Skip to main content

Role of Lipids in Energy Metabolism

  • Chapter
Energy Metabolism in Insects

Abstract

Most reviews of lipid metabolism in insects have covered all classes of lipid compounds. Since lipids are generally defined as substances poorly soluble in water but soluble in organic solvents, the authors had to deal with compounds with divergent physiological functions, e.g., phospholipids and pheromones. The subject of this chapter limits the lipoidal substances to be discussed to those that provide a direct source of metabolic energy, though we recognize that other important lipid classes, for example those contributing to (sub)cellular components, are also essential for metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrell, I.P.S., and Lundquist, A.M., 1973, Physiological and biochemical changes during insect development, in: The Physiology of Insecta, Volume I ( M. Rockstein, ed.), pp. 159–247, Academic Press, New York.

    Google Scholar 

  • Allais, J.P., Bergerard, J., Etienne, J., and Polonovski, J., 1964, Nature et evolution des lipides au cours de l’embryogenese de Locusta migratoria migratorioides L., J. Insect Physiol. 10:753.

    Article  CAS  Google Scholar 

  • Ashhurst, D.E., 1967, The fibrillar flight muscles of giant water-bugs: An electronmicroscope study, J. Cell Sci. 2:435.

    PubMed  CAS  Google Scholar 

  • Babcock, K.L., and Rutschky, C.W., 1961, Lipids in insect eggs: A review with new evidence from the milkweed bug, Oncopeltus fasciatus (Hemiptera, Lygaeidae),A««. Entomol. Soc. Am. 54:156.

    CAS  Google Scholar 

  • Bailey, E., 1975, Biochemistry of insect flight. 2. Fuel supply, in: Insect Biochemistry and Function ( D.J. Candy and B.A. Kilby, eds), pp. 89–176, Chapman and Hall, London.

    Chapter  Google Scholar 

  • Barlow, J.S., 1965, Composition of the fats in pupae of Agria affinis (Fallen) (Diptera: Sarcophagidae), Can. J. Zool. 43:291.

    Article  PubMed  CAS  Google Scholar 

  • Beall, G., 1948, The fat content of a butterfly, Danaus plexippus Linn., as affected by migration, Ecology 29:80.

    Google Scholar 

  • Beenakkers, A.M.T., 1963, Enzyme der Fettsaure-Oxydation in den Flugmuskeln von Locusta migratoria wahrend ihrer Entwicklung, Biochem. Z. 337:436.

    PubMed  CAS  Google Scholar 

  • Beenakkers, A.M.T., 1965, Transport of fatty acids in Locusta migratoria during sustained flight, J. Insect Physiol. 11:879.Beenakkers, A.M.T., 1966, The influence of carnitine on fatty acid oxidation in insect muscles, Arch. Neerl. Zool. 16:535.

    Google Scholar 

  • Beenakkers, A.M.T., 1969a, Carbohydrate and fat as a fuel for insect flight. A comparative study, J. Insect Physiol. 15:353.

    Article  PubMed  CAS  Google Scholar 

  • Beenakkers, A.M.T., 1969b, The influence of corpus allatum and corpus cardiacum on lipid metabolism in Locusta migratoria, Gen. Comp. Endocrinol. 13:492.

    Google Scholar 

  • Beenakkers, A.M.T., 1973, Influence of flight on lipid metabolism in Locusta migratoria, Insect Biochem. 3:303.

    Article  CAS  Google Scholar 

  • Beenakkers, A.M.T., and Gilbert, L.I., 1968, The fatty acid composition of fat body and haemolymph lipids in Hyalophora cecropia and its relation to lipid release, J. Insect Physiol. 14:481.

    Article  PubMed  CAS  Google Scholar 

  • Beenakkers, A.M.T., and Henderson, P.T., 1967, The localization and function of carnitine acetyltransferase in the flight muscles of the locust, Eur. J. Biochem. 1:187.

    Article  PubMed  CAS  Google Scholar 

  • Beenakkers, A.M.T., and Klingenberg, M., 1964, Carnitine-coenzyme A transacetylase in mitochondria from various organs, Biochim. Biophys. Acta 84:205.

    PubMed  CAS  Google Scholar 

  • Beenakkers, A.M.T., and Van den Broek, A.T.M., 1974, Influence of juvenile hormone on growth and digestion in fifth instar larvae and adults of Locusta migratoria, J. Insect Physiol. 20:1131.

    Article  CAS  Google Scholar 

  • Beenakkers, A.M.T., Dewaide, J.H., Henderson, P.T., and Lutgerhorst, A., 1967, Fatty acid oxidation and some participating enzymes in animal organs, Comp. Biochem. Physiol. 22:675.

    Article  PubMed  CAS  Google Scholar 

  • Beenakkers, A.M.T., Van den Broek, A.T.M., and De Ronde, T.J.A., 1975, Development of catabolic pathways in insect flight muscles. A comparative study, J. Insect Physiol. 21:849.

    Article  PubMed  CAS  Google Scholar 

  • Beenakkers, A.M.T., Van der Horst, D.J., and Van Marrewijk, W.J.A., 1978, Regulation of release and metabolic function of the adipokinetic hormone in insects, in: Comparative Endocrinology ( P.J. Gaillard and H.H. Boer eds.), pp. 445–448, Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Beutler, R., 1936, Ober den Blutzucker der Bienen, Z. Vgl. Physiol. 24:71.

    Article  CAS  Google Scholar 

  • Bienz-Isler, G., 1968, Elektronenmikroskopische Untersuchungen liber die Entwicklung der dorsolongitudinalen Flugmuskeln von Antheraea pernyi Guer. (Lepidoptera), Acta Anat. 70:524.

    Article  PubMed  CAS  Google Scholar 

  • Bode, C., and Klingenberg, M., 1964, Carnitine and fatty acid oxidation in mitochondria of various organs, Biochim. Biophys. Acta 84:93.

    PubMed  CAS  Google Scholar 

  • Bodenstein, D., 1953, Studies on the humoral mechanism in growth and metamorphosis of the cockroach, Periplaneta americana, J. Exp. Zool. 124:105.

    Article  CAS  Google Scholar 

  • Boell, E.J., 1935, Respiratory quotients during embryonic development (Orthoptera), J. Cell. Comp. Physiol. 6:369.

    Article  CAS  Google Scholar 

  • Brockerhoff, H., and Jensen, R.G., 1974, Lipolytic Enzymes, Academic Press, New York.

    Google Scholar 

  • Brockerhoff, H., Hoyle, R.J., and Wolmark, N., 1966, Positional distribution of fatty acids in triglycerides of animal depots fats, Biochim. Biophys. Acta 116:67.

    PubMed  CAS  Google Scholar 

  • Broomfield, C.E., and Hardy, P.M., 1977, The synthesis of locust adipokinetic hormone, Tetrahedron Lett. 25:2201.

    Article  Google Scholar 

  • Brosemer, R.W., Vogell, W., and Bucher, T., 1963, Morphologische und enzymatische Muster bei der Entwicklung indirekter Flugmuskeln von Locusta migratoria, Biochem. Z. 338:854.

    CAS  Google Scholar 

  • Brosnan, J.T., Kopec, B., and Fritz, I.B., 1973, The localization of carnitine palmitoyltransferase on the inner membrane of bovine liver mitochondria, J. Biol. Chem. 248:4075.

    PubMed  CAS  Google Scholar 

  • Brown, J.J., and Chippendale, G.M., 1974, Migration of the monarch butterfly, Danaus plexippus: Energy sources, J. Insect Physiol. 20:1117.

    Article  PubMed  CAS  Google Scholar 

  • Bursell, E., 1977, Synthesis of proline by fat body of the tsetse fly (Glossina morsitans): Metabolic pathways, Insect Biochem. 7:427.

    Article  CAS  Google Scholar 

  • Candy, D.J., 1978, The regulation of locust flight muscle metabolism by octopamine and other compounds, Insect Biochem. 8:117.

    Article  Google Scholar 

  • Candy, D.J., Hall, L.J., and Spencer, J.M., 1976, The metabolism of glycerol in the locust Schistocerca gregaria during flight, J. Insect Physiol. 22:583.

    Article  CAS  Google Scholar 

  • Carlsen, J., Herman, W.S., Christensen, M., and Josefsson, L., 1979, Characterization of a second peptide with adipokinetic and red pigment-concentrating activity from the locust corpora cardiaca, Insect Biochem. 9:497.

    Article  CAS  Google Scholar 

  • Cenedella, R.J., 1971, The lipids of the female monarch butterfly, Danaus plexippus, during fall migration, Insect Biochem. 1:244.

    Article  CAS  Google Scholar 

  • Chadwick, L.E., 1947. The respiratory quotient of Drosophila in flight, Biol. Bull., Woods Hole, Mass. 93:229.

    Article  CAS  Google Scholar 

  • Chang, F., 1977, The presence of lipoprotein lipase activity and its relationship to lipid transport in the oleander hawkmoth, Deilephila nerii, Comp. Biochem. Physiol. 57B: 209.

    Article  CAS  Google Scholar 

  • Chang, F., and Friedman, S., 1971, A developmental analysis of the uptake and release of lipids by the fat-body of the tobacco horn worm, Manduca sexta, Insect Biochem. 1:63.

    Article  CAS  Google Scholar 

  • Cheeseman, P., and Goldsworthy, G.J., 1979, The release of adipokinetic hormone during flight and starvation in Locusta, Gen. Comp. Endocrinol. 37:35.

    Article  CAS  Google Scholar 

  • Cheeseman, P., Jutsum, A.R., and Goldsworthy, G.J., 1976, Quantitative studies on the release of locust adipokinetic hormone, Physiol. Entomol. 1:115.

    Article  CAS  Google Scholar 

  • Chen, P.S., 1971, Biochemical Aspects of Insect Development, S. Karger, Basel.

    Google Scholar 

  • Childress, C.C., Sacktor, B., and Traynor, D.R., 1967, Function of carnitine in the fatty acid oxidase-deficient insect flight muscle, J. Biol. Chem. 242:754.

    PubMed  CAS  Google Scholar 

  • Chino, H., and Gilbert, L.I., 1964, Diglyceride release from insect fat body, Science 143:359.

    Article  PubMed  CAS  Google Scholar 

  • Chino, H., and Gilbert, L.I., 1965, Lipid release and transport in insects, Biochim. Biophys. Acta 98:94.

    PubMed  CAS  Google Scholar 

  • Chino, H., Sudo, A., and Harashima, K., 1967, Isolation of diglyceride-bound lipoprotein from insect hemolymph, Biochim. Biophys. Acta 144:117.

    Google Scholar 

  • Chino, H., Murakami, S., and Harashima, K., 1969, Diglyceride-carrying lipoproteins in insect hemolymph. Isolation, purification and properties, Biochim. Biophys. Acta 176:1.

    PubMed  CAS  Google Scholar 

  • Chino, H., Yamagata, M., and Takahashi, K., 1976, Isolation and characterization of insect vitellogenin. Its identity with hemolymph lipoprotein II, Biochim. Biophys. Acta 441:349.

    PubMed  CAS  Google Scholar 

  • Chino, H., Yamagata, M., and Sato, S., 1977a, Further characterization of lepidopteran vitellogenin from haemolymph and mature eggs, Insect Biochem. 7:125.

    Article  CAS  Google Scholar 

  • Chino, H., Downer, R.G.H., and Takahashi, K., 1977b, The role of diacylglycerol-carrying lipoprotein I in lipid transport during insect vitellogenesis, Biochim. Biophys. Acta 487:508.

    PubMed  CAS  Google Scholar 

  • Clegg, J.S., and Evans, D.R., 1961, The physiology of blood trehalose and its function during flight in the blowfly, J. Exp. Biol. 38:771.

    CAS  Google Scholar 

  • Cockbain, A.J., 1961, Fuel utilization and duration of tethered flight in Aphis fabcie Scop., J. Exp. Biol. 38:163.

    CAS  Google Scholar 

  • Cook, B.J., and Eddington, L.C., 1967, The release of triglycerides and free fatty acids from the fat body of the cockroach, Periplaneta americana, J. Insect Physiol. 13:1361.

    Article  CAS  Google Scholar 

  • Crabtree, B., and Newsholme, E.A., 1972, The activities of lipases and carnitine palmitoyltransferase in muscles from vertebrates and invertebrates, Biochem. J. 130:697.

    PubMed  CAS  Google Scholar 

  • Crabtree, B., and Newsholme, E.A., 1975, Comparative aspects of fuel utilization and metabolism by muscle, in: Insect Muscle ( P.N.R. Usherwood, ed.), pp. 405–500, Academic Press, New York.

    Google Scholar 

  • D’Costa, M.A., and Birt, L.M., 1966, Changes in the lipid content during the metamorphosis of the blowfly, Lucilia, J. Insect Physiol. 12:1377.

    Article  Google Scholar 

  • D’Costa, M.A., and Birt, L.M., 1969, Mitochondrial oxidations of fatty acids in the blowfly, Lucilia, J. Insect Physiol. 15:1959.

    Article  Google Scholar 

  • Demyanovski, S.Y., and Zubova, V.A., 1957, Fats in the organs of the oak silkworm, Biokhimiya 21:698.

    Google Scholar 

  • Domroese, K.A., and Gilbert, L.I., 1964, The role of lipid in adult development and flight muscle metabolism in Hyalophora cecropia, J. Exp. Biol. 41:573.

    CAS  Google Scholar 

  • Downer, R.G.H., 1972, Interspecificity of lipid-regulating factors from insect corpus cardiacum, Can. J. Zool. 50:63.

    Article  Google Scholar 

  • Downer, R.G.H., 1978, Functional role of lipids in insects, in: Biochemistry of Insects ( M. Rockstein, ed.), pp. 57–92, Academic Press, New York.

    Google Scholar 

  • Downer, R.G.H., and Matthews, J.R., 1976, Patterns of lipid distribution and utilisation in insects, Am. Zool. 16:733.

    CAS  Google Scholar 

  • Downer, R.G.H., and Steele, J.E., 1973, Haemolymph lipase activity in the American cockroach, Periplaneta americana, J. Insect Physiol. 19:523.

    Article  CAS  Google Scholar 

  • Edwards, G.E., and Ruska, H., 1955, The function and metabolism of certain insect muscles in relation to their structure, Q. J. Microsc. Sci. 96:151.

    Google Scholar 

  • Edwards, Y.H., Chase, J.F.A., Edwards, M.R., and Tubbs, P.K., 1974, Carnitine acetyltransferase: The question of multiple forms, Eur. J. Biochem. 46:209.

    Article  PubMed  CAS  Google Scholar 

  • Engelmann, F., 1970, The Physiology of Insect Reproduction, Pergamon Press, Oxford.

    Google Scholar 

  • Engelmann, F., 1979, Insect vitellogenin: Identification, biosynthesis, and role in vitellogenesis, Adv. Insect Physiol. 14:49.

    Article  CAS  Google Scholar 

  • Fast, P.G., 1964, Insect lipids: A review, Mem. Entomol. Soc. Can. 37:1.

    Article  Google Scholar 

  • Fast, P.G., 1970, Insect lipids, in: Progress in the Chemistry of Fats and Other Lipids, Volume XI (R.T. Holman, ed.), Part 2, pp. 181–242, Pergamon Press, Oxford.

    Google Scholar 

  • Ford, W.C.L., and Candy, D.J., 1972, The regulation of glycolysis in perfused locust flight muscle, Biochem. J, 130:1101.

    PubMed  CAS  Google Scholar 

  • Fritz, I.B., 1955, Effects of muscle extracts on the oxidation of palmitic acid by liver slices and homogenates, Acta Physiol. Scand. 34:367.

    Article  PubMed  CAS  Google Scholar 

  • Fritz, I.B., and Marquis, N.R., 1965, The role of acylcarnitine esters and carnitine palmityltransferase in the transport of fatty acyl groups across mitochondrial membranes, Proc. Natl. Acad. Sci. U.S.A. 54:1226.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, S., and Takeuchi, S., 1967, Studies on the diapause factor-producing cells in the suboesophageal ganglion of the silkworm, Bombyx mori, Embiyologia 9:333.

    CAS  Google Scholar 

  • Fulton, R.A., and Romney, V.E., 1940, The chloroform soluble components of beet leafhoppers as an indication of the distance they move in the spring, J. Agric. Res. (Washington, D.C.) 161:737.

    Google Scholar 

  • Gade, G., and Holwerda, D.A., 1976, Involvement of adenosine-3′: 5′-cyclic monophosphate in lipid mobilization in Locusta migratoria, Insect Biochem. 6:535.

    Article  CAS  Google Scholar 

  • Gellissen, G., and Emmerich, H., 1977, Juvenilhormon-und Diglyceridbindende Proteine in der Hamolymphe von Locusta migratoria, Verh. Dtsch Zool. Ges. 71:321.

    Google Scholar 

  • Gellissen, G., and Emmerich, H., 1980, Purification and properties of a diglyceride-binding lipoprotein (LP I) of the hemolymph of adult male Locusta migratoria, J. Comp. Physiol. 136:1.

    CAS  Google Scholar 

  • George, J.C., and Talesara, C.L., 1961, The succinic dehydrogenase levels of the pectoral muscles of a few representative types of birds and a bat in relation to the fibre diameter, muscle weight and body weight, Comp. Biochem. Physiol. 3:267.

    Article  PubMed  CAS  Google Scholar 

  • Gewecke, M., 1972, Antennen und Stirn-Scheitelhaare von Locusta migratoria L. als Luftstromungs-Sinnesorgane bei der Flugsteuerung, J. Comp. Physiol. 80:57.

    Google Scholar 

  • Gewecke, M., 1975, The influence of the air-current sense organs on the flight behaviour of Locusta migratoria, J. Comp. Physiol. 103:79.

    Article  Google Scholar 

  • Gilbert, L.I., 1967a, Lipid metabolism and function in insects, Adv. Insect Physiol. 4:69.

    Article  CAS  Google Scholar 

  • Gilbert, L.I., 1967b, Changes in lipid content during the reproductive cycle of Leucophaea maderae and effects of the juvenile hormone on lipid metabolism in vitro, Comp. Biochem. Physiol. 21:237.

    Article  CAS  Google Scholar 

  • Gilbert, L.I., and Chino, H., 1974, Transport of lipids in insects, J. Lipid Res. 15:439.

    PubMed  CAS  Google Scholar 

  • Gilbert, L.I., and King, D.S., 1973, Physiology of growth and development: Endocrine aspects, in: The Physiology of Insecta, Volume 1 ( M. Rockstein, ed.), pp. 249–370, Academic Press, New York.

    Google Scholar 

  • Gilbert, L.I., and Schneiderman, H.A., 1961a, The content of juvenile hormone and lipid in Lepidoptera: Sexual differences and developmental changes, Gen. Comp. Endocrinol. 1:453.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, L.I., and Schneiderman, H.A., 1961b, Some biochemical aspects of insect metamorphosis, Am. Zool. 1:11.

    CAS  Google Scholar 

  • Gilbert, L.I., Chino, H., and Domroese, K.A., 1965, Lipolytic activity of insect tissues and its significance in lipid transport, J. Insect Physiol. 11:1057.

    Article  PubMed  CAS  Google Scholar 

  • Goldsworthy, G.J., 1969, Hyperglycaemic factors from the corpus cardiacum of Locusta migratoria, J. Insect Physiol. 15:2131.

    Article  CAS  Google Scholar 

  • Goldsworthy, G.J., 1976, Hormones and flight in the locust, in: Perspectives in Experimental Biology, Volume I ( P.S. Davis, ed.), pp. 167–177, Pergamon Press, Oxford.

    Google Scholar 

  • Goldsworthy, G.J., and Coupland, A.J., 1974, The influence of the corpora cardiaca and substrate availability on flight speed and wing beat frequency in Locusta, J. Comp. Physiol. 89:359.

    Article  Google Scholar 

  • Goldsworthy, G.J., and Mordue, W., 1974, Neurosecretory hormones in insects, J. Endocrinol. 60:529.

    Article  PubMed  CAS  Google Scholar 

  • Goldsworthy, G.J., Mordue, W., and Guthkelch, J., 1972a, Studies on insect adipokinetic hormones, Gen. Comp. Endocrinol. 18:545.

    Article  PubMed  CAS  Google Scholar 

  • Goldsworthy, G.J., Johnson, R.A., and Mordue, W., 1972b, In vivo studies on the release of hormones from the corpora cardiaca of locusts, J. Comp. Physiol. 79:85.

    CAS  Google Scholar 

  • Goldsworthy, G.J., Jutsum, A.R.. and Robinson, N.L., 1979, Substrate utilization and flight speed during tethered flight in the locust, J. Insect Physiol. 25:183.

    Article  CAS  Google Scholar 

  • Hansford, R.G., 1975, The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration, Biochem. J. 146:537.

    PubMed  CAS  Google Scholar 

  • Hansford, R.G., and Johnson, R.N., 1976, Some aspects of the oxidation of pyruvate and palmitoylcarnitine by moth (Manduca sexta) flight muscle mitochondria, Comp. Biochem. Physiol. 55B: 543.

    Article  CAS  Google Scholar 

  • Hill, L., and Goldsworthy, G.J., 1968, Growth, feeding activity, and the utilization of reserves in larvae of Locusta, J. Insect Physiol. 14:1085.

    Article  Google Scholar 

  • Hill, L., and Izatt, M.E.G., 1974, The relationships between corpora allata and fat body and haemolymph lipids in the adult female desert locust, J. Insect Physiol. 20:2143.

    Article  PubMed  CAS  Google Scholar 

  • Hochachka, P.W., Neely, J.R., and Driedzic, W.R., 1977, Integration of lipid utilization with Krebs cycle activity in muscle, Fed. Proc. Fed. Am. Soc. Exp. Biol. 36:2009.

    CAS  Google Scholar 

  • Hoffman, A.G.D., and Downer, R.G.H., 1977, Diacylglycerols as major end products of triacylglycerol hydrolysis by tissue lipases of the cockroach. Am. Zool. 17:943.

    Google Scholar 

  • Hoffman, A.G.D., and Downer, R.G.H., 1979, End product specificity of triacylglycerol lipases from intestine, fat body, muscle and haemolymph of the American cockroach, Periplaneta americana L., Lipids 14:893.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, E.A., and Keeley, L.L., 1975, Mitochondrial development in the flight muscles of the moth, Heliothis virescens, Insect Biochem. 5:15.

    Article  CAS  Google Scholar 

  • Holwerda, D.A., Van Doom, J., and Beenakkers, A.M.T., 1977, Characterization of the adipokinetic and hyperglycaemic substances from the locust corpus cardiacum, Insect Biochem. 7:151.

    Article  CAS  Google Scholar 

  • Houben, N.M.D., 1976, Regulatie van substraattransport tijdens vlucht in de sprinkhaan, Locusta migratoria, Ph.D. Thesis, University of Utrecht, Utrecht.

    Google Scholar 

  • Johnson, C.G., 1963, Physiological factors in insect migration by flight, Nature (London) 198:423.

    Google Scholar 

  • Johnson, C.G., 1969, Migration and Dispersal of Insects by Flight, Methuen, London.

    Google Scholar 

  • Johnson, R.N., and Hansford, R.G., 1975, The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The steady-state concentrations of citrate, isocitrate, oxoglutarate and malate in flight muscle and isolated mitochondria, Biochem. J. 146:527.

    PubMed  CAS  Google Scholar 

  • Jongbloed, J., and Wiersma, C.A.G., 1934, Der Stoffwechsel der Honigbiene wahrend des Fluges, Z. Vgl. Physiol. 21:519.

    Article  CAS  Google Scholar 

  • Jutsum, A.R., and Goldsworthy, G.J., 1976, Fuels for flight in Locusta, J. Insect Physiol. 22:243.

    Article  CAS  Google Scholar 

  • Kallapur, V.L., and George, C.J., 1973, Fatty acid oxidation by the flight muscles of the dragonfly, Pantala flavescens, J. Insect Physiol. 19:1035.

    Article  CAS  Google Scholar 

  • Karuhize, G.R., 1972, Utilization of fat reserve substances by Homorocotyphus (Orthoptera: Tettigoniidae) during flight, Comp. Biochem. Physiol. 43:563.

    Article  CAS  Google Scholar 

  • Kinsella, J.E., and Smyth, T., 1966, Lipid metabolism of Periplaneta americana L. during embryogenesis, Comp. Biochem. Physiol. 17:237.

    Article  PubMed  CAS  Google Scholar 

  • Kleinow, W., Sebald, W., Neupert, W., and Bucher, T., 1970, Formation of mitochondria of Locusta migratoria flight muscles, in: Autonomy and Biogenesis of Mitochondria and Chloroplasts ( N.K. Boardman, A.W. Linnane, and R.M. Smillie, eds.), pp. 140–151, North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  • Klingenberg, M., and Bucher, T., 1960, Biological oxidations, Annu. Rev. Biochem. 29:669.

    Article  PubMed  CAS  Google Scholar 

  • Kozhantshikov, I.W., 1938, Carbohydrate and fat metabolism in adult Lepidoptera, Bull. Entomdl. Res. 29:103.

    Article  Google Scholar 

  • Krogh, A., and Weis-Fogh, T., 1951, The respiratory exchange of the desert locust (Schistocerca gregaria) before, during and after flight, J. Exp. Biol. 28:344.

    CAS  Google Scholar 

  • Krogh, I.M., and Normann, I.C., 1977, The corpus cardiacum neurosecretory cells of Schistocerca gregaria. Electron microscopy of resting and secreting cells, Acta Zool. (Stockholm) 58:69.

    Google Scholar 

  • Kutsch, W., and Gewecke, M., 1979, Development of flight behaviour in maturing adults of Locusta migratoria. II. Aerodynamic parameters, J. Insect Physiol. 25:299.

    Article  Google Scholar 

  • Lambremont, E.N., and Graves, J.B., 1969, Incorporation of acetate-l-,4C into neutral lipids and phospholipids during late developmental stages of Heliothis zea, Comp. Biochem. Physiol. 30:347.

    Article  CAS  Google Scholar 

  • Lambremont, E.N., Blum, M.S., and Schrader, R.M., 1964, Storage and fatty acid composition of triglycerides during adult diapause of the boll weevil, Ann. Entomol. Soc. Am. 57:526.

    CAS  Google Scholar 

  • Lee, S.S., and Goldsworthy, G.J., 1975, Allatectomy and flight performance in male Locusta migratoria, J. Comp. Physiol. 100:351.

    Google Scholar 

  • Lee, S.S., and Goldsworthy, G.J., 1976, The effect of allatectomy and ovariectomy on flight performance in female Locusta migratoria migratorioides (R&F), Acrida 5:169.

    Google Scholar 

  • Levenbook, L., and Williams, C.M., 1956, Mitochondria in the flight muscles of insects. III. Mitochondrial cytochrome c in relation to aging and wing-beat frequency of flies, J. Gen. Physiol. 39:497.

    Article  PubMed  CAS  Google Scholar 

  • Levinson, Z.H., and Silverman, P.H., 1954, Studies on the lipids of Musca vicina (Macq.) during growth and metamorphosis, Biochem. J. 58:294.

    PubMed  CAS  Google Scholar 

  • Lipsitz, E.Y., and McFarlane, J.E., 1970, Total lipid and phospholipid during the life cycle of the house criquet, Acheta domesticus (L.), Comp. Biochem. Physiol. 34:699.

    Article  CAS  Google Scholar 

  • Lipsitz, E.Y., and McFarlane, J.E., 1971, Analysis of lipid during the life cycle of the house criquet, Acheta domesticus, Insect Biochem. 1:446.

    Article  CAS  Google Scholar 

  • Lok, C.M., and Van der Horst, D.J., 1980, Chiral 1,2-diacylglycerols in the haemolymph of the locust, Locusta migratoria, Biochim. Biophys. Acta 618:80.

    CAS  Google Scholar 

  • Ludwig, D., and Ramazzotto, L.J., 1965, Energy sources during embryogenesis of the yellow mealworm, Tenebrio molitor, Ann. Entomol. Soc. Am. 58:543.

    CAS  Google Scholar 

  • Ludwig, D., Crowe, P.A., and Hassemer, M.M., 1964, Free fat and glycogen during the metamorphosis of Musca domestica L., J. N.Y. Entomol. Soc. 72:23.

    CAS  Google Scholar 

  • Madariaga, M.A., Municio, A.M., and Ribera, A., 1970a, Biochemistry of the development of the insect Dacus oleae: Evolution of fatty acid composition of different lipid classes, Comp. Biochem. Physiol. 35:57.

    Article  PubMed  CAS  Google Scholar 

  • Madariaga, M.A., Municio, A.M., and Ribera, A., 1970b, Biochemistry of the development of the insect Ceratitis capitata: Evolution of fatty acid composition of different lipid classes, Comp. Biochem. Physiol. 36:271.

    Article  CAS  Google Scholar 

  • Martin, J.S., 1969, Lipid composition of fat body and its contribution to the maturing oocytes in Pyrrhocoris apterus, J. Insect Physiol. 15:1025.

    Article  CAS  Google Scholar 

  • Mauldin, J.K., Lambremont, E.N., and Graves, J.B., 1971, Principal lipid classes and fatty acids synthesized during growth and development of the beetle Lyctus planicollis, Insect Biochem. 1:316.

    Article  CAS  Google Scholar 

  • Mayer, R.J., and Candy, D.J., 1967, Changes in haemolymph lipoproteins during locust flight, Nature (London) 215:987.

    Article  CAS  Google Scholar 

  • Mayer, R.J., and Candy, D.J., 1969a, Changes in energy reserves during flight of the desert locust, Schistocerca gregaria, Comp. Biochem. Physiol. 31:409.

    Article  CAS  Google Scholar 

  • Mayer, R.J., and Candy, D.J., 1969b, Control of haemolymph lipid concentration during locust flight: An adipokinetic hormone from the corpora cardiaca, J. Insect Physiol. 15:611.

    Article  CAS  Google Scholar 

  • Meyer, H., Preiss, B., and Bauer, S., 1960, The oxidation of fatty acids by a particulate fraction from desert-locust (Schistocerca gregaria) thorax tissues, Biochem. J. 76:27.

    PubMed  CAS  Google Scholar 

  • Mwangi, R.W., and Goldsworthy, G.J., 1977, Diglyceride-transporting lipoproteins in Locusta, J. Comp. Physiol. 114:177.

    CAS  Google Scholar 

  • Nelson, D.R., Terranova, A.C., and Sukkestad, D.R., 1967, Fatty acid composition of the glyceride and free fatty acid fractions of the fat body and hemolymph of the cockroach, Periplaneta americana (L.), Comp. Biochem. Physiol. 20:907.

    Article  CAS  Google Scholar 

  • Newsholme, E.A., and Randle, P.J., 1964, Effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes, starvation, hypophysectomy and adrenalectomy, on the concentration of hexose phosphates, nucleotides and inorganic phosphate in perfused rat heart, Biochem. J. 93:641.

    PubMed  CAS  Google Scholar 

  • Newsholme, E.A., and Taylor, K., 1969, Glycerol kinase activities in muscles from vertebrates and invertebrates, Biochem. J. 112:465.

    PubMed  CAS  Google Scholar 

  • Newsholme, E.A., Randle, P.J., and Manchester, K.L., 1962, Effects of long chain FFA on glucose uptake, Nature (London) 193:270.

    Article  CAS  Google Scholar 

  • Niemierko, S., Wlodawer, P., and Wojtczak, A.F., 1956, Lipid and phosphorus metabolism during growth of the silkworm (Bombyx mori L.), Acta Biol. Exp. (Warsaw) 17:255.

    CAS  Google Scholar 

  • Nwanze, K.F., Maskarinee, J.K., and Hopkins, T.L., 1976, Lipid composition of the normal and flight forms of adult cowpea weevils, Callosobruchus maculatus, J. Insect Physiol. 22:897.

    Article  CAS  Google Scholar 

  • Odhiambo, T.R., 1966a, The metabolic effects of the corpus allatum hormone in the male desert locust. 1. Lipid metabolism, J. Exp. Biol. 45:45.

    PubMed  CAS  Google Scholar 

  • Odhiambo, T.R., 1966b, The metabolic effects of the corpus allatum hormone in the male desert locust. II. Spontaneous locomotor activity, J. Exp. Biol. 45:51.

    PubMed  CAS  Google Scholar 

  • Pan, M.L., and Wallace, R.A., 1974, Cecropia vitellogenin: Isolation and characterization, Am. Zool. 14:1239.

    CAS  Google Scholar 

  • Pearincott, J.V., 1960, Changes in the lipid content during growth and metamorphosis of the housefly, Musca domestica Linnaeus, J. Cell. Comp. Physiol. 55:167.

    Article  PubMed  CAS  Google Scholar 

  • Peled, Y., and Tietz, A., 1975, Isolation and properties of a lipoprotein from the haemolymph of the locust, Locusta migratoria, Insect Biochem. 5:61.

    Article  CAS  Google Scholar 

  • Pette, D., 1965, Plan and Muster im zellularen Stoffwechsel, Naturwissenschaften 52:597.

    Article  CAS  Google Scholar 

  • Pette, D., 1966, Mitochondrial enzyme activities, in: Regulation of Metabolic Processes in Mitochondria, Volume 7 ( J.M. Tager, S. Papa, E. Quagliriello, and E.C. Slater, eds.), pp. 28–50, Elsevier, Amsterdam.

    Google Scholar 

  • Pettit, F.H., Pelley, J.W., and Reed, L.J., 1975, Regulation of pyruvate dehydrogenase kinase and phosphatase by acetyl-CoA/CoA and NADH/NAD ratios, Biochem. Biophys. Res. Commun. 65:575.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, I.W., 1945, Effect of the corpora allata on the metabolism of adult female grasshopper, J. Exp. Zool. 99:183.

    Article  CAS  Google Scholar 

  • Pitts, C.W., and Hopkins, T.L., 1965, Lipid composition of hibernating face flies, Proc. North Cent. Branch Entomol. Soc. Am. 20:72.

    Google Scholar 

  • Poels, C.L.M., and Beenakkers, A.M.T., 1969, The effect of corpus allatum implantation on the development of flight muscles and fat body in Locusta migratoria, Entomol. Exp. Appl. 12:312.

    Article  Google Scholar 

  • Rademakers, L.H.P.M., and Beenakkers, A.M.T., 1977, Changes in the secretory activity of the glandular lobe of the corpus cardiacum of Locusta migratoria induced by flight, Cell Tissue Res. 180:155.

    Article  PubMed  CAS  Google Scholar 

  • Ramsay, R.R., and Tubbs, P.K., 1975, The mechanism of fatty acid uptake by heart mitochondria: An acylcarnitine-carnitine exchange, FEBS Lett. 54:21.

    Article  PubMed  CAS  Google Scholar 

  • Rankin, M.A., 1974, The hormonal control of flight in the milkweed bug, Oncopeltus fasciatus, in: Experimental Analysis of Insect Behaviour ( L. Barton Browne, ed.), pp. 317–328, Springer, Berlin.

    Google Scholar 

  • Rees, K.R., 1954, Aerobic metabolism of the muscle of Locusta migratoria, Biochem. J. 58:196.

    CAS  Google Scholar 

  • Robinson, N.L., and Goldsworthy, G.J., 1974, The effects of locust adipokinetic hormone on flight muscle metabolism in vivo and in vitro, J. Comp. Physiol. 89:369.

    Article  Google Scholar 

  • Robinson, N.L., and Goldsworthy, G.J., 1976, Adipokinetic hormone and flight metabolism in the locust, J. Insect Physiol. 22:1559.

    Article  CAS  Google Scholar 

  • Robinson, N.L., and Goldsworthy, G.J., 1977, A possible site of action for adipokinetic hormone on the flight muscle of locusts, J. Insect Physiol. 23:153.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, F., 1952, Biochemical changes during the embryonic development of the Japanese beetle (Popillia japonica Newman), Physiol. Zool. 25:171.

    Google Scholar 

  • Rudolfs, W., 1926, Studies on chemical changes during the life cycle of the tent caterpillar (Malacosoma americana Fab.). I. Moisture and fat, J. N.Y. Entomol. Soc. 34:249.

    CAS  Google Scholar 

  • Sacktor, B., 1965, Energetics and respiratory metabolism of muscular contraction, in: The Physiology of Insecta, Volume 2 ( M. Rockstein, ed.), pp. 483–580, Academic Press, New York.

    Google Scholar 

  • Sacktor, B., 1970, Regulation of intermediary metabolism, with special reference to the control mechanisms in insect flight muscle, Adv. Insect Physiol. 7:267.

    Google Scholar 

  • Sacktor, B., 1975, Utilization of fuels by muscle, in: Insect Biochemistry and Function ( D.J. Candy and B.A. Kilby, eds.), pp. 1–81, Chapman and Hall, London.

    Chapter  Google Scholar 

  • Siakotos, A.N., 1960, The conjugated plasma proteins of the American cockroach. I. The normal state, J. Gen. Physiol. 43:999.

    Article  PubMed  CAS  Google Scholar 

  • Smith, L.C., Pownall, H.J., and Gotto, A.M., Jr., 1978, The plasma lipoproteins: Structure and metabolism, Annu. Rev. Biochem. 47:751.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, I.M., and Candy, D.J., 1976, Hormonal control of diacyl glycerol mobilization from fat body of the desert locust, Schistocerca gregaria, Insect Biochem. 6:289.

    Article  CAS  Google Scholar 

  • Staudte, H.W., and Pette, D., 1972, Correlations between enzymes of energy-supplying metabolism as a basic pattern of organization in muscle, Comp. Biochem. Physiol. 41B: 533.

    Article  CAS  Google Scholar 

  • Steele, J.E., 1976, Hormonal control of metabolism in insects, Adv. Insect Physiol. 12:239.

    Article  CAS  Google Scholar 

  • Stephen, W.F., and Gilbert, L.I., 1970, Alterations in fatty acid composition during the metamorphosis of Hyalophora cecropia: Correlations with juvenile hormone titre, J. Insect Physiol. 16:851.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, E., 1966, Rapid oxidation of palmitate with concomitant phosphorylation of adenosine 5′-diphosphate by moth flight-muscle mitochondria, Biochim. Biophys. Acta 128:29.

    PubMed  CAS  Google Scholar 

  • Stevenson, E., 1968, The carnitine-independent oxidation of palmitate plus malate by moth flight-muscle mitochondria, Biochem. J. 110:105.

    PubMed  CAS  Google Scholar 

  • Stevenson, E., 1969, Monoglyceride lipase in moth flight muscle, J. Insect Physiol. 15:1537.

    Article  CAS  Google Scholar 

  • Stevenson, E., 1972, Haemolymph lipids and fat body lipases of the southern armyworm moth, J. Insect Physiol. 18:1751.

    Article  CAS  Google Scholar 

  • Stone, J.V., and Mordue, W., 1979, Isolation of granules containing adipokinetic hormone from locust corpora cardiaca by differential centrifugation, Gen. Comp. Endocrinol. 39:543.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J.V., Mordue, W., Batley, K.E., and Morris, H.R., 1976, Structure of locust adipokinetic hormone, a neurohormone that regulates lipid utilisation during flight, Nature (London) 263:207.

    Article  CAS  Google Scholar 

  • Strong, F.E., 1964, Lipid composition of the egg from an aphid, Nature (London) 202:622.

    CAS  Google Scholar 

  • Strong, L., 1968a, The effect of enforced locomotor activity on lipid content of allatectomized males of Locusta migratoria migratorioides, J. Exp. Biol. 48:625.

    Google Scholar 

  • Strong, L., 1968b, Locomotor activity, sexual behaviour, and corpus allatum hormone in males of Locusta, J. Insect Physiol. 14:1685.

    Article  Google Scholar 

  • Thomas, K.K., and Gilbert, L.I., 1968, Isolation and characterization of the hemolymph lipoproteins of the American silkmoth, Hyalophora cecropia, Arch. Biochem. Biophys. 127:512.

    Article  CAS  Google Scholar 

  • Thomas, K.K., and Gilbert, L.I., 1969, The hemolymph lipoproteins of the silkmoth Hyalophora gloved: Studies on lipid composition, origin and function, Physiol. Chem. Phys. 1:293.

    CAS  Google Scholar 

  • Thomsen, E., 1952, Functional significance of the neurosecretory brain cells and the corpus cardiacum in the female blowfly, Calliphora eiythrocephala Meig., J. Exp. Biol. 29:137.

    Google Scholar 

  • Tietz, A., 1962, Fat transport in the locust, J. Lipid Res. 3:421.

    CAS  Google Scholar 

  • Tietz, A., 1967, Fat transport in the locust: The role of diglycerides, Eur, J. Biochem. 2:236.

    Article  CAS  Google Scholar 

  • Tietz, A., and Weintraub, H., 1978, Hydrolysis of glycerides by lipases of the fat body of the locust, Locusta migratoria, Insect Biochem. 8:11.

    Article  CAS  Google Scholar 

  • Tietz, A., and Weintraub, H., 1980, The stereospecific structure of haemolymph and fat-body 1,2-diacylglycerol from Locusta migratoria, Insect Biochem. 10:61.

    Article  CAS  Google Scholar 

  • Tietz, A., Weintraub, H., and Peled, Y., 1975, Utilization of 2-acyl-s/7-glycerol by locust fat body microsomes. Specificity of the acyltransferase system, Biochim. Biophys. Acta 388:165.

    PubMed  CAS  Google Scholar 

  • Valder, S.M., Hopkins, T.L., and Valder, S.A., 1969, Diapause induction and changes in lipid composition in diapausing and reproducing faceflies, Musca autumnalis, J. Insect Physiol. 15:1199.

    Article  CAS  Google Scholar 

  • Van den Hondel-Franken, M.A.M., and Flight, W.F.G., 1980, Tracheolization and the effects of implantation of corpora allata on the invagination of tracheoblasts into the developing flight muscle fibers of Locusta migratoria, Gen. Comp. Endocrinol, (in press).

    Google Scholar 

  • Van den Hondel-Franken, M.A.M., Van den Broek, A.T.M., and Beenakkers, A.M.T., 1980, Flight muscle development in Locusta migratoria: Effects of implantation of corpora allata on the attainment of metabolic enzyme activities, Gen. Comp. Endocrinol. 41:477.

    Article  Google Scholar 

  • Van der Horst, D.J., Baljet, A.M.C., Beenakkers, A.M.T., and Van Handel, E., 1978a, Turnover of locust haemolymph diglycerides during flight and rest, Insect Biochem. 8:369.

    Article  Google Scholar 

  • Van der Horst, D.J., Van Doom, J.M., and Beenakkers, A.M.T., 1978b, Dynamics in the haemolymph trehalose pool during flight of the locust, Locusta migratoria, Insect Biochem. 8:413.

    Google Scholar 

  • Van der Horst, D.J., Van Doom, J.M., and Beenakkers, A.M.T., 1979, Effects of the adipokinetic hormone on the release and turnover of haemolymph diglycerides and on the formation of the diglyceride-transporting lipoprotein system during flight. Insect Biochem. 9:627.

    Article  Google Scholar 

  • Van der Horst, D.J., Houben, N.M.D., and Beenakkers, A.M.T., 1980, Dynamics of energy substrates in the haemolymph of Locusta migratoria during flight, J. Insect Physiol. 26:441.

    Article  Google Scholar 

  • Van Handel, E., 1974, Lipid utilization during sustained flight of moths, J. Insect Physiol. 20:2329.

    Article  PubMed  Google Scholar 

  • Van Handel, E., and Nayar, J.K., 1972, Turnover of diglycerides during flight and rest in the moth Spodoptera frugiperda, Insect Biochem. 2:8.

    Article  Google Scholar 

  • Van Marrewijk, W.J.A., and Beenakkers, A.M.T., 1979, Regulation of substrate mobilization of flight in locusts, J. Endocrinol. 80:67 P.

    Google Scholar 

  • Van Marrewijk, W.J.A., Van den Broek, A.T.M., and Beenakkers, A.M.T., 1980a, Regulation of glycogenolysis in the locust fat body during flight, Insect Biochem., 10:675.

    Article  Google Scholar 

  • Van Marrewijk, W.J.A., Schrikker, A.E.M., and Beenakkers, A.M.T., 1980b, Contents of nucleic and amino acids and rate of protein synthesis in developing flight muscles of Locusta migratoria, Comp. Biochem. Physiol. 656:251.

    Article  Google Scholar 

  • Vogell, W., Bishai, F.R., Bucher, T., Klingenberg, M., Pette, D., and Zebe, E., 1959, Ober strukturelle und enzymatische Muster in Muskeln von Locusta migratoria, Biochem. Z. 332:81.

    CAS  Google Scholar 

  • Vogt, M., 1949, Fettkorper und Onocyten der Drosophila nach Extirpation der adulten Ringdriise, Z. Zellforsch. Mikrosk. Anat. 34:160.

    Article  Google Scholar 

  • Vroman, H.E., Kaplanis, J.N., and Robbins, W.E., 1965, Effect of allatectomy on lipid biosynthesis and turnover in the female American cockroach, Periplaneta americana (L.), J. Insect Physiol. 11:897.

    Article  CAS  Google Scholar 

  • Wajc, E., and Pener, M.P., 1971, The effect of the corpora allata on the flight activity of the male African migratory locust, Locusta migratoria migratorioides (R&F), Gen. Comp. Endocrinol. 17:327.

    Article  PubMed  CAS  Google Scholar 

  • Walker, P.R., and Bailey, E., 1969, A comparison of the properties of the phosphofructokinases of the fat body and flight muscles of the adult male desert locust, Biochem. J. 111:365.

    PubMed  CAS  Google Scholar 

  • Walker, P.R., and Bailey, E., 1971, Effect of allatectomy on fat body lipogenic enzymes of the male desert locust during adult development, J. Insect Physiol. 17:1359.

    Article  CAS  Google Scholar 

  • Walker, P.R., Hill, L., and Bailey, E., 1970, Feeding activity, respiration, and lipid and carbohydrate content of the male desert locust during adult development, J. Insect Physiol. 16:1001.

    Article  PubMed  CAS  Google Scholar 

  • Weeda, E., Koopmanschap, A.B., de Kort, C.A.D., and Beenakkers, A.M.T., 1980, Proline synthesis in fat body of Leptinotarsa decemlineata, Insect Biochem. 10:631.

    CAS  Google Scholar 

  • Weis-Fogh, T., 1952, Fat combustion and metabolic rate of flying locusts, Philos. Trans. R. Soc. London, Ser. B 237:1.

    Article  CAS  Google Scholar 

  • Weis-Fogh, T., 1967, Metabolism and weight economy in migrating animals, particularly birds and insects, in: Insect Physiology ( J.W.L. Beament, and J.E. Treherne, eds.), pp. 143–159, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Wigglesworth, V.B., 1949, The utilization of reserve substances in Drosophila during flight, J. Exp. Biol. 26:150.

    PubMed  CAS  Google Scholar 

  • Williams, C.B., 1958, Insect Migration, Collins, London.

    Google Scholar 

  • Wimer, L.T., and Lumb, R.H., 1967, Lipid composition of the developing larval fat body of Phormia regina, J. Insect Physiol. 13:889.

    Article  CAS  Google Scholar 

  • Wlodawer, P., and Lagwinska, E., 1967, Uptake and release of lipids by the isolated fat body of the wax moth larva, J. Insect Physiol. 13:319.

    Article  CAS  Google Scholar 

  • Wlodawer, P., Lagwinska, E., and Barariska, J., 1966, Esterification of fatty acids in the wax moth haemolymph and its possible role in lipid transport, J. Insect Physiol. 12:547.

    Article  PubMed  CAS  Google Scholar 

  • Wood, R., Harlow, R.D., and Lambremont, E.N., 1969, GLC analysis of Heliothis virescens triglycerides at various metamorphic stages, Lipids 4:159.

    Article  CAS  Google Scholar 

  • Worm, R.A.A., and Beenakkers, A.M.T., 1980, Regulation of substrate utilization in the flight muscle of the locust, Locusta migratoria, during flight, Insect Biochem. 10:53.

    Article  CAS  Google Scholar 

  • Worm, R.A.A., Luytjes, W., and Beenakkers, A.M.T., 1980, Regulatory properties of changes in the contents of coenzyme A, carnitine and their derivatives in flight muscle metabolism of Locusta migratoria, Insect Biochem. 10:403.

    Article  CAS  Google Scholar 

  • Wyatt, G.R., and Pan, M.L., 1978, Insect plasma proteins, Annu. Rev. Biochem. 47:779.

    Article  PubMed  CAS  Google Scholar 

  • Yurkiewicz, W.J., and Oelsner, J., 1969, Neutral lipid metabolism during embryonic development of the Indian meal-moth, Plodia interpunctella (Hiibner), Comp. Biochem. Physiol. 28:955.

    Article  CAS  Google Scholar 

  • Zebe, E., 1953, Uber den respiratorischen Quotienten der Lepidopteren, Naturwissenschaften 40:298.

    Article  CAS  Google Scholar 

  • Zebe, E., 1954, Uber den Stoffwechsel der Lepidopteren, Z. Vgl. Physiol. 36:290.

    Article  Google Scholar 

  • Zebe, E., 1959, Die Verteilung von Enzymen des Fettstoffwechsels im Heuschreckenkorper, Verh. Dtsch. Zool. Ges. 31:309.

    Google Scholar 

  • Zebe, E., 1960, Condensing Enzyme und (3-keto-acyl thiolase in verschiedenen Muskeln, Biochem. Z. 332:328.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Beenakkers, A.M.T., Van der Horst, D.J., Van Marrewijk, W.J.A. (1981). Role of Lipids in Energy Metabolism. In: Downer, R.G.H. (eds) Energy Metabolism in Insects. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9221-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9221-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9223-5

  • Online ISBN: 978-1-4615-9221-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics