Skip to main content

Determining Microbial Kinetic Parameters Using Nonlinear Regression Analysis

Advantages and Limitations in Microbial Ecology

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 8))

Abstract

Microbial ecologists, and biologists in general, have come to appreciate the power of the quantitative approach in their research. It is no longer enough to describe the organisms that occupy a given habitat; the rates at which they carry out metabolic functions of ecological importance must be estimated. Only when quantitative information of metabolic activities is coupled with knowledge of organismal types can our understanding of the concerted actions of the members of a community be considered complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arthenari, T. S., and Dodge, Y., 1981, Mathematical Programming in Statistics, Wiley, New York.

    Google Scholar 

  • Askelof, P., Korsfeldt, M., and Mannervik, B., 1976, Error structure of enzyme kinetic experiments, Eur. J. Biochem. 69:61–67.

    CAS  PubMed  Google Scholar 

  • Atkins, G. L., and Nimmo, 1. A., 1973, The reliability of Michaelis constants and maximum velocities estimated by using the integrated Michaelis-Menten equation, Biochem. J. 135:779–784.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atkins, G. L., and Nimmo, I. A., 1980, Current trends in the estimation of Michaelis-Menten parameters, Anal. Biochem. 104:1–9.

    CAS  PubMed  Google Scholar 

  • Bard, Y., 1970, Comparison of gradient methods for the solution of nonlinear parameter estimation problems, SI AM J. Numer. Anal. 7:157–186.

    Google Scholar 

  • Bard, Y., 1974, Nonlinear Parameter Estimation, Academic Press, New York.

    Google Scholar 

  • Baughman, G. L., Paris, D. F., and Steen, W. C., 1980, Quantitative expression of biotransformation rate, in: Biotransformation and Fate of Chemicals in the Aquatic Environment (A. S. Maki, K. L. Dickson, and J. Cairns, Jr., eds.), pp. 67–86, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Beck, J. v., and Arnold, K. J., 1977, Parameter Estimation in Engineering and Science, Wiley, New York.

    Google Scholar 

  • Bemer, R. A., 1980, Early Diagenesis: A Theoretical Approach, Princeton University Press, Princeton.

    Google Scholar 

  • Betlach, M. R., and Tiedje, J. M., 1981, Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification, Appl. Environ. Microbiol. 42:1074–1084.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Betlach, M. R., Tiedje, J. M., and Firestone, R. B., 1981, Assimilatory nitrate uptake in Pseudomonasfluorescens studied using nitrogen-13, Appl. Environ. Microbiol. 129:135–140.

    CAS  Google Scholar 

  • Blackman, F. F., 1905, Optima and limiting factors, Ann. Bot. (Lond.) 19:281–295.

    Google Scholar 

  • Box, G. E. P., and Kanemasu, H., 1972, Topics in model building, Part II, On non-linear least squares, Technical Report No. 321, Department of Statistics, University of Wisconsin, Madison, Wisconsin.

    Google Scholar 

  • Box, G. E. P., and Lucas, H. L., 1959, Design of experiments in non-linear situations, Biometrika 46:77–90.

    Google Scholar 

  • Burden, R. L., Faires, J. D., and Reynolds, A. C., 1978, Numerical Analysis, Prindle, Weber and Schmidt, Boston.

    Google Scholar 

  • Caldwell, D. E., Brannan, D. K., Morris, M. E., and Betlach, M. R., 1981, Quantitation of microbial growth on surfaces, Microb. Ecol. 7:1–11.

    CAS  PubMed  Google Scholar 

  • Cleland, W. W., 1979, Statistical analysis of enzyme kinetic data, Meth. Enzymol. 63:103–183.

    CAS  PubMed  Google Scholar 

  • Cobelli, C., and Dtefano III, J. J., 1980, Parameter and structural concepts and ambiguities: A critical review and analysis. Am. J. Physiol. 239:R7-R24.

    CAS  PubMed  Google Scholar 

  • Cobelli, C., Dtefano III, J. J., and Ruggeri, A., 1983, Minimal sampling schedules for identification of dynamic models of metabolic systems of clinical interest: Case studies for two liver function tests, Math. Biosci. 63:173–186.

    Google Scholar 

  • Condrey, R. E., 1982, The chemostat and Blackman kinetics, Biotechnol. Bioeng. 24:1705–1709.

    CAS  PubMed  Google Scholar 

  • Cooper, R. A., and Weekes, A. J., 1983, Data, Models and Statistical Analysis, Barnes and Noble, Totowa, New Jersey.

    Google Scholar 

  • Corman, A., and Pave, A., 1983, On parameter estimation of Monod’s bacterial growth model from batch culture data, J. Gen. Appl. Microbiol. 29:91–101.

    CAS  Google Scholar 

  • Cornish-Bowden, A., 1979, Fundamentals of Enzyme Kinetics, Butterworth, Boston.

    Google Scholar 

  • Comish-Bowden, A., and Endrenyi, L., 1981, Fitting of enzyme kinetic data without prior knowledge of weights, Biochem. J. 193:1005–1008.

    Google Scholar 

  • Comish-Bowden, A., and Wong, J. T.-F., 1978, Evaluation of rate constants for enzyme- catalyzed reactions by the jackknife technique, Biochem. J. 175:969–976.

    Google Scholar 

  • Cornish-Bowden, A., Porter, W. R., and Trager, W. F., 1978, Evaluation of distribution-free confidence limits for enzyme kinetic parameters, J. Theor. Biol. 74:163–175.

    CAS  PubMed  Google Scholar 

  • Cuhel, R. L., Taylor, C. D., and Jannasch, H. W., 1982, Assimilatory sulfur metabolism in marine microorganisms: Considerations for the application of sulfate incorporation into protein as a measurement of natural population protein synthesis, Appl. Environ. Microbiol. 43:160–168.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Currie, D., 1982, Estimating Michaelis-Menten parameters: Bias, variance and experimental design. Biometrics 38:907–919.

    Google Scholar 

  • Dabes, J. N., Finn, R. K., and Wilke, C. R., 1973, Equations of substrate-linked growth: The case for Blackman kinetics, Biotechnol. Bioeng. 15:1159–1177.

    CAS  PubMed  Google Scholar 

  • Dammkoehler, R. A., 1966, A computational procedure for parameter estimation applicable to certain non-Unear models of enzyme kinetics, J. Biol. Chem. 241:1955–1957.

    CAS  PubMed  Google Scholar 

  • Da vies, M., and Whitting, I. J., 1972, A modified form of Levenberg’s correction, in: Numerical Methods for Non-linear Optimization (F. A. Lootsma, ed.), pp. 191–201, Academic Press, London.

    Google Scholar 

  • De Villiers, N., and Glasser, D., 1981, A continuation method for nonlinear regression, SIAMJ. Numer. Anal. 18:1139–1154.

    Google Scholar 

  • Dtefano III, J. J., 1980, Design and optimization of tracer experiments in physiology and medicine. Fed. Proc. 39:84–90.

    Google Scholar 

  • Dtefano III, J. J., 1981, Optimized blood sampling protocols and sequential design of kinetic experiments. Am. J. Physiol. 240:R259-R265.

    Google Scholar 

  • Dixon, W. J., Brown, M. B., Engleman, L., Frane, J. W., Hill, M. A., Jennrich, R. L, and Toporek, J. D., 1981, Biomedical Computer Programs, University of California Press, Los Angeles.

    Google Scholar 

  • Dowd, J. E., and Riggs, D. S., 1965, A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations, J. Biol Chem. 240:863–869.

    CAS  PubMed  Google Scholar 

  • Draper, N. R., and Smith, 1981, Applied Regression Analysis, Wiley, New York.

    Google Scholar 

  • Duggleby, R. G., 1979, Experimental designs for estimating the kinetic parameters for enzyme-catalyzed reactions, J. Theor. Biol. 81:671–684.

    CAS  PubMed  Google Scholar 

  • Duggleby, R. G., 1981, A nonlinear regression program for small computers. Anal. Biochem. 110:9–18.

    CAS  PubMed  Google Scholar 

  • Duggleby, R. G., and Morrison, J. F., 1977, The analysis of progress curves for enzyme- catalyzed reactions by nonlinear regression, Biochem. Biophys. Acta 481:297–312.

    CAS  PubMed  Google Scholar 

  • Efron, B., 1982, The Jackknife, the Bootstrap and Other Resampling Plans, Society for Industrial and Applied Mathematics, Philadelphia.

    Google Scholar 

  • Eisenthal, R., and Cornish-Bowden, A., 1974, The direct linear plot, Biochem. J. 139:715–720.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Endrenyi, L., and Chan, F.-Y., 1981, Optimal design of experiments for the estimation of precise hyperbolic kinetic and binding parameters, J. Theor. Biol. 90:241–263.

    CAS  PubMed  Google Scholar 

  • Esener, A. A., Roels, 1. A., and Kossen, N. W. F., 1981, On the statistical analysis of batch data, Biotechnol. Bioeng 23:2391–2396.

    Google Scholar 

  • Fedorov, V. V., 1972, Theory of Optimal Experiments, Academic Press, New York.

    Google Scholar 

  • Fox, T., Hinkley, D., and Lamtz, K., 1980, Jackknifing in nonlinear regression, Technometrics 22:29–33.

    Google Scholar 

  • Garfinkel, L., Kohn, M. C., and Garfinkel, D., 1977, Systems analysis in enzyme kinetics, CRC Crit. Rev. Bioeng 2:329–361.

    CAS  PubMed  Google Scholar 

  • Goldberg, A. S., 1968, Topics in Regression Analysis, Macmillan, London.

    Google Scholar 

  • Graham, J. M., and Canale, R. P., 1982, Experimental and modeling studies of a four- trophic level predator-prey system, Microb. Ecol. 8:217–232.

    CAS  PubMed  Google Scholar 

  • Harbaugh, J., and Bonham-Carter, G., 1970, Computer Simulation in Geology, Wiley, New York.

    Google Scholar 

  • Heineken, F. G., Tsuchiya, and Aris, R., 1967, On the accuracy of determining rate constants in enzymatic reactions. Math. Biosci. 1:115–141.

    Google Scholar 

  • Hill, P. D. H., 1978, A review of experimental design procedures for regression model discrimination, Technometrics 20:15–21.

    Google Scholar 

  • Hinkley, D. V., 1977, Jackknifing in unbalanced situations, Technometrics 19:285–292.

    Google Scholar 

  • Hobbie, J. E., and Crawford, C. C., 1969, Respiration corrections for bacterial uptake of dissolved organic compounds in natural waters, Limnol. Oceanogr. 14:528–532.

    CAS  Google Scholar 

  • Holmberg, A., 1982, On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities, Math. Biosci. 62:23–43.

    Google Scholar 

  • Horowitz, A., Suflita, J. M., and Tiedje, J. M., 1983, Reductive dehalogenations of halo- benzoates by anaerobic lake sediment microorganisms, Appl. Environ. Microbiol. 45:1459–1465.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huber, P. J., 1972, Robust statistics: A review, Ann. Math. Stat. 43:1041–1067.

    Google Scholar 

  • Huber, P. J., 1981, Robust Statistics, Wiley, New York.

    Google Scholar 

  • Jennrich, R. L, and Ralston, M. L., 1979, Fitting nonlinear models to data, Annu. Rev. Bioeng 8:195–238.

    CAS  Google Scholar 

  • Kasper, H. F., and Tiedje, J. M., 1980, Response of electron capture detector to H2, O2, N2O, NO and N2, J. Chromatogr. 193:142–147.

    Google Scholar 

  • Knowles, G., Downing, A. L., and Barrett, M. J., 1965, Determination of kinetic constants for nitrifying bacteria in mixed culture, with the aid of an electronic computer, J. Gen. Microbiol. 38:263–278.

    CAS  PubMed  Google Scholar 

  • Koch, A., 1981, Growth measurement, in: Manual of Methods for General Bacteriology (P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. N. Nester, W. A. Wood, N. R. Krieg, and G. B. Phillips, eds.), pp. 179–207, American Society for Microbiology, Washington, D.C

    Google Scholar 

  • Koch, A., 1982, Multistep kinetics: Choice of models for the growth of bacteria, J. Theor. Biol. 98:401–417.

    CAS  PubMed  Google Scholar 

  • Koeppe, P., and Hamann, C., 1980, A program for non-linear regression analysis to be used on desk-top computers. Camp. Programs Biomed. 12:121–128.

    CAS  Google Scholar 

  • Kohberger, R. C., 1980, Statistical evaluation of the direct linear plot method for estimation of enzyme kinetic parameters. Anal. Biochem. 101:1–6.

    CAS  PubMed  Google Scholar 

  • Larson, R. J., 1980, Role of biodégradation kinetics in predicting environmental fate, in: Biotransformation and Fate of Chemicals in the Aquatic Environment (A. W. Maki. K. L. Dickson, and J. Cairns, Jr., eds.), pp. 67–86, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Li, W. K. W., 1983, Consideration of errors in estimating kinetic parameters based on Michaelis-Menten formalism in microbial ecology, Limnol. Oceanogr. 28:185–190.

    CAS  Google Scholar 

  • Lovley, D. R., Dwyer, D. F., and Klug, M. K., 1982, Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments, Appl. Environ. Microbiol. 43:1373–1379.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer, S. L., 1975, Data Analysis for Scientists and Engineers, Wiley, New York.

    Google Scholar 

  • Michaelis, M., and Menten, M. L., 1913, Kinetics of invertase action, Z. Biochem. 49:333.

    CAS  Google Scholar 

  • Miller, R. G., 1974, The jackknife—A review, Biometrika 61:1–15.

    Google Scholar 

  • Monod, J., 1942, Recherches sur la Croissance de Cultures Bactériennes, Herman, Paris.

    Google Scholar 

  • Mori, F., and Dtefano III, J. J., 1979, Optimal nonuniform sampling interval and test- input design for identification of physiological systems from very limited data, IEEE Trans. Automat. Control/AC-26:893–900.

    Google Scholar 

  • Mosteller, F., and Tukey, J. W., 1977, Data Analysis and Regression, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Nelder, J. A., and Mead, R., 1965, A Simplex method for function minimization, Computing Journal 7:308–313.

    Google Scholar 

  • Nimmo, I. A., and Atkins, G. L., 1974, A comparison of two methods for fitting the integrated Michaelis-Menten equation, Biochem. J. 141:913–914.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nimmo, I. A., and Mabood, S. F., 1979, The nature of random experimental error encountered when acetylcholine hydrolase and alcohol dehydrogenase are assayed, Anal. Biochem. 94:265–269.

    CAS  PubMed  Google Scholar 

  • Oppenheimer, L., Capizzi, T. P., and Miwa, G. T., 1981, Application of jackknife procedures to inter-experimental comparisons of parameter estimates for the Michaelis- Menten equation, Biochem. J. 197:721–729.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paris, D. F., Wolfe, N. L., and Steen, W. D., 1982, Structure activity relationships in microbial transformations of phenols, Appl. Environ. Microbiol. 44:153–158.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pierce, T. H., Cukier, R. I., and Dye, J. L., 1981, Application of nonlinear sensitivity analysis to enzyme mechanisms. Math. Biosci. 56:175–208.

    CAS  Google Scholar 

  • Pirt, S. J., 1975, Principles of Microbe and Cell Cultivation, Wiley, New York.

    Google Scholar 

  • Porter, W. R., and Trager, W. F., 1977, Improved non-parametric statistical methods for the estimation of Michaelis-Menten kinetic parameters by the direct linear plot, Biochem. J. 61:293–302.

    Google Scholar 

  • Powell, E. O., 1967, The growth rate of microorganisms as a function of substrate concentration, in: Microbial Physiology and Continuous Culture (E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), pp. 34–56, Her Majesty’s Stationary Office, London.

    Google Scholar 

  • Quenouille, M. H., 1956, Notes on bias in estimation, Biometrika 43:353–360.

    Google Scholar 

  • Revsbech, N. P., and Jorgensen, B. B., 1983, Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: Capabilities and limitations of the method, Limnol. Oceanogr. 28:749–756.

    Google Scholar 

  • Revsbech, N. P., and Ward, D. M., 1983, Oxygen microelectrode that is insensitive to medium chemical composition: Use in an acid microbial mat dominated by Cyanidium caldarium, Appl. Environ. Microbiol. 45:755–759.

    CAS  Google Scholar 

  • Revsbech, N. P., Sorensen, J., Blackburn, T. H., and Lomholt, J. P., 1980, Distribution of oxygen in marine sediments measured with microelectrodes, Limnol. Oceanogr. 25:403–411.

    CAS  Google Scholar 

  • Roberts, D. V., 1977, Enzyme Kinetics, Cambridge University Press, London.

    Google Scholar 

  • Robinson, J. A., and Characklis, W. G., 1984, Simultaneous estimation of Vmax, Km and the rate of endogenous substrate production (R) from progress curve data, Microb. Ecol. 10:165–178.

    CAS  PubMed  Google Scholar 

  • Robinson, J. A., and Tiedje, J. M., 1982, Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment, Appl. Environ. Microbiol. 44:1374–1384.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson, J. A., and Tiedje, J. M., 1983, Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve, Appl. Environ. Microbiol. 45:1453–1458.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson, J. A., and Tiedje, J. M., 1984, Competition between sulfate-reducing and meth- anogenic bacteria for H2 under resting and growing conditions, Arch. Microbiol. 137:26–32.

    CAS  Google Scholar 

  • Schauer, N. L., Brown, D. P., and Ferry, J. G., 1982, Kinetics of formate metabolism in Methanobacterium formicicum and Methanobacterium hungatei, Appl. Environ. Microbiol. 44:549–554.

    CAS  Google Scholar 

  • Seber, G. A. F., 1977, Linear Regression Analysis, Wiley, New York.

    Google Scholar 

  • Siano, D. B., Zyskind, J. W., and Fromm, H. J., 1975, A computer program for fitting and statistically analyzing initial rate data applied to bovine hexokinase type III isozyme. Arch. Biochem. Biophys. 170:587–600.

    CAS  PubMed  Google Scholar 

  • Silvert, W., 1979, Practical curve fitting, Limnol. Oceanogr. 24:767–773.

    Google Scholar 

  • Simkins, S., and Alexander, M., 1984, Models for mineralization kinetics with the variables of substrate concentration and population density, Appl. Environ. Microbiol. 47:1229–1306.

    Google Scholar 

  • Storer, A. C., Darlison, M. G., and Cornish-Bowden, A., 1975, The nature of experimental error in enzyme kinetic measurements, Biochem. J. 151:361–367.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strayer, R. F., and Tiedje, J. M., 1978, Kinetic parameters of the conversion of methane precursors to methane in a hypereutrophic lake sediment, Appl. Environ. Microbiol. 36:330–340.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suflita, J. M., Robinson, J. A., and Tiedje, J. M., 1983, Kinetics of microbial dehalogenation of haloaromatic substrates in methanogenic environments, Appl. Environ. Microbiol. 45:1466–1473.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor, C. D., 1979, Growth of a bacterium under a high-pressure oxy-helium atmosphere, Appl. Environ. Microbiol. 36:42–49.

    Google Scholar 

  • Thibodeaux, L. J., 1979, Chemodynamics, Environmental Movement of Chemicals in Air, Water and Soil, Wiley, New York.

    Google Scholar 

  • Thomas, G. B., Jr., 1972, Calculus and Analytical Geometry, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Van Es, F. B., and Meyer-Reil, L.-A., 1982, Biomass and metabolic activity of heterotrophic marine bacteria, in: Advances in Microbial Ecology, Vol. 6 (K. C. Marshall, ed.), pp. 111–170, Plenum Press, New York.

    Google Scholar 

  • Wilkinson, G. N., 1961, Statistical estimations in enzyme kinetics, Biochem. J. 80:324–332.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright, R. T., and Hobbie, J. E., 1966, Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47:447–464.

    CAS  Google Scholar 

  • Yun, S.-L., and Suelter, C. H., 1977, A simple method for calculating Km and Ffrom a single enzyme reaction progress curve, Biochem. Biophys. Acta 480:1–13.

    CAS  PubMed  Google Scholar 

  • Zar, J. H., 1974, Biostatistical Analysis, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Robinson, J.A. (1985). Determining Microbial Kinetic Parameters Using Nonlinear Regression Analysis. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9412-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9412-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9414-7

  • Online ISBN: 978-1-4615-9412-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics