Skip to main content

Fractal Analysis of Blood-Tissue Exchange Kinetics

  • Chapter
  • First Online:
Oxygen Transport to Tissue X

Abstract

Having a “fractal nature” implies that one or more features of a system or phenomenon appear to have similar characteristics when examined over a range scale. Mathematical fractals are generated by recursive expressions wherein each generation is derived from the preceding in a specific way, a precise deterministic fashion or a looser probabilistic fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archie, J. P., D. E. Fixier, D. J. Ullyot, G. D. Buckberg, and J. I. E. Hoffman. Regional myocardial blood flow in lambs with concentric right ventricular hypertrophy. Circ. Res. 34:143–154, 1974.

    Article  CAS  Google Scholar 

  2. Baer, R. W., B. D. Payne, E. D. Verrier, G. J. Vlahakes, D. Molodowitch, P. N. Uhlig, and J. I. E. Hoffman. Increased number of myocardial blood flow measurements with radionuclide-labeled microspheres. Am. J. Physiol. 246 (Heart. Circ. Physiol. 15):H418–H434, 1984.

    PubMed  CAS  Google Scholar 

  3. Bassingthwaighte, J. B., W. A. Dobbs, and T. Yipintsoi. Heterogeneity of myocardial blood flow. In: Myocardial Blood Flow in Man: Methods and significance in coronary disease, edited by A. Maseri. Torino, Italy:Minerva Medica, 1972, p. 197–205.

    Google Scholar 

  4. Bassingthwaighte, J. B., T. Yipintsoi, and R. B. Harvey. Microvasculature of the dog left ventricular myocardium. Microvasc. Res. 7:229–249, 1974.

    Article  CAS  Google Scholar 

  5. Bassingthwaighte, J. B., T. Yipintsoi, and T. J. Knopp. Diffusional arteriovenous shunting in the heart. Microvasc. Res. 28:233–253, 1984.

    Article  CAS  Google Scholar 

  6. Bassingthwaighte, J. B., and C. A. Goresky. Mcxieling in the analysis of solute and water exchange in the microvasculature. In: Handbook of Physiology, Sect. 2 The Cardiovascular System, Vol IV, Microcirculation, Chapt. 13, edited by E. M. Renkin, and C. C. Michel. Bethesda, MD:American Physiological Society, 1984, p. 549–626.

    Google Scholar 

  7. Bassingthwaighte, J. B. Physiological heterogeneity: Fractals link determinism and randomness in structures and functions. News in Physiol. Sci. 2:xx–xx, 1987. (accepted)

    Google Scholar 

  8. Bassingthwaighte, J. B., M. A. Malone, T. C. Moffett, R. B. King, S. E. Little, J. M. Link, and K. A. Krohn. Validity of microsphere depositions for regional myocardial flows. Am. J. Physiol. 253 (Heart. Circ. Physiol. 22):H184–H193, 1987.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Chien, S., C. D. Tvetenstrand, M. A. F. Epstein, and G. W. Schmid-Schönbein. Model studies on distributions of blood cells at microvascular bifurcations. Am. J. Physiol. 248 (Heart. Circ. Physiol. 17):H568–H576, 1985.

    PubMed  CAS  Google Scholar 

  10. Fung, Y. C. Stochastic flow in capillary blood vessels. Microvasc. Res. 5:34–48, 1973.

    Article  CAS  Google Scholar 

  11. Glass, L., A. Shrier, and J. Bélair. Chaotic cardiac rhythms. In: Chaos, edited by A. V. Holden. Princeton:Princeton University Press, 1986, p. 237–256.

    Chapter  Google Scholar 

  12. Holden, A. V., (editor). Chaos. Princeton: Princeton University Press, 1986.

    Google Scholar 

  13. King, R. B., J. B. Bassingthwaighte, J. R. S. Hales, and L. B. Rowell. Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ. Res. 57:285–295, 1985.

    Article  CAS  Google Scholar 

  14. Kislyakov, Y. Y., Y. I. Levkovitch, T. E. Shuymilova, and E. A. Vershinina. Blood flow fluctuations in cerebral cortex microvessels. Int. J. Microcirc. Clin. Exp. 6:3–13, 1987.

    Google Scholar 

  15. Levin, M., and J. B. Bassingthwaighte. Sensitivity functions in optimizing the fitting of a transport model to observed system responses. Ann. Biomed. Eng. (in preparation)

    Google Scholar 

  16. Liebovitch, L. S., J. Fischbarg, J. P. Koniarek, I. Todorova, and M. Wang. Fractal model of ion-channel kinetics. Biochim. Biophys. Acta 896:173–180, 1987.

    Article  CAS  Google Scholar 

  17. Little, S. E., and J. B. Bassingthwaighte. Plasma-soluble marker for intraorgan regional flows. Am. J. Physiol. 245 (Heart. Circ. Physiol. 14):H707–H712, 1983.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Little, S. E., J. M. Link, K. A. Krohn, and J. B. Bassingthwaighte. Myocardial extraction and retention of 2-iododesmethylimipramine: a novel flow marker. Am. J. Physiol. 250 (Heart Circ. Physiol.19):H1060–H1070, 1986.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Mandelbrot, B. B. The fractal geometry of nature. San Francisco: W.H. Freeman and Co., 1983.

    Book  Google Scholar 

  20. Peitgen, H. O., and P. H. Richter. The beauty of fractals: images of complex dynamical systems. Berlin/Heidelberg: Springer-Verlag, 1986.

    Book  Google Scholar 

  21. Rigaut, J. P., P. Berggren, and B. Robertson. Resolution-dependence of stereo-logical estimations: interpretation, with a new fractal concept, of automated image analyser — obtained results on lung sections. Acta Stereol. 2(Suppl.I):121–124, 1983.

    Google Scholar 

  22. Slaaf, D. W., G. J. Tangelder, R. S. Reneman, and T. Arts. Methods to measure flow velocity of red blood cells in vivo at the microscopic level. Ann. Biomed. Eng. 14:175–186, 1986.

    Article  CAS  Google Scholar 

  23. Slaaf, D. W., G. J. Tangelder, H. C. Teirlinck, and R. S. Reneman. Arteriolar vasomotion and arterial pressure reduction in rabbit tenuissimus muscle. Microvasc. Res. 33:71–80, 1987.

    Article  CAS  Google Scholar 

  24. Suwa N., T. Niwa, H. Fukasawa, and Y. Sasaki. Estimation of intravascular blood pressure gradient by mathematical analysis of arterial casts. Tohoku J. Exp. Med. 79:168–198, 1963.

    Article  CAS  Google Scholar 

  25. Suwa, N., and T. Takahashi. Morphological and morphometrical analysis of circulation in hypertension and ischemic kidney. Munich: Urban & Schwarzen-berg, 1971.

    Google Scholar 

  26. Yen, R. T., and Y. C. Fung. Effect of velocity distribution on red cell distribution in capillary blood vessels. Am. J. Physiol. 235 (Heart Circ. Physiol. 4):H251–H257, 1978.

    Article  CAS  Google Scholar 

  27. Yipintsoi, T., W. A. Dobbs, Jr., P. D. Scanlon, T. J. Knopp, and J. B. Bassingthwaighte. Regional distribution of diffusible tracers and carbonized microspheres in the left ventricle of isolated dog hearts. Circ. Res. 33:573–587, 1973.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Bassingthwaighte, J.B., King, R.B., Sambrook, J.E., van Steenwyk, B. (1988). Fractal Analysis of Blood-Tissue Exchange Kinetics. In: Mochizuki, M., Honig, C.R., Koyama, T., Goldstick, T.K., Bruley, D.F. (eds) Oxygen Transport to Tissue X. Advances in Experimental Medicine and Biology, vol 222. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-9510-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9510-6_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-9512-0

  • Online ISBN: 978-1-4615-9510-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics