J. T. 1966. Diatom locomotion, an explanation. Protoplasma 62: 1–33.

    Google Scholar 

  • Drum, R. W., Pankratz, H. S., and Stoermer, E. F. 1966. Electron microscopy of diatom cells. In J. G. Helmcke, and W. Kreiger (eds.), Diatomeenschalen im Electronenmikroskopischen Bild, pp. 1–25 and 613 plates.

    Google Scholar 

  • Dubinina, G. A., and Gorlenko, V. M. 1975. New filamentous photosynthetic green bacteria containing gas vacuoles. Microbiology 44: 452–458.

    Google Scholar 

  • Dworkin, M. 1983. Tactic behaviour of Myxococcus xanthus. J. Bacteriol. 154: 452–459.

    Google Scholar 

  • Echlin, P. 1964. The fine structure of the blue-green alga Anacystis montana f. minor grown in continuous illumination. Protoplasma 58: 439–457.

    Google Scholar 

  • Edgar, L. A., and Pickett-Heaps, J. D. 1984. Diatom locomotion. Prog. Phycol. Res. 3: 47–88.

    Google Scholar 

  • Ehrenberg, C. G. 1838. Die Infusionsthier chert als vollkommene Organismen. Leopold Voss, Leipzig.

    Google Scholar 

  • Fauré-Fremiet, E. 1951. The tidal rhythm of the diatom Hantzschia amphioxys. Biol. Bull. mar. biol. Lab. Woods Hole 100: 173–177.

    Google Scholar 

  • Fechner, R. 1915. Die Chemotaxis der Oszillarien und ihre Bewegungserscheinungen überhaupt. Z. Bot. 7: 289–364.

    Google Scholar 

  • Fletcher, M., and Floodgate, G. D. 1973. An electron-microscopic demonstration of an acidic polysaccharide involved in the adhesion of a marine bacterium to solid surfaces. J. Gen. Microbiol. 74: 325–334.

    Google Scholar 

  • Frank, H., Lefort, M., and Martin, H. H. 1962. Elektronenoptische und chemische Untersuchungen an Zell wänden der Blaualge Phormidium uncinatum. Z. Natur f. B. 7: 262–268.

    Google Scholar 

  • Frey-Wyssling, A., and Stecher, E. 1954. Uber den Feinbau des Nostoc-Schleimes. Z. Zellforsch. Mikrosk. Anat. 39: 515–519.

    Google Scholar 

  • Fritsch, F. E. 1945. The Structure and Reproduction of the Algae, Vol. II. Cambridge University Press, Cambridge.

    Google Scholar 

  • Geitler, L. 1925. Synoptische Darstellung der Cyanophyceen in morphologischer und systematischer Hinsicht. Beth. Bot. Centralbl. 41: 163–294.

    Google Scholar 

  • Gerrath, J. F. 1975. Notes on desmids ultrastructure. I. Cell wall and zygote wall of Cylindrocystis brebissonii. II. The replicate division septum of Bamubsina brebissonii. Beih. Nova Hedwigia 42: 103–113.

    Google Scholar 

  • Glauert, A. M., and Thornley, M. J. 1969. The topography of the bacterial cell wall. Ann. Rev. Microbiol. 23: 159–198.

    Google Scholar 

  • Golecki, J. R. 1977. Studies on ultrastructure and composition of cell walls of the cyanobacterium Anacystis nidulans. Arch. Microbiol. 114: 35–41.

    Google Scholar 

  • Gordon, R. 1987. A retaliatory role for algal projectiles, with implications for the mechanochemistry of diatom gliding motility. J. Theor. Biol. 126: 419–436.

    Google Scholar 

  • Gordon, R., and Drum, R. W. 1970. A capillarity mechanism for diatom gliding locomotion. Proc. Nat. Acad. Sci. U.S.A. 67: 338–344.

    Google Scholar 

  • Gorlenko, V. M., and Korotkov, S. A. 1979. A new filamentous green bacteria with gas vacuoles, Oscillochloris trichoides nov. comb. Inj. M. Nichols, (ed.), Abstracts of the Third International Symposium on Photosynthetic Prokaryotes, Oxford. University of Liverpool, England, p. A16.

    Google Scholar 

  • Gorlenko, V. M., and Pivovarova, T. A. 1977. On the belonging of the blue-green alga, Oscillatoria coerulescens Gicklhorn 1921, to a new genus of Chlorobacteria, Oscillochloris nov. gen. Izv. Akad. Nauk. SSSR, Ser. Biol. 3: 396–409.

    Google Scholar 

  • Günther, F. 1928. Uber den Bau und die Lebensweise der Euglenen, besonders der Arten E. terrícola, geniculata, próxima, sanguínea und luccus nov. spec. Arch. Protistenk. 60: 511–590.

    Google Scholar 

  • Häder, D.-P. 1974. Participation of two photosystems in the photophobotaxis of Phormidium uncinatum. Arch. Microbiol. 96: 255–266.

    Google Scholar 

  • Häder, D.-P. 1976. Phobie reactions between two adjacent monochromatic light fields. Z. Pflanzenphysiol. 78: 173–176.

    Google Scholar 

  • Häder, D.-P. 1977. Influence of electric fields on photophobic reactions in blue-green algae. Arch. Microbiol. 114: 83–86.

    Google Scholar 

  • Häder, D.-P. 1978a. Extracellular and intracellular determination of light-induced potential changes during photophobic reactions in blue-green algae. Arch. Microbiol. 119: 75–79.

    Google Scholar 

  • Häder, D.-P. 1978b. Evidence of electrical potential changes in photophobically reacting blue-green algae. Arch. Microbiol. 118: 115–119.

    Google Scholar 

  • Häder, D.-P. 1979. Photomovement. In W. Haupt, and M. E. Feinleib, (eds.), Encyclopedia of Plant Physiology, New Series, Vol. 7, Movement. Springer-Verlag, Berlin, pp. 268–309.

    Google Scholar 

  • Häder, D.-P. 1987a. Photomovement. In P. Fay and C. van Baalen, (eds.) The Cyanobacteria. Elsevier, New York, pp. 325–345.

    Google Scholar 

  • Häder, D.-P. 1987b. Photosensory behavior in procaryotes. Microbiol. Rev. 51: 1–21.

    Google Scholar 

  • Häder, D.-P. 1987c. Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate, Euglena gracilis. Arch. Microbiol. 147: 179–183.

    Google Scholar 

  • Häder, D.-P., Colombetti, G., Lenci, F., and Quaglia, M. 1981. Phototaxis in the flagellates, Euglena gracilis and Ochromonas danica. Arch. Microbiol. 130: 78–82.

    Google Scholar 

  • Häder, D.-P., and Poff, K. L. 1982. Dependence of the photophobic response of the blue-green alga, Phormidium uncinatum, on cations. Arch. Microbiol. 132: 345–348.

    Google Scholar 

  • Häder, D.-P., and Wenderoth, K. 1977. Role of three basic light reactions in photo-movement of desmids. Planta 137: 207–214.

    Google Scholar 

  • Halfen, L. N. 1973. Gliding motility of Oscillatoria: Ultrastructural and chemical characterization of the fibrillar layer. J. Phycol. 9: 248–253.

    Google Scholar 

  • Halfen, L. N., and Castenholz, R. W. 1970. Gliding in a blue-green alga: A possible mechanism. Nature 225: 1163–1165.

    Google Scholar 

  • Halfen, L. N., and Castenholz, R. W. 1971. Gliding motility in the blue-green alga Oscillatoria princeps. J. Phycol. 7: 133–145.

    Google Scholar 

  • Harder, R. 1918. Über die Bewegung der Nostocaceen. Z. Bot. 10: 177–244.

    Google Scholar 

  • Harper, M. A. 1967. Locomotion of diatoms and “clumping” of blue-green algae. Ph.D. Thesis. University of Bristol, pp. 1–171.

    Google Scholar 

  • Harper, M. A. 1976. The migration rhythm of the benthic diatom Pinnularia viridis on pad silt. New Zeal. J. Mar. Freshw. Res. 100: 381–384.

    Google Scholar 

  • Harper, M. A. 1980. Movements. In D. Werner, (ed.), The Biology of Diatoms. Blackwell, Oxford, pp. 224–249.

    Google Scholar 

  • Harper, M. A., and Harper, J. F. 1967. Measurements of diatom adhesion and their relationship with movement. Br. Phycol. Bull. 3: 195–207.

    Google Scholar 

  • Haupt, W. 1977. Bewegungsphysiologie der Pflanzen. Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Haupt, W. 1983. Photoperception and photomovement. Philos. Trans. R. Soc. Lond. Ser. B 303: 467–478.

    Google Scholar 

  • Haxo, F. T., Lewin, R. A., Lee, K. W., and Li, M.-R. 1987. Fine structure of Oscillatoria (Trichodesmium) äff. thiebautii (Cyanophyta) in culture. Phycologia 26: 433–456.

    Google Scholar 

  • Henrichsen, J. 1972. Bacterial surface translocation: A survey and a classification. Bad. Rev. 36: 478–503.

    Google Scholar 

  • Ho, J., and McCurdy, H. D. 1979. Demonstration of positive Chemotaxis of cyclic GMP and 5-AMP in Myxococcus xanthus by means of a simple apparatus for generating practically stable concentration gradients. Can. J. Microbiol. 25: 1214–1218.

    Google Scholar 

  • Hodgkin, J., and Kaiser, D. 1977. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc. Nat. Acad. Sci. U.S.A. 74: 2938–2942.

    Google Scholar 

  • Hodgkin, J., Kaiser, D. 1979a. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): Genes controlling movements of single cells. Mol. Gen. Genet. 171: 167–176.

    Google Scholar 

  • Hodgkin, J., and Kaiser, D. 1979b. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): Two gene systems control movement. Mol. Gen. Genet. 171: 177–191.

    Google Scholar 

  • Holton, R. W., and Freemann, A. W. 1965. Some theoretical and experimental considerations of the gliding movement of blue-green algae. Am. J. Bot. 52: 640.

    Google Scholar 

  • Hopkins, J. T. 1963. A study of diatoms of the Ouse estuary, Sussex. I. The movement of the mud-flat diatoms in response to some chemical and physical changes. J. Mar. Biol. Assoc. U.K. 43: 653–663.

    Google Scholar 

  • Hopkins, J. T. 1966. Some light induced changes in behaviour and cytology of an estuarine mud-flat diatom. In Light as an Ecological Factor. Symp. Br. Ecol. Soc. 5:335–358, Blackwell, Oxford.

    Google Scholar 

  • Hopkins, J. T. 1969. Diatom motility: Its mechanism, and diatom behaviour patterns in estuarine mud. Ph.D. Thesis, University of London, pp. 1–251.

    Google Scholar 

  • Hosoi, A. 1951. Secretion of the slime substance in Oscillatoria in relation to its movement. Bot. Mag. 64: 14–16.

    Google Scholar 

  • Humphrey, B. A., Dickson, M. R., and Marshall, K. C. 1979. Physicochemical and in situ observations on the adhesion of gliding bacteria to surfaces. Arch. Microbiol. 120: 231–238.

    Google Scholar 

  • Jarosch, R. 1955. Untersuchungen über Plasmaströmungen. Doctoral Thesis, University of Vienna.

    Google Scholar 

  • Jarosch, R. 1958. Zur Gleitbewegung der niederen Organismen. Protoplasma 50: 277–289.

    Google Scholar 

  • Jarosch, R. 1960. Die Dynamik im Characeen-Protoplasma. Phyton 15: 43–66.

    Google Scholar 

  • Jarosch, R. 1962. Gliding. In R. A. Lewin (ed.), Physiology and Biochemistry of Algae. Academic Press, New York, pp. 573–581.

    Google Scholar 

  • Jarosch, R. 1963a. Gleitbewegungen und Torsionen von Oscillatorien. Osterr. Bot. Z. 111: 476–481.

    Google Scholar 

  • Jarosch, R. 1963b. Grundlagen einer Schraubenmechanik des Protoplasmas. Protoplasma 57: 448–500.

    Google Scholar 

  • Johnson, R. Y., and White, D. 1972. Myxospore formation in Myxococcus xanthus. Chemical changes in the cell wall during cellular morphogenesis. J. Bacteriol. 112: 849–855.

    Google Scholar 

  • Jost, M. 1965. Die Ultrastruktur von Oscillatoria rubescens D. C. Arch. Mikrobiol. 50: 211–245.

    Google Scholar 

  • Jürgens, U. J., Golecki, R. J., and Weckesser, J. 1985. Characterization of the cell wall of the unicellular cyanobacterium Synechocystis PCC 6714. Arch. Microbiol. 142: 168–174.

    Google Scholar 

  • Kaiser, D. 1979. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. U.S.A. 74: 5952–5956.

    Google Scholar 

  • Kaiser, D. 1984. Genetics of Myxobacteria. In R. Rosenberg (ed.), Myxobacteria: Development and cell interactions. Springer-Verlag, New York, pp. 163–184.

    Google Scholar 

  • Kaiser, D., and Crosby, C. 1983. Cell movement and its coordination in swarms of Myxococcus xanthus. Cell Motil. 3: 227–245.

    Google Scholar 

  • Kaiser, D., Manoil, C., and Dworkin, M. 1979. Myxobacteria: Cell interactions, genetics and development. Ann. Rev. Microbiol. 33: 595–639.

    Google Scholar 

  • Keller, K. H., Grady, M., and Dworkin, M. 1983. Surface tension gradients: Feasible model for gliding motility in Myxococcus xanthus. J. Bacteriol. 155: 1358–1366.

    Google Scholar 

  • Khan, S. 1988. Analysis of bacterial flagellar rotation. Cell Motil. Cytoskel. 10: 38–46.

    Google Scholar 

  • Kiermayer, O., and Staehelin, L. A. 1972. Feinstruktur von Zellwand und Plasmamembran bei Micrasterias denticulata nach Gefrierätzung. Protoplasma. 74: 227–237.

    Google Scholar 

  • Klebs, G. 1885. Über Bewegung und Schleimbildung bei den Desmidiaceen. Biol. Zentralbl. 5: 353–367.

    Google Scholar 

  • Koch, A. L. 1988. Biophysics of bacteria walls viewed as stress-bearing fabric. Microbiol. Rev. 52: 337–357.

    Google Scholar 

  • Koch, A. L. 1990. The sacculus contraction/expansion model for gliding motility. J. Theor. Biol. 142: 95–112.

    Google Scholar 

  • Kol, E. 1927. Uber die Bewegung mit Schleimbildung einiger Desmidiaceen aus der hohen Tatra. Fol. Krypt. 1: 435–442.

    Google Scholar 

  • Kolkwitz, R. 1896. Über die Krümmungen bei den Oscillatorien. Ber. Dtsch. Bot. Ges. 14: 422–431.

    Google Scholar 

  • Kolkwitz, R. 1897. Über die Krümmungen und den Membranbau bei einigen Spaltalgen. Ber. Dtsch. Bot. Ges. 15: 460–467.

    Google Scholar 

  • Kolkwitz, R. 1915. Schizomycetes. Spaltpilze (Bacteria). In Botanischer Verein der Provinz Brandenburg (ed.), Kryptogamenflora der Mark Brandenburg, vol. 5. Gebrüder Borntraeger, Leipzig.

    Google Scholar 

  • Lamont, H. C. 1969a. Sacrifical cell death and trichome breakage in an oscillatoriacean blue-green alga: The role of murein. Arch. Mikrobiol. 69: 237–259.

    Google Scholar 

  • Lamont, H. C. 1969b. Shear-oriented microfibrils in the mucilaginous investments of two motile oscillatoriacean blue-green algae. J. Bacteriol. 97: 350–361.

    Google Scholar 

  • Lang, J. N. 1977. Starria zimbabweensis (Cyanophyceae) gen. nov. et sp. nov.: A filament triradiate in transverse section. J. Phycol. 13: 288–296.

    Google Scholar 

  • Lapidus, R. I., and Berg, H. C. 1982. Gliding motility of Cytophaga sp. strain U67. J. Bacteriol. 151: 384–398.

    Google Scholar 

  • Lauritis, J. A., Hemmingsen, B. B., and Volcani, B. E. 1967. Propagation of Hantzschia sp. Grunow daughter cells by Nitzschia alba Lewin & Lewin. J. Phycol. 3: 236–237.

    Google Scholar 

  • Lazaroff, N., and Vishniac, W. 1964. The relationship of cellular differentiation to colonial morphogenesis of the blue-green alga Nostoc muscorum. J. Gen. Microbiol. 35: 447–457.

    Google Scholar 

  • Lonergan, T. A. 1985. Regulation of cell shape in Euglena gracilis. VI. Localization of actin, myosin and calmodulin. J. Cell Sci. 77: 197–208.

    Google Scholar 

  • Lott, L. N. A., Harris, G. P., and Turner, C. D. 1972. The cell wall of Cosmarium botrytis. J. Phycol. 8: 232–236.

    Google Scholar 

  • Lounatmaa, K., and Vaara, T. 1980. Freeze-fracturing of the cell envelope of the Synechocystis CB3. FEMS Microbiol. Lett. 9: 203–209.

    Google Scholar 

  • Lounatmaa, K., Vaara, T., Österlund, K., and Vaara, M. 1980. Ultrastructure of the cell wall of a Synechocystis strain. Can. J. Microbiol. 26: 204–298.

    Google Scholar 

  • Lünsdorf, H., and Reichenbach, H. 1989. Ultrastructural details of the apparatus of gliding motility of Myxococcus fulvus (Myxobacterales). J. Gen. Microbiol. 135: 1633–1641.

    Google Scholar 

  • Lütkemüller, J. 1902. Die Zellmembran der Desmidiaceen. Beitr. Biol. Pfl. 8: 347–414.

    Google Scholar 

  • McBride, M. J., Weinberg, R. A., and Zusman, D. R. 1989. “Frizzy” aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the Chemotaxis genes of enteric bacteria. Proc. Natl. Acad. Sci. U.S.A. 86:424–428.

    Google Scholar 

  • MacRae, T. H., Dobson, W. J., and McCurdy, H. D. 1977. Fimbriation in gliding bacteria. Can. J. Microbiol. 23: 1096–1108.

    Google Scholar 

  • MacRae, T. H., and McCurdy, H. D. 1976. Evidence for motility-related fimbriae in the gliding microorganism Myxococcus xanthus. Can. J. Microbiol. 22: 1589–1593.

    Google Scholar 

  • Marshall, K. C., and Cruickshank, R. H. 1973. Cell surface hydrophobicity and the orientation of certain bacteria at interfaces. Arch. Mikrobiol. 91: 29–40.

    Google Scholar 

  • Martens, P. 1940. La locomotion des Diatomees. Cellule 48: 277–306.

    Google Scholar 

  • Martin, T. C., and Wyatt, J. T. 1974. Extracellular investments in blue-green algae with particular emphasis on the genus Nostoc. J. Phycol. 10: 204–210.

    Google Scholar 

  • Metzner, J. 1955. Zur Chemie und zum submikroskopischen Aufbau der Zellwände, Scheiden und Gallerten der Cyanophyceen. Arch. Mikrobiol. 22: 45–77.

    Google Scholar 

  • Mikolajczyk, E., and Diehn, B. 1976. Light-induced body movement of Euglena gracilis coupled to flagellar photophobic responses by mechanical stimulation. J. Protozool. 23: 144–147.

    Google Scholar 

  • Mikolajczyk, E., and Kuznicki, L. 1981. Body contraction and ultrastructure of Euglena. Acta Protozool. 20: 1–24.

    Google Scholar 

  • Mitchell, P. 1956. Hypothetical thermokinetic and electrokinetic mechanisms of locomotion in micro-organisms. Proc. R. Phys. Soc. 25: 32–34.

    Google Scholar 

  • Mix, M. 1966. Licht- und elektronenmikroskopische Untersuchungen an Desmidiaceen. XII. Zur Feinstruktur der Zellwände und Mikrofibrillen einiger Desmidiaceen vom Cosmarium—Typ. Arch. Mikrobiol. 55: 116–133.

    Google Scholar 

  • Mix, M. 1972. Die Feinstruktur der Zellwände bei Mesotaeniaceae und Gonatozygaceae mit einer vergleichenden Betrachtung der verschiedenen Wandtypen der Conjugatophyceae und über deren systematischen Wert. Arch. Mikrobiol. 81: 197–220.

    Google Scholar 

  • Mix, M. 1975. Die Feinstruktur der Zellwände der Conjugaten und ihre systematische Bedeutung. Beih. Nova Hedwigia 42: 179–194.

    Google Scholar 

  • Müller, O. 1889. Durchbrechungen in der Zellwand und ihre Beziehungen zur Ortsbewegung der Bacillariaceen. Ber. Dtsch. Bot. Ges. 7: 169–180.

    Google Scholar 

  • Nägeli, C. 1849. Gattungen einzelliger Algen, physiologisch und systematisch bearbeitet. Zürich.

    Google Scholar 

  • Nelson, D. C., and Castenholz, R. W. 1982. Light responses of Beggiatoa. Arch. Microbiol. 131: 146–155.

    Google Scholar 

  • Neuscheler, W. 1967. Bewegungs- und Orientierungsweise bei Micrasterias denticulata im Licht I. Zur Bewegungs- und Orientierungsweise. Z. Pfl. Physiol. 57: 46–59.

    Google Scholar 

  • Niklitschek, A. 1934. Das Problem der Oscillatorienbewegung. Beih. Bot. Zbl, Abt. A 52: 205–254.

    Google Scholar 

  • Nultsch, W. 1956. Studien über die Phototaxis der Diatomeen. Arch. Protistenk. 101: 1–68.

    Google Scholar 

  • Nultsch, W. 1961. Der Einfluß des Lichtes auf die Bewegung der Cyanophyceen. 1. Phototopotaxis von Phormidium autumnale. Planta 57: 632–647.

    Google Scholar 

  • Nultsch, W. 1962. Uber das Bewegungsverhalten der Diatomeen. Planta 58: 22–30.

    Google Scholar 

  • Nultsch, W. 1969. Effect of desaspidin and DCMU on photokinesis of blue-green algae. Photochem. Photobiol. 10: 119–123.

    Google Scholar 

  • Nultsch, W. 1971. Photo tactic and photokinetic action spectra of the diatom Nitzschia communis. Photochem. Photobiol. 14: 705–712.

    Google Scholar 

  • Nultsch, W. 1974. Der Einfluß des Lichtes auf die Bewegung phototropher Mikroorganismen. I. Photokinesis. Abh. Marburg. Gelehrt. Ges. 2: 143–213.

    Google Scholar 

  • Nultsch, W. 1980. Movements. In W. D. P. Stewart (ed.), Algal Physiology and Biochemistry. Blackwell, Oxford, pp. 864–893.

    Google Scholar 

  • Nultsch, W., and Häder, D.-P. 1979. Photomovement of motile microorganisms. Photochem. Photobiol. 29: 423–437.

    Google Scholar 

  • Nultsch, W., and Jeeji-Bai. 1966. Untersuchungen über den Einfluß von Photosynthesehemmstoffen auf das phototaktische und photokinetische Reaktionsverhalten blaugrüner Algen. Z. Pflanzenphysiol. 54: 84–98.

    Google Scholar 

  • Nultsch, W., and Schuchart, H. 1985. A model of the phototactic reaction chain of the cyanobacterium Anabaena variabilis. Arch. Microbiol. 142: 180–184.

    Google Scholar 

  • Nultsch, W., Schuchart, H., and Höhl, M. 1979. Investigations on the phototactic orientation of Anabaena variabilis. Arch. Microbiol. 142: 85–91.

    Google Scholar 

  • Nultsch, W., and Wenderoth, K. 1973. Phototaktische Untersuchungen an einzelnen Zellen von Navicula peregrina (Ehrenberg) Kützing. Arch. Mikrobiol. 90: 47–58.

    Google Scholar 

  • Pangborn, J., Kuhn, D. A., and Woods, J. R. 1977. Dorsal-ventral differentiation in Simonsieila and other aspects of its morphology and ultrastructure. Arch. Microbiol. 113: 197–204.

    Google Scholar 

  • Pankratz, H. S., and Bowen, C. C. 1963. Cytology of blue-green algae. I. The cells of Symploca muscorum. Am. J. Bot. 50: 387–399.

    Google Scholar 

  • Pao-Zun Y., Gibor, A. 1970. Growth patterns and motility of Spirogyra sp. and Closterium acerosum. J. Phycol. 6: 44–48.

    Google Scholar 

  • Pate, J. L. 1988. Gliding motility in prokaryotic cells. Can. J. Microbiol. 34: 459–466.

    Google Scholar 

  • Pate, J. L., and Chang, L.-Y.E. 1979. Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelopes. Curr. Microbiol. 2: 59–64.

    Google Scholar 

  • Pate, J. L., Petzold, S. J., and Chang. L. E. 1979. Phages for the gliding bacterium Cytophaga johnsonae that affect only motile cells. Curr. Microbiol. 2: 257–262.

    Google Scholar 

  • Peschek, G. A., Czerny, T., Schmetterer, G., and Nitschmann, W. H. 1985. Transmembrane proton electrochemical gradients in dark aerobic and anaerobic cells of the cyanobacterium (blue-green alga) Anacystis nidulans. Evidence for respiratory energy transduction in the plasma membrane. Plant Physiol. 79: 278–284.

    Google Scholar 

  • Pickett-Heaps, J. D., Hill, D. R. A., and Wetherbee, R. 1986. Cellular movement in the centric diatom Odontella sinensis. J. Phycol. 22: 334–339.

    Google Scholar 

  • Pierson, B. K., and Castenholz, R. W. 1971. Bacteriochlorophylls in gliding filamentous prokaryotes from hot-springs. Nature 233: 25–27.

    Google Scholar 

  • Pierson, B. K., and Castenholz, R. W. 1978. Photosynthetic apparatus and cell membranes of the green bacteria. In R. K. Clayton and W. R. Sistrom (eds.), The Photosynthetic Bacteria. Plenum, London, pp. 179–197.

    Google Scholar 

  • Prell, H. 1921a. Zur Theorie der sekretorischen Ortsbewegung. I. Die Bewegung der Cyanophyceen. Arch. Protistenk. 42: 99 — 156.

    Google Scholar 

  • Prell, H. 1921b. Zur Theorie der sekretorischen Ortsbewegung. II. Die Bewegung der Gregarinen. Arch. Protistenk. 42: 157–175.

    Google Scholar 

  • Pringsheim, E. G. 1949. The relationship between bacteria and myxophyceae. Bacteriol. Rev. 13: 47–98.

    Google Scholar 

  • Pringsheim, E. G. 1951. The Vitreoscillaceae: A family of colourless, gliding filamentous organisms. J. Gen. Microbiol. 5: 124–149.

    Google Scholar 

  • Pringsheim, E. G. 1968. Cyanophyceen-Studien. Arch. Mikrobiol. 63: 331–355.

    Google Scholar 

  • Reichenbach, H. 1974. Die Biologie der Myxobakterien. Biologie in unserer Zeit 4: 33–45.

    Google Scholar 

  • Reichenbach, H., and Dworkin, M. 1981a. Introduction to the gliding bacteria. In M. P. Starr, H. Stolp, H. G. Trüper, A. Balows and H. G. Schlegel (eds.), The Prokaryotes. Springer-Verlag, Berlin, pp. 315–327.

    Google Scholar 

  • Reichenbach, H., and Dworkin M. 1981b. The order Cytophagales (with Addenda on the genera Herpetosiphon, Saprospira, and Flexithrix). In M. P. Starr, H. Stolp, H. G. Triiper, A. Balows, and H. G. Schlegel, (eds.), The Prokaryotes. Springer- Verlag, Berlin, pp. 356–379.

    Google Scholar 

  • Reichenbach, H., and Golecki, J. R. 1975. The fine structure of Herpetosiphon, and a note on the taxonomy of the genus. Arch. Microbiol. 102: 281–291.

    Google Scholar 

  • Reimann, B. E. F., Lewin, J. C., and Volcani, B. E. 1965. Studies on the biochemistry and fine structure of silica shell formation in diatoms. I. The structure of the cell wall of Cylindrotheca fusiformis. J. Cell Biol. 24: 39–55.

    Google Scholar 

  • Reimers, H. 1928. Uber die Thermotaxis niederer Organismen. Jahrb. Wiss. Bot. 67: 242–290.

    Google Scholar 

  • Ridgway, H. F., and Lewin, R. A. 1973. Goblet-shaped sub-units from the wall of a marine gliding microbe. J. Gen. Microbiol. 79: 119–128.

    Google Scholar 

  • Ridgway, H. F., and Lewin, R. A. 1988. Characterization of gliding motility in Flexibacter polymorphus. Cell Motil. Cytoskel. 11: 46–63.

    Google Scholar 

  • Ridgway, H. F., Wagner, R. M., Dawsey, W. T., and Lewin, R. A. 1975. Fine structure of the cell envelope layers of Flexibacter polymorphus. Can. J. Microbiol. 21: 1733–1750.

    Google Scholar 

  • Rippka, R., Deruelles, J., Wazterbury, J. B., Herdmann, M., and Stanier, R. Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1–61.

    Google Scholar 

  • Ris, H., and Singh, R. N. 1961. Electron microscope studies on blue-green algae. J. Biophys. Biochem. Cytol. 9: 63–79.

    Google Scholar 

  • Round, F. E., and Palmer, D. J. 1966. Persistent vertical-migration rhythms in benthic microflora. II. Field and laboratory studies on the diatoms from the banks of the river Avon. J. mar. biol. Assoc. U.K. 46: 191–214.

    Google Scholar 

  • Schmid, G. 1918. Zur Kenntnis der Oszillarienbewegung. Flora 111: 327–379.

    Google Scholar 

  • Schmid, G. 1921. Uber Organisation und Schleimausbildung bei Oscillatoria jenensis und das Bewegungsverhalten künstlicher Teilstücke. Jahrb. Wiss. Bot. 62: 572–625.

    Google Scholar 

  • Schmid, G., 1923. Das Reizverhalten künstlicher Teillstücke, die Kontraktilität und das osmotische Verhalten der Oscillatoria jenensis. Jahrb. Wiss. Bot. 62: 328–419.

    Google Scholar 

  • Schmidt-Lorenz, W., and Kühlwein, H. 1968. Intracellular Bewegungsorganellen der Myxobakterien. Arch. Mikrobiol. 60: 95–98.

    Google Scholar 

  • Schmidt-Lorenz, W. and Kühlwein, H. 1969. Beiträge zur Kenntnis der Myxobakterienzelle. Arch Mikrobiol. 68: 405–426.

    Google Scholar 

  • Schrader, M., Drews, G., Weckesser, J., and Mayer, H. 1982. Polysaccharide containing 6-0-methyl-D-mannose in Chlorogloeopsis PCC 6912. J. Gen. Microbiol. 128: 273–277.

    Google Scholar 

  • Schrevel, J., Caigneaux, E., Cros, D., and Philippe, M. 1983. The three cortical membranes of the gregarines. I. Ultrastructural Organisation of Gregarina blaberae. J. Cell Sci. 61: 151–179.

    Google Scholar 

  • Schröder, B. 1902. Untersuchungen über Gallertbildungen bei Algen. Verh. Naturhist. Med. Verein Heidelberg, N.F. 7: 139–196.

    Google Scholar 

  • Schulz, G. 1955. Bewegungsstudien sowie elektronenmikroskopische Membranuntersuchungen an Cyanophyceen. Arch. Mikrobiol. 21: 335–370.

    Google Scholar 

  • Shukovsky, E. S., and Halfen, L. N. 1976. Cellular differentiation of terminal regions of trichomes of Oscillatoria princeps (Cyanophyceae). J. Phycol. 12: 336–342.

    Google Scholar 

  • Smarda, J., Cäslaskä, J., and Komärek, J. 1979. Cell wall structure of Synechocystis aquatilis (Cyanophyceae). Arch. Hydrobiol. Suppl. 56: 154–165.

    Google Scholar 

  • Smith, A. J. 1973. Synthesis of metabolic intermediates. In N. G. Carr and B. A. Whitton (eds.), The Biology of Blue-Green Algae. Blackwell, London, pp. 1–38.

    Google Scholar 

  • Soriano, S. 1947. The Flexibacteriales and their systematic position. Antonie van Leeuwenhoek J. Microbiol. Serol. 12: 215–222.

    Google Scholar 

  • Soriano, S. 1973. Flexibacteria. Ann. Rev. Microbiol. 27: 155–170.

    Google Scholar 

  • Spangle, L., and Armstrong, P. B. 1973. Gliding motility of algae is unaffected by cytochalasin B. Exp. Cell Res. 80: 490–493.

    Google Scholar 

  • Stahl, E. 1880. Über den Einfluß von Richtung und Stärke der Beleuchtung auf einige Bewegungserscheinungen im Pflanzenreich. Bot. Ztg. 38: 297–413.

    Google Scholar 

  • Stanier, R. Y., and Cohen-Bazire, G. 1977. Phototrophicprokaryotes: The cyanobacteria. Ann. Rev. Microbiol. 31: 225–274.

    Google Scholar 

  • Stanier, R. Y. 1942. The Cytophaga group: A contribution on the biology of Myxo-bacteria. Bacteriol. Rev. 6: 143–196.

    Google Scholar 

  • Strohl, W. R., and Larkin, J. M. 1978. Cell division and trichome breakage in Beggiatoa. Curr. Microbiol. 1: 151–155.

    Google Scholar 

  • Suzaki, T., and Williamson, R. E. 1985. Euglenoid movement in Euglena fusca: Evidence for sliding between pellicular strips. Protoplasma 124: 137–146.

    Google Scholar 

  • Suzaki, T., and Williamson, R. E. 1986a. Ultrastructure and sliding of pellicular structures during euglenoid movement in Astasia longa Pringsheim (Sarcomastigophora, Euglenida). J. Protozool. 33: 179–184.

    Google Scholar 

  • Suzaki, T., and Williamson, R. E. 1986b. Cell surface displacement during euglenoid movement and its computer stimulation. Cell Motil. Cytoskel. 6: 186–192.

    Google Scholar 

  • Suzaki, T., and Williamson, R. E. 1986c. Reactivation of euglenoid movement and flagellar beating in detergent-extracted cells of Astasia longa: Different mechanisms of force generation are involved. J. Cell Sci. 80: 75–89.

    Google Scholar 

  • Suzaki, T., and Williamson, R. E. 1986d. Pellicular ultrastructure and euglenoid movement in Euglena ehrenbergii Klebs and Euglena oxyuris Schmarda. J. Protozool. 33: 165–171.

    Google Scholar 

  • Thaer, A., Hoppe, M., and Patzelt, W. J. 1982. Akustomikroskop Elsam. Leitz-Mitt. Wiss. Tech. 8: 61–67.

    Google Scholar 

  • Thomas, E. A. 1970. Beobachtungen über das Wandern von Phormidium autumnale. Schweiz. Z. Hydrol. 32: 523–531.

    Google Scholar 

  • Toman, M., and Rosival, M. 1948. The structure of the raphe of Nitzschiae. Stud. Bot. Cechosl. 9: 26–29.

    Google Scholar 

  • Tuffery, A. A. 1969. Light and electron microscopy of the sheath of a blue-green alga. J. Gen. Microbiol. 57: 41–50.

    Google Scholar 

  • Ullrich, H. 1926. Über die Bewegung von Beggiatoa mirabilis und Oscillatoria jenensis. I. Planta 2: 295–324.

    Google Scholar 

  • Ullrich, H. 1929. Über die Bewegungen der Beggiatoaceen und Oscillatoriaceen. II. Planta 9: 144–194.

    Google Scholar 

  • Vaara, T. 1982. The outermost surface structures of chroococcacean cyanobacteria. Can. J. Microbiol. 28: 929–941.

    Google Scholar 

  • Vaara, T., Ranta, H., Loutnamaa, K., and Korhonen, T. K. 1984. Isolation and characterisation of pili (fimbriae) from Synechocystis CB3. FEMS Microbiol. Lett. 21: 329–334.

    Google Scholar 

  • Van Eykelenburg, C. 1977. On the morphology and ultrastructure of the cell wall of Spirulina plantensis. Antonie van Leeuwenhoek 43: 89–99.

    Google Scholar 

  • Van Eykelenburg, C. 1979. The ultrastructure of Spirulina platensis in relation to temperature and light intensity. Antonie van Leeuwenhoek 45: 369–390.

    Google Scholar 

  • Verworn, M. 1889. Psychophysiologische Protistenstudien. Verlag Gustav Fischer, Jena.

    Google Scholar 

  • Von Siebold, C. T. 1849. Über einzellige Pflanzen und Tiere. Z. wiss. Zool. 1: 93–102, 270–294.

    Google Scholar 

  • Wagner, J. 1934. Beiträge zur Kenntnis von Nitzschia putrida Benecke insbesondere ihrer Bewegung. Arch. Protistenk. 82: 86–113.

    Google Scholar 

  • Walsby, A. E. 1968. Mucilage secretion and the movements of blue-green algae. Protoplasma 65: 223–238.

    Google Scholar 

  • White, D., Dworkin, M., and Tipper, D. J. 1968. Peptidoglycan of Myxococcus xanthus: Structure and relation to morphogenesis. J. Bacteriol. 95: 2186–2197.

    Google Scholar 

  • Williams, R. B. 1965 Unusual motility of tube-dwelling pennate diatoms. J. Phycol. 1: 145–146

    Google Scholar 

  • Woeste, S. 1988. The mechanical properties of the isolated sacculi of Eschericha coli. Ph.D. dissertation, Indiana University.

    Google Scholar 

  • Woldringh, C. L. and Nanninga, N. 1985. Structure of nucleoid and cytoplasm in the intact cell. In N. Nanninga (ed.), Molecular Cytology of Escherichia coli L. Academic Press, New York, pp. 161–197.

    Google Scholar 

  • Womack, B. J., Gilmore, D. F., and White, D. 1989. Calcium requirement for gliding motility in Myxobacteria. J. Bacteriol. 171: 6093–6096.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Routledge, Chapman & Hall, Inc.

About this chapter

Cite this chapter

Häder, DP., Hoiczyk, E. (1992). Gliding Motility. In: Melkonian, M. (eds) Algal Cell Motility. Current Phycology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9683-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9683-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9685-1

  • Online ISBN: 978-1-4615-9683-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics