Skip to main content

Importance of Siderophores in Microbial Interactions in the Rhizosphere

  • Chapter
Iron, Siderophores, and Plant Diseases

Part of the book series: NATO ASI Series ((NSSA,volume 117))

Abstract

Plants, animals, and microorganisms require iron for oxidation-reduction and other cellular reactions and have evolved mechanisms to acquire it from the environment. With animal pathogens, siderophore synthesis plays a direct role in the infection process (Weinberg, this book). Growth of numerous bacterial genera is stimulated by excess iron in body fluids and tissues of vertebrate hosts. Conversely, host defense mechanisms include withholding iron from the pathogen. It is not surprising, therefore, that the activities of microorganisms affecting plant health also would be influenced by the availability of iron in the environment and their competitive abilities to sequester it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelrood P.E., and Schroth, M.N. 1988. Antibiotic production by Erwinia carotovora subsp. betavasculorum: partial characterization and evidence for activity in potato tubers. In.: Proc. 6th Conf. of Plant Pathogens, College Park, Maryland (In press).

    Google Scholar 

  • Ayers, W.A., and Thornton, R.H., 1968. Exudation of amino acids by intact and damaged roots of wheat and peas. Plant Soil, 28: 193.

    Article  CAS  Google Scholar 

  • Bahme, J.B., and Schroth, M.N., 1984. Colonization dynamics of a rhizo-bacterium on potato. Phytopathology, 74:806 (abst.).

    Google Scholar 

  • Balasubramanian, A., and Rangaswami, G., 1969. Studies on the influence of foliar nutrient sprays on the root exudation pattern in four crop plants. Plant Soil. 30: 210.

    Article  CAS  Google Scholar 

  • Boulter, D., Jeremy, J.J., and Wilding, M., 1966. Amino acids liberated into the culture medium by pea seedling roots. Plant Soil, 24: 121.

    Article  CAS  Google Scholar 

  • Bowen, G.D., 1969. Nutrient status effects on loss of amides and amino acids from pine roots. Plant Soil, 30: 139.

    Article  CAS  Google Scholar 

  • Bowen, G.D., 1979. Integrated and experimental approaches to the study of growth of organisms around roots. In: “Soil-borne Plant Pathogens,” (B. Schippers and W. Gams, Eds.), Academic Press, Inc., London.

    Google Scholar 

  • Burr, T.J., Schroth, M.N., and Suslow, T., 1978. Increased potato yields by treatment of seedpieces with specific strains of Pseudomonas fluorescens and P. putida, Phytopathology, 68: 1377.

    Article  Google Scholar 

  • Burr, T.J., and Caesar, A., 1984. Beneficial plant bacteria, CRC Crit. Rev. Plant Sci., 2: 1.

    Article  Google Scholar 

  • De Lay, J., 1964, Pseudomonas and related genera. Ann. Rev. Microbiol., 18: 17.

    Article  Google Scholar 

  • Garibaldi, J.A., 1971. Influence of temperature on the iron metabolism of a fluorescent pseudomonad. J. Bacteriol. 105: 1036.

    PubMed  CAS  Google Scholar 

  • Garibaldi, J.A., 1972. Influence of temperature on the biosynthesis of iron transport compounds by Salmonella typhimurium. J. Bacteriol. 110: 262.

    PubMed  CAS  Google Scholar 

  • Geels, F.P., and Schippers, B., 1983. Reduction of yield depressions in high frequency potato cropping soil after seed tuber treatments with antagonistic fluorescent Pseudomonas spp. Phytopathol. Z. 108: 207.

    Article  Google Scholar 

  • Gouda, P.S., and Chodat, F., 1963. Glyoxylate et succinate, facteurs determinant respectivement l’hypochromie et l’hyperchromie des cultures de Pseudomonas fluorescens. Pathol. Microbiol., 26: 655.

    CAS  Google Scholar 

  • Hamlen, R.A., Lukezic, F.L., and Bloom, J.R., 1972. Influence of age and stage of development on the neutral carbohydrate components in root exudates from alfalfa plants grown in a gnotobiotic environment. Can. J. Plant Sci., 52: 633.

    Article  CAS  Google Scholar 

  • Hemming, B.C., Orser, C. Jacobs, D.L., Sands, D.C., and Strobel, G.A., 1982. The effects of iron on microbial antagonism by fluorescent pseudomonads. J. Plant Nutr., 5: 683.

    Article  CAS  Google Scholar 

  • Hiltner, L., 1904. Über neuere Erfahnrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache, Arb. Deut. Landw. Ges., 98: 59.

    Google Scholar 

  • Hoekstra, O., 1981. 15 jaar “De Schreef.” Resultaten van 15 jaar vruchtwisselingsonderzoek op het bouwplannenproefveld “De Schreef,” Publickatie PAGV 11: 1.

    Google Scholar 

  • Howell, C.R., and Stipanovic, R.D., 1979. Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology, 69: 480.

    Article  CAS  Google Scholar 

  • Howell, C.R., and Stipanovic, R.D., 1980. Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology, 70: 712.

    Article  CAS  Google Scholar 

  • Husain, S.S., and McKeen, W.E., 1963. Interactions between strawberry roots and Rhizoctonia fragariae, Phytopathology, 53: 541.

    Google Scholar 

  • King, J.V., Campbell, J.J.R., and Eagles, B.A., 1948. The mineral requirements for fluorescin production. Can. J. Res., 26C:514.

    Google Scholar 

  • King, E.O., Ward, M.K., and Raney, D.E., 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44: 301.

    PubMed  CAS  Google Scholar 

  • Kleopper, J.W., Leong, J., Teintze, M., and Schroth, M.N., 1980a. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 286: 885.

    Article  Google Scholar 

  • Kloepper, J.W., Leong, J., Teintze, M., and Schroth, M.N., 1980b. Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr. Microbiol., 4: 317.

    Article  CAS  Google Scholar 

  • Kloepper, J.W., Schroth, M.N., and Miller, T.D., 1980. Effects of rhizo-sphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology, 70: 1078.

    Article  Google Scholar 

  • Kloepper, J.W., and Schroth, M.N., 1981a. Relationship of an in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology, 71: 1020.

    Article  Google Scholar 

  • Kloepper, J.W., and Schroth, M.N., 1981b. Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology, 71: 642.

    Article  Google Scholar 

  • Kluger, M.J., and Rothenburg, B.A., 1979. Fever and reduced iron: their interaction as a host defense response to bacterial infection. Science, 203: 374.

    Article  PubMed  CAS  Google Scholar 

  • Kochan, I., 1977. Role of siderophores in nutrition/immunity and bacterial parasitism. In: “Microorganisms and Minerals,” (E.D. Weinberg, Ed.) Marcel Dekker, New York.

    Google Scholar 

  • Kovacs, M.F. Jr., 1971. Identification of aliphatic and aromatic acids in root and seed exudates of peas, cotton and barley. Plant Soil, 34: 441.

    Article  CAS  Google Scholar 

  • Lenhoff, H.M., 1963. An inverse relationship of the effects of oxygen and iron on the production of fluorescin and cytochrome c by Pseudomonas fluorescens. Nature, 199: 601.

    Article  PubMed  CAS  Google Scholar 

  • Loper, J.E., Suslow, T.V., and Schroth, M.N., 1984a.Lognormal distribution of bacterial populations in the rhizosphere. Phytopathology, 74: 1454.

    Article  Google Scholar 

  • Loper, J.E., Orser, C.S., Panapoulos, N.J., and Schroth, M.N., 1984b. Genetic analysis of fluorescent pigment production in Pseudomonas syringae pv. syringae, J. Gen. Microbiol., 130: 1507.

    CAS  Google Scholar 

  • Loper, J.E., Haack, C., and Schroth, M.N., 1985. Population dynamics of soil pseudomonads in the rhizosphere of potato (Solanum tuberosum L.), Appl. Evinron. Microbiol., 49: 416.

    CAS  Google Scholar 

  • Maenhout, C.A.A.A., and Hoekstra, O., 1980. Bodemvruchtbaarheid en bodemgezondheid in relatie tot vruchtwisseling en bouwplan. Bedrijfsontwikkeling, 11: 587.

    Google Scholar 

  • Magyorosy, A.C., and Hancock, J.G., 1974. Association of virus-induced changes in laimosphere microflora and hypocotyl exudation with protection to Fusarium stem rot. Phytopathology, 64: 994.

    Article  Google Scholar 

  • Meyer, J.M., and Abdallah, M.A., 1978. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J. Gen. Microbiol. 107: 319.

    CAS  Google Scholar 

  • Meyer, J.M., and Hornsperger, J.M., 1978. Role of pyoverdine pf, the iron-binding fluorescent pigment of Pseudomonas fluorescens, in iton transport. J. Gen. Microbiol. 107: 329.

    CAS  Google Scholar 

  • Misaghi, I.J., Stowell, L.J., Grogan, R.G., and Spearman, L.C., 1982. Fungistatic activity of water-soluble fluorescent pigments of fluorescent pseudomonads. Phytopathology, 72: 33.

    Article  CAS  Google Scholar 

  • Moores, J.C., Magazin, M., Ditta, G.S., and Leong, J., 1984. Cloning of genes involved in the biosynthesis of pseudobactin, a high-affinity iron transport agent of a plant growth-promoting Pseudomonas strain. J. Bacteriol., 157: 53.

    PubMed  CAS  Google Scholar 

  • Neilands, J.B., 1977. Siderophores: diverse roles in microbial and human physiology, In: “Iron Metabolism”. Elsevier Press.

    Google Scholar 

  • Ong, S.A., Peterson, T., and Neilands, J.B., 1979. Agrobactin, a siderophore from Agrobacterium tumefaciens, J. Biol. Chem., 254: 1860.

    PubMed  CAS  Google Scholar 

  • Richter, M., Wilms, W., and Scheffer, F., 1968. Determination of root exudates in a sterile continuous flow culture II. Short-term and long-term variations of exudation intensity. Plant Physiol., 43: 1747.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, H.J., 1973. Iron-binding catechols and virulence in Escherichia coli, Infec. Immun., 7: 445.

    CAS  Google Scholar 

  • Rouatt, J.W., and Katznelson, H., 1961. A study of the bacteria on the root surface and in the rhizosphere soil of crop plants. J. Appl. Bacteriol., 24: 164.

    Article  Google Scholar 

  • Rovira, A.D., 1956. Plant root excretions in relation to the rhizosphere effect. I. The nature of root exudate from oats and peas. Plant Soil, 7: 178.

    Article  Google Scholar 

  • Rovira, A.D., 1959. Root excretions in relation to the rhizosphere effect. IV. Influence of plant species, age of plant, light, temperature and calcium nutrition on exudation, Plant Soil, 11: 53.

    Article  CAS  Google Scholar 

  • Rovira, A.D., 1969. Plant root exudates, Bot. Rev., 35: 35.

    Article  CAS  Google Scholar 

  • Rovira, A.D., and McDougall, B.M., 1967. Microbiological and biochemical aspects of the Rhizosphere. In: “Soil Biochemistry,”(A.D. McLaren and G.F. Petersen, Eds.) Marcell Dekker, New York.

    Google Scholar 

  • Scher, F.M., and Baker, R., 1982. Effect of Pseudo onas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens, Phytopathology, 72: 1567.

    Article  CAS  Google Scholar 

  • Schroth, M.N., and Hancock, J.G., 1981. Selected topics in biological control. Ann. Rev. Microbiol., 35: 453.

    Article  CAS  Google Scholar 

  • Schroth, M.N., and Hancock, J.G., 1982. Disease-suppressive soil and root-colonizing bacteria. Science, 216: 1376.

    Article  PubMed  CAS  Google Scholar 

  • Schroth, M.N., Toussoun, T.A., and Snyder, W.C., 1963. Effect of certain constituents of bean exudate on termination of chlamydospores of Fusarium solani f. phaseoli in soil. Phytopathology, 53: 809.

    CAS  Google Scholar 

  • Shay, F.J., and Hale, M.G., 1973. Effect of low levels of calcium on exudation of sugars and sugar derivatives from intact peanut roots under axenic conditions. Plant Physiol., 51: 1061.

    Article  PubMed  CAS  Google Scholar 

  • Smith, W.H., 1972. Influence of artificial defoliation on exudates of sugar maple. Soil Biol. Biochem., 4: 111.

    Article  CAS  Google Scholar 

  • Sneh, B., Dupler, M., Elad, Y., and Baker, R., 1984. Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from Fusarium-suppressive soil. Phytopathology, 74: 1115.

    Article  Google Scholar 

  • Stapleton, J.J., and DeVay, J.E., 1984. Thermal components of soil solarization as related to changes in soil and root microflora and increased plant growth response. Phytopathology, 74: 255.

    Article  Google Scholar 

  • Suslow, T.V., 1982. Role of root-colonizing bacteria in plant growth. In: “Phytopathogenic Prokaryotes,” Vol. 1., (M.S. Mount and G.H. Lacy, Eds.) Academic Press, New York.

    Google Scholar 

  • Suslow, T.V. and Schroth, M.N., 1982a. Role of deleterious rhizobacteria as minor pathogens in reducing crop growth, Phytopathology, 72: 111.

    Article  Google Scholar 

  • Suslow, T.V. and Schroth, M.N., 1982b. Rhizobacteria of sugar beets: effects of seed application and root colonization on yield. Phytopathology, 72: 199.

    Article  Google Scholar 

  • Teintze, M., Hossain, M.B., Barnes, C.L., Leong, J. and van der Helm, D., 1981. Structure of ferric pseudobactin, a siderophore from a plant growth-promoting Pseudomonas. Biochemistry, 20: 6446.

    Article  PubMed  CAS  Google Scholar 

  • Vancura, V., 1964. Root exudates of plants. I. Analysis of root exudates of barley and wheat in their initial phases of growth. Plant Soil, 21: 231.

    Article  Google Scholar 

  • Vancura, V., 1967. Root exudates of plants. III. Effect of temperature and “cold shock” on the exudation of various compounds from seeds and seedlings of maize and cucumber. Plant Soil, 27: 319.

    Article  CAS  Google Scholar 

  • Vancura, V., and Hanzlikova, A., 1972. Root exudates of plants. IV. Differences in chemical composition of seed and seedlings exudates. Plant Soil, 36: 271.

    Article  CAS  Google Scholar 

  • Vancura, V., and Hovadik, A., 1965. Root exudates of plants. II. Composition of root exudates of some vegetables. Plant Soil, 22: 21.

    Article  CAS  Google Scholar 

  • Vidaver, A.K., 1967. Synthetic and complex media for the rapid detection of fluorescence of phytopathogenic pseudomonads: effect of the carbon source. Appl. Microbiol., 15: 1523.

    PubMed  CAS  Google Scholar 

  • Weller, D.M., and Cook, R.J., 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads, Phytopathology, 73: 463.

    Article  Google Scholar 

  • Yuen, G.Y., and Schroth, M.N., 1986a. Inhibition of Fusarium oxysporum f. sp. dianthi by iron competition with an Alcaligenes sp., Phytopathology (in press).

    Google Scholar 

  • Yuen, G.Y., and Schroth, M.N. 1986b. Interactions of Pseudomonas fluorescens strain E6 with ornamental plants and its effect on the composition of root-colonizing microflora. Phytopathology (in press).

    Google Scholar 

  • Yuen, G.Y., Schroth, M.N., and McCain, A.H., 1986. Reduction in Fusarium wilt of carnations with suppressive soils and antagonistic bacteria. Plant Disease, 69:(in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Loper, J.E., Schroth, M.N. (1986). Importance of Siderophores in Microbial Interactions in the Rhizosphere. In: Swinburne, T.R. (eds) Iron, Siderophores, and Plant Diseases. NATO ASI Series, vol 117. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9480-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9480-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9482-6

  • Online ISBN: 978-1-4615-9480-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics