Skip to main content

Mechanisms of Cerebrospinal Fluid Absorption in Normal and Pathologically Altered Arachnoid Villi

  • Chapter
Neurobiology of Cerebrospinal Fluid 2

Abstract

The cerebrospinal fluid (CSF) system, contained within the craniospinal cavities, may be described as a moderately distensible compartment enclosed by the skull and vertebral column, wherein CSF pressure is normally maintained within a relatively narrow range. Transient alterations in volume and flow are compensated by interactions between regulatory mechanisms that involve CSF formation, storage, and outflow. Volumetric expansion within the craniospinal cavities is spatially compensated by a combination of these interacting regulatory factors, which include (1) a compliance factor, defined in terms of volume change per unit change in CSF pressure56, 57, 61, 62 and functionally related to the elastic properties of craniospinal meninges and blood vessels; and (2) an outflow resistance factor that modulates CSF volume by venting fluid through CSF outflow sites into the venous circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. E., Prawirohardjo, S.: Fate of red blood cells injected into cerebrospinal fluid pathways. Neurology (Minneapolis)9: 561–564, 1959.

    Article  Google Scholar 

  2. Alksne, J. F., White, L. E.: Electron microscope study of the effect of increased intracranial pressure on the arachnoid villus. J. Neurosurg. 22: 481, 1965.

    Article  Google Scholar 

  3. Alksne, J. F., Lovings, E. T.: Functional ultrastructure of the arachnoid villus. Arch. Neurol. Psychiatry27: 371–377, 1972.

    Google Scholar 

  4. Alksne, J. F., Lovings, E. T.: The role of the arachnoid villus in the removal of red blood cells from the subarachnoid space: An electron microscope study in the dog. J. Neurosurg. 36: 192, 1972.

    Article  Google Scholar 

  5. Andres, K. H.: Zur Feinstruktur der arachnoidal Zotten bei Mammalia. Z. Zellforsch. Mikrosk. Anat. 82: 92–109, 1967.

    Article  Google Scholar 

  6. Bagley, C., Jr.: Blood in the cerebrospinal fluid: Resultant functional and organic alterations in the central nervous system. A. Experimental data. Arch. Surg. (Chicago)17: 18–38, 1928.

    Article  Google Scholar 

  7. Bagley, C., Jr.: Blood in the cerebrospinal fluid: Resultant functional and organic alterations in the central nervous system. B. Clinical data. Arch. Surg. (Chicago)17: 39–81, 1928.

    Article  Google Scholar 

  8. Bamford, C. R., Labadie, E. L.: Reversal of dementia in normotensive hydrocephalus after removal of a cauda equina tumor: Case report. J. Neurosurg. 45: 104–107, 1976.

    Article  Google Scholar 

  9. Bradford, F. K., Johnson, P. C.: Passage of intact iron-labeled erythrocytes from subarachnoid space to systemic circulation in dogs. J. Neurosurg. 19: 332–336, 1962.

    Article  Google Scholar 

  10. Bradford, F., Sharkey, P.: Physiologic effects from introduction of blood and other substances into the subarachnoid space of dogs. J. Neurosurg. 19: 1017–1022, 1962.

    Article  Google Scholar 

  11. Brightman, M. W., Reese, T. S.: Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40: 648–677, 1969.

    Article  Google Scholar 

  12. Brightman, M. W.: Morphology of blood brain interfaces. In Bito, L. Z., Davson, H., Fenstermacher, J. D. (eds.): The Ocular and Cerebrospinal Fluids. Exp. Eye Res. 24(Suppl.):l-25, 1977.

    Google Scholar 

  13. Butler, A. B., Maffeo, C. J., Johnson, R. N., Bass, N. H.: Impaired absorption of CSF during experimental subarachnoid hemorrhage: Effects of blood components on vesicular transport in arachnoid villi. In Shulman, K., Marmarou, A., Miller, J. D., Hochward, G., Becker, D. B., Brock, M. (eds.): Intracranial Pressure IV. Berlin, Heidelberg, New York, Springer-Verlag, 1980, pp. 245–248.

    Google Scholar 

  14. Butler, A. B., Mann, J. D., Falk, P. M., Johnson, R. N., Bass, N. H.: Pressure-sensitive vesicular transport of cerebrospinal fluid through the arachnoid villus endothelium J. Comp. Neurol. (in press).

    Google Scholar 

  15. Butler, A. B., Mann, J. D., Falk, P. M., Johnson, R. N., Bass, N. H.: Pressure-sensitive protein transport by vesicles in arachnoid villus endothelium (submitted).

    Google Scholar 

  16. Cleland, P. G., Macfarlane, J. T., Baird, D. R., Greenwood, B. M.: Fibrin degradation products in the cerebrospinal fluid of patients with pneumococcal meningitis. J. Neurol. Neurosurg. Psychiatry42: 843–846, 1979.

    Article  Google Scholar 

  17. Courtice, F. C., Simmonds, W. J.: The removal of protein from the subarachnoid space. Aust. J. Exp. Biol. Med. Sci. 29: 255–263, 1951.

    Article  Google Scholar 

  18. Cushing, H.: Studies on cerebrospinal fluid. I. Introduction. J. Med. Res. 31: 1–19, 1914.

    Google Scholar 

  19. Dacey, R. G., Welsh, J. E., Winn, H. R., Scheld, W. M., Sande, M. A., Jane, J. A.: Bacterial meningitis: Changes in CSF outflow resistance. In Shulman, K., Marmarou, A., Miller, J. D., Hochward, G., Becker, D. B., Brock, M. (eds.): Intracranial Pressure IV. Berlin, Heidelberg, New York, Springer-Verlag, 1980, pp. 350–353.

    Google Scholar 

  20. Davson, H.: The rate of disappearance of substances injected into the subarachnoid space of rabbits. J. Physiol. 128: 52–53, 1955.

    Google Scholar 

  21. Davson, H.: Dynamic aspects of cerebrospinal fluid. Cerebral Palsy Bull. 14(Suppl. 27): 1–16, 1972.

    Google Scholar 

  22. Davson, H., Kleeman, C. R., Levin, E.: Quantitative studies of the passage of different substances out of the cerebrospinal fluid. J. Physiol. 161: 126–142, 1962.

    Google Scholar 

  23. Davson, H., Hollingsworth, J., Segal, M. D.: The mechanism of drainage of the cerebrospinal fluid. Brain93: 665–678, 1970.

    Article  Google Scholar 

  24. Davson, H., Domer, F. R., Hollingsworth, J. R.: The mechanism of drainage of the cerebrospinal fluid. Brain96: 329–336, 1973.

    Article  Google Scholar 

  25. Davson, H.: Porous nature of the absorptive mechanism. In Lundberg, N., Ponten, U., Brock, M., (eds.): Intracranial Pressure II. Berlin, New York, Springer-Verlag, 1975, pp. 28–34.

    Google Scholar 

  26. Deland, F. H., James, A. E., Jr., Ladd, D. J., Kon-Igsmark, B. W.: Normal pressure hydrocephalus: A histologic study. Am. J. Clin. Pathol. 58: 58–63, 1972.

    Google Scholar 

  27. Denny-Brown, D. E.: Changing patterns of neurologic medicine. N. Engl. J. Med. 246: 839–846, 1952.

    Article  Google Scholar 

  28. Dupont, J. R., van Wart, C. A., Kraintz, L.: The clearance of major components of whole blood from cerebrospinal fluid following simulated subarachnoid hemorrhage. J. Neuropathol. Exp. Neurol. 20: 450–455, 1961.

    Article  Google Scholar 

  29. Ellington, E., Margolis, G.: Block of arachnoid villus by subarachnoid hemorrhage. J. Neurosurg. 30: 651–657, 1969.

    Article  Google Scholar 

  30. Gardner, W. J., Spitler, D. K., Whitten, C.: Increased intracranial pressure caused by increased protein content in the CSF: An explanation of papilledema in certain cases of small intracranial and intraspinal tumors and in the Guillain-Barré syndrome. N. Engl. J. Med. 250: 932–936, 1954.

    Article  Google Scholar 

  31. Gilles, F. H., Davidson, R. I.: Communicating hydrocephalus associated with deficient dysplastic parasagittal arachnoid granulations. J. Neurosurg. 35: 421–426, 1971.

    Article  Google Scholar 

  32. Gomez, D. G., Potts, D. G., Deonarine, V., Reilly, K. F.: Effects of pressure gradient changes on the morphology of arachnoid villi and granulations of the monkey. Lab. Invest. 28: 648–657, 1973.

    Google Scholar 

  33. Gomez, D. G., Potts, D. G., Deonarine, V.: Arachnoid granulations of the sheep: Structural and ultrastructural changes with varying pressure differences. Arch. Neurol. 30: 169–175, 1974.

    Article  Google Scholar 

  34. Gomez, D. G., Potts, D. G.: The surface characteristics of arachnoid granulations. Arch. Neurol. 31: 88–93, 1974.

    Article  Google Scholar 

  35. Grierson, I., Lee, W. R.: Pressure-induced changes in the ultrastructure of the endothelium lining Schlemm’s canal. Am. J. Ophthalmol. 80: 863–884, 1975.

    Google Scholar 

  36. Gutierrez, Y., Friede, R. L., Kaliney, W. J.: Agenesis of arachnoid granulations and its relationship to communicating hydrocephalus. J. Neurosurg. 43: 553–558, 1975.

    Article  Google Scholar 

  37. Hammes, E.: Reaction of meninges to blood. Arch. Neurol. Psychiatry52: 505–514, 1944.

    Google Scholar 

  38. Hansson, H.-E., Johnsson, B., Blomstrand, C.: Ultrastructural studies on cerebrovascular permeability in acute hypertension. Acta Neuropathol. 32: 187–198, 1975.

    Article  Google Scholar 

  39. Hayashi, M., Marukawa, S., Fujii, H., Kobayashi, H., Yamamoto, S.: Intracranial hypertension in acute stage of ruptured intracranial aneurysms. In Beks, J. W. F., Bosch, D. A., Brock, M. (eds.): Intracranial Pressure II. Berlin, Heidelberg, New York, Springer-Verlag, 1976, pp. 162–167.

    Google Scholar 

  40. Intaglietta, M., Deplomb, E. P.: Fluid exchange in tunnel and tube capillaries. Microvasc. Res. 6: 153–168, 1973.

    Article  Google Scholar 

  41. Ishii, M., Suzuki, S., Julow, J.: Subarachnoid hem-orrhage and communicating hydrocephalus: Scanning electron microscopic observations. Acta Neu-rochir. 50: 265–272, 1979.

    Google Scholar 

  42. Jackson, I. J.: Aseptic hemogenic meningitis: Experimental study of aseptic meningeal reactions due to blood and its breakdown products. Arch. Neurol. Psychiatr. 62: 572–589, 1949.

    Google Scholar 

  43. James, A. E., Jr., Mccomb, J. G., Christian, J., Dav-Son, H.: The effect of cerebrospinal fluid pressure on the size of drainage pathways. Neurology26: 659–663, 1976.

    Article  Google Scholar 

  44. Jayatilaka, A. D. P.: Arachnoid granulations in sheep. J. Anat. 99: 315–327, 1965.

    Google Scholar 

  45. Jayatilaka, A. D. P.: An electron microscopic study of sheep arachnoid granulations. J. Anat. 99: 635–649, 1965.

    Google Scholar 

  46. Johansson, B. R.: Permeability of muscle capillaries to interstitially microinjected horseradish peroxidase. Microvasc. Res. 16: 340–353, 1978.

    Article  Google Scholar 

  47. Johnson, R. N., Maffeo, C. J., Butler, A. B., Mann, J. D., Bass, N. H.: Intracranial hypertension in experimental animals and man: Quantitative approach to system dynamics of circulatory cerebrospinal fluid. In Wood, J. H. (ed.): Neurobiology of Cerebrospinal Fluid2. New York, Plenum Press, 1983, Chapter 44.

    Google Scholar 

  48. Johnson, R. N., Maffeo, C. J., Mann, J. D., Butler, A. B., Bass, N. H.: A comparative model of cerebrospinal fluid systems. Life Sci. 8: 79–92, 1978.

    Google Scholar 

  49. Johnson, R. N., Maffeo, C. J., Dacey, R. G., Butler, A. B., Bass, N. H.: Mechanism for intracranial hypertension during experimental subarachnoid hemorrhage: Acute malfunction of arachnoid villi by components of plasma. Trans. Am. Neurol. Assoc. 103: 138–142, 1978.

    Google Scholar 

  50. Johnstone, M. A., Grant, W. M.: Pressure-dependent changes in structures of the aqueous outflow system of human and monkey eyes. Am. J. Ophthalmol. 75: 365–383, 1973.

    Google Scholar 

  51. Julow, J., Ishii, M., Iwabuchi, I.: Scanning electron microscopy of the subarachnoid macrophages after subarachnoid hemorrhage, and their possible role in the formation of subarachnoid fibrosis. Acta Neu-rochir. 50: 273–280, 1979.

    Google Scholar 

  52. Julow, J., Ishii, M., Iwabuchi, T.: Arachnoid villi affected by subarachnoid pressure and hemorrhage: Scanning electron microscopic study in the dog. Acta Neurochir. 51: 63–72, 1979.

    Article  Google Scholar 

  53. Kaufman, H. H., Carmel, P. W.: Aseptic meningitis and hydrocephalus after posterior fossa surgery. Acta Neurochir. 44: 179–196, 1978.

    Article  Google Scholar 

  54. Key, A., Retzius, G.: Anatomie des Nervensystems und des Bindegewebes, Vol. I. Stockholm, P. A., Nord-stedt, 1875.

    Google Scholar 

  55. Kolberg, T., Palma, A.: New aspects of cerebrospinal fluid dynamics in humans investigated by sequential gamma camera cisternography, with data evaluation by the digital multichannel ana-lyzer. 2. Pathology of cerebrospinal fluid flow in the subarachnoid space of the brain convexity. Acta Neurochir. 38: 1–12, 1977.

    Article  Google Scholar 

  56. Legros, Clark, W. E.: On the Pacchionian bodies. J. Anat. 55: 40–48, 1920.

    Google Scholar 

  57. Lofgren, J., Von Essen, C., Zwetnow, N. N.: The pressure-volume curve of the cerebrospinal fluid space in dogs. Acta Neurol. Scand. 49: 557–574, 1973.

    Article  Google Scholar 

  58. Lofgren, J., Zwetnow, N. N.: Cranial and spinal components of the cerebrospinal fluid pressure volume curve. Acta Neurol. Scand. 49: 575–585, 1973.

    Article  Google Scholar 

  59. Lorenzo, A. V., Bresnan, M. J., Barlow, C. F.: Cerebrospinal fluid absorption deficit in normal pressure hydrocephalus. Arch. Neurol. 30: 387–393, 1974.

    Article  Google Scholar 

  60. Mann, J. D., Butler, A. B., Rosenthal, J., Maffeo, C. J., Johnson, R. N., Bass, N. H.: Regulation of intracranial pressure in rat, dog, and man. Ann. Neurol. 3: 156–165, 1978.

    Article  Google Scholar 

  61. Mann, J. D., Butler, A. B., Johnson, R. N., Bass, N. H.: Clearance of macromolecular and particulate substances from the cerebrospinal fluid system of the rat. J. Neurosurg. 50: 343–348, 1979.

    Article  Google Scholar 

  62. Marmarou, A., Shulman, K., Lamorgese, J.: Com-partmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J. Neurosurg. 43: 523–534, 1975.

    Article  Google Scholar 

  63. Marmarou, A., Shulman, K., Rosende, R. M.: A non-linear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J. Neurosurg. 48: 332–344, 1978.

    Article  Google Scholar 

  64. Matthews, W. F., Frommeyer, W. B.: The in vitro behavior of erythrocytes in human cerebrospinal fluid.J. Lab. Clin. Med. 45: 508–515, 1955.

    Google Scholar 

  65. Mcqueen, J. D., Jelsma, L. F.: Intracranial hypertension: Cerebrospinal fluid pressure rises following intracisternal infusions of blood components in dogs. Arch. Neurol. 16: 501–508, 1967.

    Article  Google Scholar 

  66. Mcqueen, J. D., Northrup, B. E., Leibrock, L. G.: Arachnoid clearance of red blood cells. J. Neurol. Neurosurg. Psychiatry37: 1316–1321, 1974.

    Article  Google Scholar 

  67. Nabeshima, S., Reese, T. S., Landis, D. M. D., Brightman, M. W.: Junctions in the meninges and marginal glia. J. Comp. Neurol. 164: 127–169, 1975.

    Article  Google Scholar 

  68. Nornes, H., Magnaes, B.: Intracranial pressure in patients with ruptured saccular aneurysm. J. Neurosurg. 36: 537–647, 1972.

    Article  Google Scholar 

  69. Pacchioni, A.: Dissertation epistolaris and lucam schroeckium de glandulis conglobatis durae meningis il-umanae. Rome, 1705.

    Google Scholar 

  70. Palade, G. E., Bruns, R. R.: Structural modulation of plasmalemmal vesicles. J. Cell Biol. 37: 633–649, 1968.

    Article  Google Scholar 

  71. Potts, D. B., Reilly, K. F., Deonarine, V.: Morphology of the arachnoid villi and granulations. Radiology105: 333–341, 1972.

    Google Scholar 

  72. Potts, D. G., Gomez, D. F.: Cerebrospinal fluid-production, function and absorption. In Newton, T. H., Potts, D. G., (eds.): Radiology of the Skull and Brain, Vol. III. St. Louis, C. V. Mosby, 1977, pp. 2915–2937.

    Google Scholar 

  73. Prockop, L. D., Schanker, L. S., Brodie, B. B.: Passage of lipid-insoluble substances from cerebrospinal fluid to blood. J. Pharmacol135: 266–270, 1962.

    Google Scholar 

  74. Reese, T. S., Karnovsky, M. J.: Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34: 207–217, 1967.

    Article  Google Scholar 

  75. Roost, K. T., Pimstone, N. R., Diamond, I., Schmid, R.: The formation of cerebrospinal fluid xanthochromia after subarachnoid hemorrhage: Enzymatic conversion of hemoglobin to bilirubin by the arachnoid and choroid plexus. Neurology22: 973–977, 1972.

    Article  Google Scholar 

  76. Schemm, C., Bentley, J., Doerfler, M.: Wound healing in the subarachnoid space. Neurology18: 862–869, 1968.

    Article  Google Scholar 

  77. Shabo, A. L., Maxwell, D. S.: The morphology of the arachnoid villi: A light and electron microscopic study in the monkey. J. Neurosurg. 29: 451–463, 1968.

    Article  Google Scholar 

  78. Shabo, A. L., Maxwell, D. S.: Electron microscopic observations on the fate of particulate matter in the cerebrospinal fluid. J. Neurosurg. 29: 464–474, 1968.

    Article  Google Scholar 

  79. Shabo, A. L., Abbott, M. M., Maxwell, D. S.: The response of the arachnoid villus to an intracisternal injection of autogenous brain tissue: An electron microscopic study in the macaque monkey. Neurology19: 724–734, 1969.

    Article  Google Scholar 

  80. Shabo, A. L., Maxwell, D. S.: The subarachnoid space following the introduction of a foreign protein: An electron microscopic study with peroxidase. J. Neuropathol. Exp. Neurol. 30: 506–524, 1971.

    Article  Google Scholar 

  81. Shabo, A. L., Brightman, M. W.: Permeability to peroxidase of the endothelium in the arachnoid villus of monkeys. Anat. Rec. 172: 404, 1972.

    Google Scholar 

  82. Shirley, H. H., Wolfram, C. G., Wasserman, K., Mayerson, H. S.: Capillary permeability to macro-molecules: Stretched pore phenomenon. Am. J. Physiol. 190: 189–193, 1957.

    Google Scholar 

  83. Simionescu, N., Simionescu, M., Palade, G. E.: Permeability of muscle capillaries to small heme-peptides: Evidence for the existence of patent transendothelial channels. J. Cell Biol. 64: 586–607, 1975.

    Article  Google Scholar 

  84. Simionescu, M., Simionescu, N., Palade, G. E.: Segmental differentiations of cell junctions of the vascular endothelium: The microvasculature. J. Cell Biol. 67: 863–885, 1975.

    Article  Google Scholar 

  85. Simionescu, N., Simionescu, M., Palade, G. E.: Structural basis of permeability in sequential segments of the microvasculature of the diaphragm. II. Pathways followed by microperoxidase across the endothelium. Microvasc. Res. 15: 17–36, 1978.

    Article  Google Scholar 

  86. Simmonds, W. J.: The absorption of blood from the cerebrospinal fluid in animals. Aust. J. Exp. Biol. Med. Sci. 30: 261–270, 1952.

    Article  Google Scholar 

  87. Simmonds, W. J.: The absorption of labelled eryth-rocytes from the subarachnoid space in rabbits. Aust. J. Exp. Biol. Med. Sci. 31: 77–84, 1953.

    Article  Google Scholar 

  88. Steiner, L., Lofgren, J., Zwetnow, N. M.: Characteristics and limits of tolerance in repeated subarachnoid hemorrhage in dogs. Acta Neurol. Scand. 52: 241–267, 1975.

    Article  Google Scholar 

  89. Steiner, L., Lofgren, J., Zwetnow, N. M.: Lethal mechanism in repeated subarachnoid hemorrhage in dogs. Acta Neurol. Scand. 52: 268–293, 1975.

    Article  Google Scholar 

  90. Sundbarg, G., Ponten, U.: ICP and CSF absorption impairment after subarachnoid hemorrhage. In Beks, J. W. F., Bosch, D. A., Brock, M. (eds.): Intracranial Pressure II. Berlin, Heidelberg, New York, Springer-Verlag, 1976, pp. 139–146.

    Google Scholar 

  91. Suzuki, S., Ishii, M., Ottomo, M., Iwabuchi, T.: Changes in the subarachnoid space after experimental subarachnoid hemorrhage in the dog: Scanning electron microscopic observation. Acta Neuro-chir. 39: 1–14, 1977.

    Article  Google Scholar 

  92. Suzuki, S., Ishii, M., Iwabuchi, T.: Post-haemor-rhagic subarachnoid fibrosis in dogs: Scanning electron microscopic observation and dye perfusion study. Acta Neurochir. 46: 105–117, 1979.

    Article  Google Scholar 

  93. Torvik, A., Bhatia, R., Murthy, V. S.: Transitory block of the arachnoid granulations following subarachnoid hemorrhage. Acta Neurochir. 41: 137–146, 1978.

    Article  Google Scholar 

  94. Tripathi, R.: Tracing the bulk outflow route of cerebrospinal fluid by transmission and scanning electron microscopy. Brain Res. 80: 503–506, 1974.

    Article  Google Scholar 

  95. Tripathi, R. C.: The functional morphology of the outflow systems of ocular and cerebrospinal fluids. In Bito, L. Z., Davson, H., Fenstermacher, J. D. (eds.): The Ocular and Cerebrospinal Fluids. Exp. Eye Res. 24(Suppl.): 65–116, 1977.

    Google Scholar 

  96. Tripathi, R., Tripathi, B.: Vacuolar transcellular channels as the drainage pathways of cerebrospinal fluid. J. Physiol. 239: 195–206, 1974.

    Google Scholar 

  97. Turner, L.: The structure and relationships of the arachnoid granulations. In Wolstenholme, G. E. W., O’Conner, C. M. (eds.): Ciba Foundation Symposium on the Cerebrospinal Fluid. London, I. and A. Churchill, 1958, pp. 32–54.

    Google Scholar 

  98. Turner, L.: The structure of arachnoid granulations with observations on their physiological and pathological significance. Ann. R. Coll. Surg. 29: 237–264, 1961.

    Google Scholar 

  99. Vandeurs, B.: Vesicular transport of horseradish peroxidase from brain to blood in segments of the cerebral microvasculature in adult mice. Brain Res. 124: 1–8, 1977.

    Article  Google Scholar 

  100. Vandeurs, B., Moller, M., Amtorp, O.: Uptake of horseradish peroxidase from CSF into the choroid plexus of the rat, with special reference to trans-epithelial transport. Cell Tissue Res. 187: 215–234, 1978.

    Google Scholar 

  101. Vessal, K., Sperber, E. E., James, A. E., Jr.: Chronic communicating hydrocephalus with normal CSF pressures: A cisternographic-pathologic correlation. Ann. Radiol17: 785–793, 1974.

    Google Scholar 

  102. Waggener, J. D., Beggs, J.: The membranous coverings of neural tissues: An electron microscopic study. J. Neuropathol. Exp. Neurol. 26: 412–425, 1967.

    Article  Google Scholar 

  103. Wagner, H.-J., Pilgrim, C., Brandl, J.: Penetration and removal of horseradish peroxidase injected into the cerebrospinal fluid: Role of cerebral perivascular spaces, endothelium and microglia. Acta Neuropathol. 27: 299–315, 1974.

    Article  Google Scholar 

  104. Weed, L. H.: Studies in cerebrospinal fluid. II. The theories of drainage of cerebrospinal fluid with an analysis of the methods of investigation. J. Med. Res. 31: 21–49, 1914.

    Google Scholar 

  105. Weed, L. H.: Studies on cerebrospinal fluid. III. The pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi. J. Med. Res. 31: 51–91, 1914.

    Google Scholar 

  106. Weed, L. H.: An anatomical consideration of the cerebrospinal fluid. Anat. Rec. 12: 461–496, 1917.

    Article  Google Scholar 

  107. Weed, L. H.: The absorption of cerebrospinal fluid into the venous system. Am. J. Physiol. 31: 191–221, 1923.

    Google Scholar 

  108. Weed, L. H., Flexner, L. B., Clark, J. H.: The effect of dislocation of cerebrospinal fluid upon its pressure. Am. J. Physiol. 100: 246–261, 1932.

    Google Scholar 

  109. Weed, L. H.: Forces concerned in the absorption of the cerebrospinal fluid. Am. J. Anat. 114: 40–45, 1935.

    Google Scholar 

  110. Welch, K., Friedman, V.: The cerebrospinal fluid valves. Brain83: 454, 1960.

    Article  Google Scholar 

  111. Welch, K., Pollay, M.: Perfusion of particles through arachnoid villi of the monkey. Am. J. Physiol. 201: 651–654, 1961.

    Google Scholar 

  112. Westergaard, E., Vandeurs, B., Broadsted, H. E.: Increased vesicular transfer of horseradish peroxidase across cerebral endothelium, evoked by acute hypertension. Acta Neuropathol. 37: 141–152, 1977.

    Article  Google Scholar 

  113. Williams, M. D., Wissig, S. L.: The permeability of muscle capillaries to horseradish peroxidase. J Cell Biol. 66: 531–555, 1975.

    Article  Google Scholar 

  114. Winkelman, N. W., Fay, T.: The Pacchionian system: Histologic and pathologic changes with particular reference to the idiopathic and symptomatic convulsive states. Arch. Neurol. Psychiatry23: 44–64, 1930.

    Google Scholar 

  115. Wolff, J.: On the meaning of vesiculation in capillary endothelium. Angiologica4: 64–68, 1967.

    Google Scholar 

  116. Wolff, J. R.: Ultrastructure of the terminal vascular bed as related to function. In Kaley, G., Altura, B. M. (eds.): Microvascular Circulation, Vol. I. Baltimore, London, Tokyo, University Park Press, 1977, pp. 95–130.

    Google Scholar 

  117. Wolfson, L. I., Katzman, R.: Infusion manometric test in experimental subarachnoid hemorrhage in cats. Neurology22: 856–862, 1972.

    Article  Google Scholar 

  118. Yasargil, M. D., Yonekawa, Y., Zumstein, B., Stahl, H.-J.: Hydrocephalus following spontaneous subarachnoid hemorrhage. J. Neurosurg. 39: 474–479, 1973.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Butler, A.B., Dacey, R.G., Maffeo, C.J., Mann, J.D., Johnson, R.N., Bass, N.H. (1983). Mechanisms of Cerebrospinal Fluid Absorption in Normal and Pathologically Altered Arachnoid Villi. In: Wood, J.H. (eds) Neurobiology of Cerebrospinal Fluid 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9269-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9269-3_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9271-6

  • Online ISBN: 978-1-4615-9269-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics