Skip to main content

Metabolic Activities of Benthic Microfauna and Meiofauna

Recent Advances and Review of Suitable Methods of Analysis

  • Chapter
The Benthic Boundary Layer

Abstract

Some of the more significant studies of the metabolic activities of microbenthos and meio-benthos are reviewed, and technical and theoretical difficulties in such investigations are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkinson, H. J., and Smith, L. 1973, An oxygen electrode microrespirometer, Journal of Experimental Biology 59: 247–253.

    Google Scholar 

  • Atkinson, H. J., 1973a, The respiratory physiology of the marine nematodes Enoplus brevis (Bastian) and E. communis (Bastian). I. The influence of oxygen tension and body size, Journal of Experimental Biology 59: 255–266.

    Google Scholar 

  • Atkinson, H. J., 1973b The respiratory physiology of the marine nematodes Enoplus brevis (Bastian) and E. communis (Bastian). II. The effects of changes in the imposed oxygen regime, Journal of Experimental Biology 59: 261–274.

    Google Scholar 

  • Boaden, P. J. S. 1962 Colonization of graded sand by an interstitial fauna, Cahiers de Biologie Marine 3: 245–248.

    Google Scholar 

  • Boaden, P. J. S. 1963 Behaviour and Distribution of the archiannelid Trilobodrilus heideri, Journal of the Marine Biological Association of the United Kingdom 43: 239–250.

    Google Scholar 

  • Boaden, P. J. S., and Platt, M. 1971, Daily migration patterns in an intertidal meiobenthic community, Thalassia Jugoslavica 7: 1–12.

    Google Scholar 

  • Boaden, P. J. S., 1974a, Three new thiobiotic Gastrotricha, Cahiers de Biologie Marine 15: 367–378.

    Google Scholar 

  • Brinkhurst, R. O., Chua, K. E., and Kaushik N. K., 1972, Interspecific interactions and selective feeding by tubificid oligochaetes, Limnology and Oceanography 17: 122–133.

    Google Scholar 

  • Bruel, D., Holter, H., Linderstrøm-Lang, K., and Rozits, K., 1946, A micromethod for the determination of total nitrogen (accuracy 0.005 °g N), Comptes Rendus des Travaux du Laboratoire Carlsberg, Série Chimie 25: 289–324.

    Google Scholar 

  • Bullock, T. H., 1955, Compensation for temperature in the metabolism and activity of poikilotherms, Biological Reviews 30: 311–342.

    Google Scholar 

  • Chia, F. S., and Warwick, R. M., 1969, Assimilation of labelled glucose from seawater in marine nematodes, Nature (London) 224: 720–721.

    Google Scholar 

  • Coull, B. C., and Vernberg, W. B., 1970, Harpacticoid copepod respiration: Enhydrosoma propinquum and Longipedia helgolandica, Marine Biology 5: 341–344.

    Google Scholar 

  • Clark, L., 1956, Monitor and control of blood and tissue oxygen tensions, Transactions American Society for Artificial Internal Organs 2: 41–48.

    Google Scholar 

  • Crisp, D. J. 1971, Energy flow measurements, in: Methods for the Study of Marine Benthos (Chap. 12). Holme & McIntyre, eds. (IBP Handbook No. 16). Blackwell, Oxford, 334 pp.

    Google Scholar 

  • Delamare Deboutteville C., 1960, Biologie des eaux souterraines littorales et continentales, Herman, Paris, 740 p.

    Google Scholar 

  • Duncan, A., Schiemer F., and Klekowski, R. Z., 1974, A preliminary study of feeding rates on bacterial food by adult females of a benthic nematode, Plectus palustris de Man 1880, Polskie Archiwum Hydrobiologii 21: 249–258.

    Google Scholar 

  • Ellenby, C., and Smith L., 1966, Haemoglobin in Mermis subnigrescens (Cobb), Enoplus brevis (Bastian), and E. communis (Bastian), Comparative Biochemistry and Physiology 19: 871–877.

    Google Scholar 

  • Ernst, W., 1970, ATP als Indikator für die Biomasse mariner Sedimente, Oecologia (Berlin) 5: 56–60.

    Google Scholar 

  • Ernst W., and Goerke, H., 1974, Adenosin-5′-triphosphat (ATP) in Sedimenten und Nematoden der nordostatlantischen Tiefsee, “Meteor” Forsch.-Ergebnisse C.18: 35–42.

    Google Scholar 

  • Fenchel, T., 1967, The ecology of marine microbenthos. I. The quantitative importance of ciliates as compared with metazoans in various types of sediments, Ophelia 4: 121–137.

    Google Scholar 

  • Fenchel, T., 1969, The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities, with special reference to the ciliated protozoa, Ophelia 6: 1–182.

    Google Scholar 

  • Fenchel, T., and Riedl, R. J., 1970, The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms, Marine Biology 7: 255–268.

    Google Scholar 

  • Fox, H. M., and Wingfield, C. A., 1938, A portable apparatus for the determination of oxygen dissolved in a small volume of water, Journal of Experimental Biology 15: 437–445.

    Google Scholar 

  • Fry, F. E. J., 1958, Temperature compensation, Annual Review of Physiology 20: 207–224.

    Google Scholar 

  • Gerlach, S. A., 1971, On the importance of marine meiofauna for benthos communities, Oecologia (Berlin) 6: 176–190.

    Google Scholar 

  • Gerlach, S. A., 1972, Die Produktionsleistung des Benthos in der Helgoländer Bucht, Verhandlungsbericht der Deutschen Zoologischen Gesellschaft 65: 1–13.

    Google Scholar 

  • Glick, D., 1961, Quantitative Chemical Techniques of Histo- and Cytochemistry, Interscience Publications, New York, 470 pp.

    Google Scholar 

  • Goldberg, M. L., 1973, Quantitative assay for submicrogram amounts of protein, Analytical Biochemistry 51: 240–246.

    Google Scholar 

  • Grassle, F. J., Sanders, H. L., 1973, Life histories and the role of disturbances. Deep-Sea Research 20: 643–659.

    Google Scholar 

  • Gray, J. S. 1965, The behaviour of Protodrilus symbioticus Giard in temperature gradients, Journal of Animal Ecology, 34: 455–461.

    Google Scholar 

  • Gray, J. S. 1967, Substrate selection by the archiannelid Protodrilus rubropharyngeus, Helgolander Wissenschaftliche Meeresuntersuchungen 15: 253–269.

    Google Scholar 

  • Hargrave, B. T., 1973, Coupling carbon flow through some pelagic and benthic communities, Journal of the Fisheries Research Board of Canada 30: 1317–1326.

    Google Scholar 

  • Hemmingsen, A. M., 1960, Energy metabolism as related to body size and respiratory surface and its evolution, Report of the Steno Memorial Hospital and the Nordisk Insulinlaboratorium (Copenhagen) 9: 7–11.

    Google Scholar 

  • Hessler, R. P., and Jumars, P. A., 1974, Abyssal community analysis from replicate box cores in the central North Pacific, Deep-Sea Research 21: 185–209.

    Google Scholar 

  • Heunert, H. H., and Uhlig G., 1966, Erfahrungen mit einer neuen Kammer zur Lebendbeobachtung beweglicher Mikroorganismen. Research Film 5: 642–649.

    Google Scholar 

  • Holm-Hansen, O., and Booth, C. R., 1966, The measurement of adenosine triphosphate in the ocean and its ecological significance, Limnology and Oceanography 11: 510–519.

    Google Scholar 

  • Holme, N. A., and McIntyre, A. D., 1971, Methods for the Study of Marine Benthos (IBP Handbook No. 16), Blackwell, Oxford, 334 pp.

    Google Scholar 

  • Holter, H., 1943, Technique of the Cartesian diver. Comptes-rendus des Travaux du Laboratoire de Carlsberg, Série Chimie 24: 399–478.

    Google Scholar 

  • Holter, H., 1945, A colorimetric method for measuring the volume of large amoebae, Comptes-rendus des Travaux du Laboratoire de Carlsberg, Serie Chimie 25: 156–167.

    Google Scholar 

  • Holter, H., and Zeuthen, E., 1966, Manometric techniques for single cells, in: (G. Oster, and A. W. Pollister, eds.) Physical Techniques in Biological Research, Vol. 3, Academic Press, New York, pp. 251–317.

    Google Scholar 

  • Hochachka, P. W., and Somero, G. N. 1973, Strategies of Biochemical Adaptation, Saunders Company, Philadelphia 358 pp.

    Google Scholar 

  • Hulings, N. D., and Gray, J. S., 1971, A manual for the study of meiofauna, Smithsonian Contributions to Zoology 78: 1–84.

    Google Scholar 

  • Jansson, B. O., 1962, Salinity resistance and salinity preference of two oligochaetes., Aktedrilus monospermathecus Knollner and Marionina preclitellochaeta n. sp., from the interstitial fauna of marine sandy beaches, Oikos 13: 293–305.

    Google Scholar 

  • Jansson, B. O., 1967, The availability of oxygen for the interstitial fauna of sandy beaches, Journal of Experimental Marine Biology and Ecology 1: 123–143.

    Google Scholar 

  • Jansson, B. O., 1972, Ecosystem approach to the Baltic problem. Bulletins from the Ecological Research Committee, No. 16: 5–82, Swedish Natural Science Research Council (NFR).

    Google Scholar 

  • Jørgensen, B. B., Fenchel, T., 1974, The sulfur cycle of a marine sediment model system, Marine Biology, (Berlin) 24: 189–201.

    Google Scholar 

  • Kanwisher, J., 1959, Polarographic oxygen electrode, Limnology and Oceanography 4: 210–217.

    Google Scholar 

  • Kanwisher, J., 1962, Gas exchange of shallow marine sediments, in: Symposium on the Environmental Chemistry of Marine Sediments, Occasional Publication No. 1, Graduate School of Oceanography, University of Rhode Island, pp. 13–19.

    Google Scholar 

  • Kanwisher, J. W., Lawson, K. D., and McCloskey, L. T., 1974, An improved, self-contained Polarographic dissolved oxygen probe, Limnology and Oceanography 19: 700–704.

    Google Scholar 

  • Klekowski, R. Z., 1971, Cartesian diver microrespirometry for aquatic animals, Polskie Archiwum Hydrobiologii 18: 93–114.

    Google Scholar 

  • Larsson, S., and Løvtrup, S., 1966, An automatic diver balance, Journal of Experimental Biology 44: 47-58.

    Google Scholar 

  • Lasker, R., 1966, Feeding, growth, respiration and carbon utilization of a euphausiid crustacean, Journal of the Fisheries Research Board of Canada 23: 1291–1317.

    Google Scholar 

  • Lasker, R., Wells, J. B. J., and McIntyre, A. D., 1970, Growth, reproduction respiration and carbon utilization of the sand-dwelling Harpacticoid copepod, Asellopsis intermedia, Journal of the Marine Biological Association of the United Kingdom 50: 147–160.

    Google Scholar 

  • Lasserre, P., 1969, Relations énergétiques entre le métabolisme respiratoire et la régulation ionique chez une Annélide oligochète euryhaline, Marionina achaeta (Hagen), Comptes Árendus Hebdomadaires des Séances de l’Académie des Sciences, Série D. 268: 1541–1544.

    Google Scholar 

  • Lasserre, P., 1970, Action des variations de salinité sur le métabolisme respiratoire d’oligochètes euryhalins du genre Marionina Michaelsen, Journal of Experimental Marine Biology and Ecology 4: 150–155.

    Google Scholar 

  • Lasserre, P., 1971a, Données écologiques sur la répartition des oligochètes marins méiobenthiques. Incidence des paramètres salinité-température sur le métabolisme respiratoire de deux espèces euryhalines du genre Marionina Michaelsen (1889) (Enchytraeidae, Oligochaeta), Vie et Milieu 22: 523–540.

    Google Scholar 

  • Lasserre, P., 1971b, Oligochaeta from the marine meiobenthos: taxonomy and ecology, Smithsonian Contributions to Zoology 76: 71–86.

    Google Scholar 

  • Lasserre, P., 1975. Métabolisme et osmorégulation chez une annélide oligochète de la méiofaune: Marionina achaeta Lasserre. Cahiers de Biologie Marine 16: 765–799.

    Google Scholar 

  • Lasserre, P., and Gallis, J. L., 1975, Osmoregulation and differential penetration of two grey mullets, Chelon labrosus (Risso) and Liza ramada (Risso), in esturaine fish ponds, Aquaculture 5: 323–344.

    Google Scholar 

  • Lasserre, P. and Renaud-Mornant, J., 1971a, Consommation d’oxygène chez un Crustacé méiobenthi-interstitiel de la sous-classe des Mystacocarides. Comptes-rendus hebdomadaires des séances de L ’Académie des Sciences Série D., 272: 1011–1014.

    Google Scholar 

  • Lasserre, P., Renaud-Mornant, J., 1971b, Interprétation écophysiologique des effets de temperature et de salinité sur l’intensité respiratoire de Derocheilocaris remanei biscayensis Delamare, 1953 (Crustacea, Mystacocarida), Comptes-rendus Hebdomadaires des Seances de L ’Académie des Sciences, Série D 272: 1159–1162.

    Google Scholar 

  • Lasserre, P., and Renaud-Mornant, J., 1973, Resistance and respiratory physiology of inter-tidal meiofauna to oxygen-deficiency, Netherlands Journal of Sea Research 7: 290–302.

    Google Scholar 

  • Lasserre, P. and Renaud-Mornant, J. eds., 1975, Aspects of meiofauna research (Proceedings of the First International Meeting on Meiofauna Physiological Ecology, September 25–29,1974, Arcachon, France), Cahiers de Biologie Marine 16 (5): 593–799.

    Google Scholar 

  • Lee, J. J., Tietjen, J. H., Stone, R. J., Muller, W. A., Rumiman, J. and McEnery, M., 1970, The cultivation and physiological ecology of members of salt marsh epiphytic communities, Helgoländer Wissenschaftliche Meeresuntersuchugen 20: 136–156.

    Google Scholar 

  • Lemon, E. R., and Erickson, A. E., 1952, The measurement of oxygen diffusion in the soil with a platinum microelectrode, Soil Science Society of American Proceedings 16: 160–163.

    Google Scholar 

  • Linderstrøm-Lang, K., 1943, On the theory of the Cartesian diver micro-respirometer, Comptes-rendus des Travaux du Laboratoire Carlsberg, Série Chimie 24: 333–398.

    Google Scholar 

  • Løvlie, A. and Zeuthen, E., 1962, The gradient diver: a recording instrument for gasometric microanalysis, Comptes-rendus des Travaux du Laboratoire Carlsberg 32: 513–534.

    Google Scholar 

  • Løvlie, A., 1964, Genetic control for division rate and morphogenesis in Ulva mutabilis Föyn, Comptes-rendus des Travaux du Laboratoire Carlsberg, Serie Chimie 34: 77–168.

    Google Scholar 

  • Løvtrup, S., 1973, The construction of a microrespirometer for the determination of respiratory rates of eggs and small embryos, Experiments in Physiology and Biochemistry 6: 115–152.

    Google Scholar 

  • Low, B. W., and Richards, F. M., 1952, The use of gradient tube for the determination of crystal densities, Journal of the American Chemical Society 74: 1660–1666.

    Google Scholar 

  • Lowry, O. H., 1944, A simple quartz torsion balance, Journal of Biological Chemistry 152: 293–294.

    Google Scholar 

  • Lowry, O. H., and Passonneau, J. V., 1972, A Flexible System for Enzymatic Analysis, pp. 236–249.

    Google Scholar 

  • Academic Press, New York. McIntyre, A. D. 1964, Meiobenthos of sub-littoral muds. Journal of the Marine Biological Association of the United Kingdom 44: 665–674.

    Google Scholar 

  • McIntyre, A. D., 1968, The meiofauna and macrofauna of some tropical beaches. Journal of Zoology (London) 156: 377–392.

    Google Scholar 

  • McIntyre, A. D., 1969, Ecology of marine meiobenthos, Biological Reviews 44: 245–290.

    Google Scholar 

  • McIntyre, A. D., and Murison, D. J., 1973, The meiofauna of a flatfish nursery ground, Journal of the Marine Biological Association of the United Kingdom 53: 93–118.

    Google Scholar 

  • McIntyre, A. D., Munro, A. L. S., and Steele, J. H., 1970, Energy flow in a sand ecosystem, in (J. H. Steele, ed.), Marine Food Chains, Oliver and Boyd, Edinburg, pp. 19–31.

    Google Scholar 

  • Maguire, C, and Boaden, P. J. S., 1975, Energy and evolution in the thiobios: An extrapolation from the marine gastrotrich Thiodasys sterreri, Cahiers de Biologie Marine 16: 635–646.

    Google Scholar 

  • Mare, M. F., 1942, A study of a marine benthic community with special reference to the microorganisms, Journal of the Marine Biological Association of the United Kingdom 25: 517–554.

    Google Scholar 

  • Marshall, N., 1970, Food transfer through the lower trophic levels of the benthic environment, in: (J. H. Steele, ed.) Marine Food Chains, Oliver and Boyd, Edinburg, pp. 52–66.

    Google Scholar 

  • Muus, B., 1967, The fauna of Danish estuaries and lagoons, Meddelelser fra Danmarks fiskeri-og Havundersøgelser (Denmark), N. S. 5: 1–316.

    Google Scholar 

  • Nielsen, C. O., 1949, Studies on the soil microfauna. II. The soil inhabiting nematodes, Natura Jutlantica (Aarhus, Denmark) 2: 1–131.

    Google Scholar 

  • Neuhoff, V., 1971, Wet weight determination in the lower milligram range, Analytical Biochemistry 41: 270–271.

    Google Scholar 

  • Neuhoff, V., 1973, Micromethods in Molecular Biology, Springer-Verlag, Berlin, 428 pp.

    Google Scholar 

  • Newell, R. C. and Northcroft, H. R., 1967, A re-interpretation of the effect of temperature on the metabolism of certain marine invertebrates, Journal of Zoology (London) 151 277–298.

    Google Scholar 

  • Nexø, B. A., Hamburger, K., and Zeuthen, E., 1972, Simplified microgasometry with gradient divers, Comptes-rendus des Travaux du Laboratoire Carlsberg 39: 33–63.

    Google Scholar 

  • Noodt, W., 1957, Zur Okologie der Harpacticoidea (Crust. Cop.) des Eulittorals der deutschen Meeresküste und der angrenzenden Brackgewässer. Zeitschrift fuer Morphologie und Oekologie der Tiere 46: 149–242.

    Google Scholar 

  • Ott, J. and Schiemer, R., 1973, Respiration and anaerobiosis of free living nematodes from marine and limnic sediments. Netherlands Journal of Sea Research 7: 233–243.

    Google Scholar 

  • Pamatmat, M. M., 1965, A continuous-flow apparatus for measuring metabolism of benthic communities, Limnology and Oceanography 10: 486–489.

    Google Scholar 

  • Pamatmat, M. M., 1968, Ecology and metabolism of a benthic community on an intertidal sandflat, Internationale Revue der Gesamten Hydrobiologie 53: 211–298.

    Google Scholar 

  • Pamatmat, M. M., 1971a, Oxygen consumption by the sea bed. IV, Limnology and Oceanography 16: 536–550.

    Google Scholar 

  • Pamatmat, M. M., 1971b, Oxygen consumption by the sea bed. VI, Internationale Revue der Gesamten Hydrobiologie 56: 675–699.

    Google Scholar 

  • Pamatmat, M. M., and Banse, K., 1969, Oxygen consumption by the seabed. II. In situ measurements to a depth of 180 m, Limnology and Oceanography, 14: 250–259.

    Google Scholar 

  • Pamatmat, M. M., and Bhagwat, A. M., 1973, Anaerobic metabolism in lake Washington sediments, Limnology and Oceanography 18: 611–627.

    Google Scholar 

  • Pamatmat, M. M., and Fenton, D., 1968, An instrument for measuring subtidal benthic metabolism in situ, Limnology and Oceanography 13: 537–540.

    Google Scholar 

  • Pamatmat, M. M., and Skjoldal, H. R., 1974, Dehydrogenase activity and adenosine triphosphate concentration of marine sediments in Lindåspollene, Norway, Sarsia 56: 1–12.

    Google Scholar 

  • Poulson, T. L., and White, W. B., 1969, The cave environment, Science 165: 971–981.

    Google Scholar 

  • Prosser, C. L., 1955, Physiological variation in animals, Biological Reviews 30: 229–262.

    Google Scholar 

  • Prosser, C. L., 1958, General summary: the nature of physiological adaptation, in: (C. L. Prosser, ed.), Physiological Adaptation, American Physiological Society, Washington, D. C.167–180.

    Google Scholar 

  • Prosser, C. L., 1967, Molecular mecanisms of temperature adaptation in relation to speciation, in: (C. L. Prosser, ed.), Molecular Mechanisms of Temperature Adaptation, Publ. No. 84, American Association for the Advance of Science, pp. 351–376.

    Google Scholar 

  • Rao, K. P., 1967, Some biochemical mechanisms of low temperature acclimation in tropical poiklotherms, in: (A. S. Trochin, ed.), The Cell and Envrionmental Temperature, Pergamon Press, New York, pp. 98–112.

    Google Scholar 

  • Remane, A., 1933, Verteilung und Organisation der benthonischen Mikrofauna der Kieler Bucht. Wissenschaftliche Meeresuntersuchungen (Abt. Kiel) 21: 161–221.

    Google Scholar 

  • Remane, A. 1940, Einführung in die zoologische Ökologie der Nord- und Ostsee. Tierwelt der Nord- und Ostsee, Leipzig, 238 pp.

    Google Scholar 

  • Renaud-Debyser, J. et Salvat, B. 1963, Elements de prospérité des biotopes des sédiments meubles intertidaux et écologie de leurs populations en microfaune et macrofaune, Vie et Milieu 14: 463–550.

    Google Scholar 

  • Richards, F. M., and Berger, J. E., 1961, Determination of the density of solids, in: (K. Lonsdale, ed.), International Tables for X-Ray Crystallography, Vol. 3, Kynoch, Birmingham, England.

    Google Scholar 

  • Riedl, R. J., 1971, How much seawater passes through sandy beaches, Internationale Revue der Gesamten Hydrobiologie u Hydrographie 56: 923–946.

    Google Scholar 

  • Rokop, F. J., 1974, Reproductive patterns in the deep-sea benthos, Science 186: 743–745.

    Google Scholar 

  • Salvat, B., and Renaud-Mornant, J., 1969, Etude écologique du macrobenthos et du meiobenthos d’un fond sableux du Lagon de Mururoa (Tuamotu-Polynésie), Cahiers du Paciflque 13: 159–179.

    Google Scholar 

  • Schiemer, F., 1973, Respiration of two species of Gnathostomulids, Oecologia 13: 403–406.

    Google Scholar 

  • Schiemer, F., and Duncan, A., 1974, The oxygen consumption of a freshwater benthic nematode Tobrilus gracilis (Bastian), Oecologia (Berlin) 15: 121–126.

    Google Scholar 

  • Shaw, J. and Beadle, L. C, 1949, A simplified ultra-micro Kjeldahl method for the estimation of protein and total nitrogen in fluid samples of less than 1.0 μ1, Journal of Experimental Biology 26: 15–23.

    Google Scholar 

  • Smith, K. L., 1973, Respiration of a sublittoral community, Ecology 54: 1064–1075.

    Google Scholar 

  • Smith, K. L., and Teal, J. M., 1973, Deep-sea benthic community respiration: An in-situ study at 1850 meters, Science 179: 282–283.

    Google Scholar 

  • Smith, K. L., Burns, K. A., and Teal, J. L., 1972, In-situ respiration of benthic communities in Castle Harbor, Bermuda, Marine Biology 12: 196–199.

    Google Scholar 

  • Swedmark, B., 1964, The interstitial fauna of marine sand, Biological Reviews 39: 1–42.

    Google Scholar 

  • Teal, J. M., and Kanwisher, J., 1961, Gas exchange in a Georgia salt marsh, Limnology and Oceanography 6: 388–399.

    Google Scholar 

  • Teal, J. M., and Wieser, W., 1966, The distribution and ecology of nematodes in a Georgia salt marsh, Limnology and Oceanography 11: 217–222.

    Google Scholar 

  • Thane-Fenchel, A., 1970, Interstitial gastrotrichs of some South Florida beaches, Ophelia 7: 113–138.

    Google Scholar 

  • Thiel, H., 1972, Meiofauna und Struktur der bentischen Lebensgemeinschaft des Iberischen Tiefseebeckens, “1Meteor”1 Forsch. -Ergebnisses D 12: 36–51.

    Google Scholar 

  • Thorson, G., 1966, Some factors influencing the recruitment and establishment of marine benthic communities, Netherlands Journal of Sea Research 3: 267–293.

    Google Scholar 

  • Tietjen, J. H., 1969, The ecology of shallow water meiofauna in two New England estuaries. Oecologia (Berlin) 2: 251–291.

    Google Scholar 

  • Tietjen, J. H., and Lee J. J., 1972, Life cycles of marine nematodes. Influence of temperature and salinity on the development of Monhystera denticulata Timm. Oecologia (Berlin) 10: 167–176.

    Google Scholar 

  • Uhlig, G., Thiel, H., and Gray, J. S., 1973, The quantitative separation of meiofauna: A comparison of methods, Helgoländer Wissenschaftliche Meeresuntersuchungen 25: 173–195.

    Google Scholar 

  • Van Doren, D. M., and Erickson, A. E., 1966, Factors influencing the platinum micro-electrode method for measuring the rate of oxygen diffusion through the soil solution, Soil Science 102: 23–28.

    Google Scholar 

  • Vernberg, W. B., and Coull, B. C., 1974, Respiration of an interstitial ciliate and benthic energy relationships, Oecologia (Berlin) 16: 259-264.

    Google Scholar 

  • Vernberg, W. B., and Coull, B. C, 1975, Multiple factor effects of environmental parameters on the physiology, ecology, and distribution of some marine meiofauna, Cahiers de Biologie Marine 16: 721–732.

    Google Scholar 

  • Wieser, W., 1960, Benthic studies in Buzzards Bay. II. The meiofauna, Limnology and Oceanography 5: 121–137.

    Google Scholar 

  • Wieser, W., and Kanwisher, J., 1959, Respiration and anaerobic survival in some sea weed inhabiting invertebrates, Biological Bulletin (Woods Hole) 17: 594–600.

    Google Scholar 

  • Wieser, W., and Kanwisher, J., 1960, Growth and metabolism in a marine nematode, Enoplus communis Bastian, Zeitschrift fuer Vergleichende Physiologie 43: 29–36.

    Google Scholar 

  • Wieser, W., and Kanwisher, J., 1961, Ecological and physiological studies on marine nematodes from a small salt marsh bear Woods Hole, Massachusetts, Limnology and Oceanology 6: 262–270.

    Google Scholar 

  • Wieser, W., Ott, J., Schiemer, F., and Gnaiger, E., 1974, An ecophysiological study of some meiofauna species inhabiting a sandy beach at Bermuda, Marine Biology 26: 235–248.

    Google Scholar 

  • Winberg, G. G., 1971, Methods for the Estimation of Production of Aquatic Animals (translation by A. Duncan), Academic Press, London and New York, 175 pp.

    Google Scholar 

  • Zeuthen, E., 1943, A Cartesian diver micro respirometer with a gas volume of 0.1 μ 1,Comptes-rendus des Travaux du Laboratoire Carlsberg, série chimie 24: 479–518.

    Google Scholar 

  • Zeuthen, E. 1947a, A sensitive “Cartesian diver” balance. Nature, 159: 440.

    Google Scholar 

  • Zeuthen, E. 1947b, Body size and metabolic rate in the animal kingdom. Comptes-rendus des Travaux du Laboratoire Carlsberg, série chimie 26: 17–165.

    Google Scholar 

  • Zeuthen, E. 1950, Cartesian diver respirometer, Biological Bulletin (Woods Hole) 98: 303–318.

    Google Scholar 

  • Zeuthen, E., 1953. Oxygen uptake as related to body size in organisms, Quarterly Review of Biology, 28: 1-12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Lasserre, P. (1976). Metabolic Activities of Benthic Microfauna and Meiofauna. In: McCave, I.N. (eds) The Benthic Boundary Layer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8747-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8747-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8749-1

  • Online ISBN: 978-1-4615-8747-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics