Skip to main content

Linear Free Energy Relationships in Enzymology

  • Chapter
Advances in Linear Free Energy Relationships

Abstract

The primary objective of the application of the various linear free energy relationships in enzymology, as is often the case in non-enzymic studies of this type, is the elucidation of reaction mechanism. Thus, it is expected that systematic perturbations in the structure of the substrate for a particular enzyme will affect the catalysed reaction in such a manner as to provide evidence concerning the mode of catalysis, which can be rationally interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. L. Blakeley, J. A. Hinds, H. E. Kunze, E. C. Webb, and B. Zerner, Biochemistry, 8, 1991 (1969)

    Article  CAS  Google Scholar 

  2. W. N. Fishbein, T. S. Winter, and J. D. Davidson, J. Biol. Chem., 240, 2402 (1965)

    CAS  Google Scholar 

  3. E. Fischer, Chem. Ber., 27, 2985 (1894)

    Article  CAS  Google Scholar 

  4. D. E. Koshland and K. E. Neet, Ann. Rev. Biochem., 37, 359 (1968)

    Article  CAS  Google Scholar 

  5. R. L. VanEtten, J. F. Sebastian, G. A. Clowes, and M. L. Bender, J. Amer. Chem. Soc., 89, 3242 (1967)

    Article  Google Scholar 

  6. K. Landsteiner, The Speciiicity of Serological Reactions, p. 169 ( Dover Publications, New York, 1962 )

    Google Scholar 

  7. L. Michaelis and M. L. Menten, Biochem. Z., 49, 333 (1913)

    CAS  Google Scholar 

  8. M. Eigen and G. G. Hammes, Adv. Enzymol., 25, 1 (1963); G. G. Hammes, Adv. Protein Chem., 23, 1 (1968)

    Google Scholar 

  9. W. P. Jencks, Catalysis in Chemistry and Enzymology, pp. 323–459 ( McGraw-Hill, New York, 1969 )

    Google Scholar 

  10. D. M. Blow and T. A. Steitz, Ann. Rev. Biochem., 39, 63 (1970)

    Article  CAS  Google Scholar 

  11. W. Kauzmann, Adv..Protein Chem., 14, 1 1959 )

    Article  CAS  Google Scholar 

  12. G. Nemethy and H. A. Scheraga, J. Phys.(Chem., 66, 1773 (1962); 67, 2888 (1963); G. Nemethy, Angew. Chem. Internat. Edn., 6, 195 (1967); GE, 260

    Google Scholar 

  13. A. Wishnia, Proc. Nat. Acad. Sci. U.S.A., 48, 2200 (1962)

    Article  CAS  Google Scholar 

  14. M. R. V. Sahyun, Nature, 209, 613 (1966)

    Article  CAS  Google Scholar 

  15. C. Hansch, Accts. Chem. Res., 2, 232 (1969)

    Article  CAS  Google Scholar 

  16. C. Hansch, K. Kiehs, and G. L. Lawrence, J. Amer. Chem. Soc., 87, 5770 (1965)

    Article  CAS  Google Scholar 

  17. F. Helmer, K Kiehs, and C. Hansch, Biochemistry, 7, 2858 (1968)

    Article  CAS  Google Scholar 

  18. K. Kiehs, C. Hansch, and L. Moore, Biochemistry, 5, 2602 (1966)

    Article  CAS  Google Scholar 

  19. I. B. Wilson in The Enzymes, Vol. 4, p. 501, P. D. Boyer, H. Lardy, and K. Myrbäck,. (Academic Press, New York, 2nd edn., 1960 )

    Google Scholar 

  20. R. M. Krupka, Biochemistry, 5, 1988 (1966)

    Google Scholar 

  21. I. B. Wilson, Biol. Chem., 197, 215 (1952)

    CAS  Google Scholar 

  22. F. Bergmann and R. Segal, Biochem. J., 58, 692 (1954)

    CAS  Google Scholar 

  23. V. H. Bockendahl, T. M. Müller, and H. Verfürth, Hoppe-Seyler’s Z. Physiol. Chem., 348, 1027 (1967)

    Article  CAS  Google Scholar 

  24. B. Belleau and J. L. Lavoie, Can. J. Biochem., 46, 1397 (1968)

    Article  CAS  Google Scholar 

  25. B. Belleau and V. DiTullio, J. Amer. Chem. Soc., 92, 6320 (1970)

    Article  CAS  Google Scholar 

  26. J. R. Knowles, J. Theoret. Biol, 9, 213 (1965)

    Article  CAS  Google Scholar 

  27. A. J. Hymes, D. A. Robinson, and W. J. Canady, J. Biol. Chem., 240, 134 (1965)

    CAS  Google Scholar 

  28. R. Wildnauer and W. J. Canady, Biochemistry, 5, 2885 (1966)

    Article  CAS  Google Scholar 

  29. I. V. Berezin, A. V. Levashov, and K. Martinek, FEBS Letters, 7, 20 (1970)

    Article  CAS  Google Scholar 

  30. B. M. Anderson, M. L. Reynolds, and C. D. Anderson, Biochim. Biophys. Acta, 99, 46 (1965)

    CAS  Google Scholar 

  31. C. S. Tsai, Can. J. Biochem., 46, 381 (1968)

    Article  CAS  Google Scholar 

  32. B. M. Anderson and E. C. Vasini, Biochemistry, 9,3348 (1970), and references therein.

    Google Scholar 

  33. J. L. Bada, B. P. Luyendyk, and J. B. Maynard, Z. Physiol. Chem, 170, 730 (1970)

    CAS  Google Scholar 

  34. M. Dixon and E. C. Webb, Enzymes, p. 772 (Academic Press, New York, 2nd edn., 1964), and references therein.

    Google Scholar 

  35. D. R. Storm and D. E. Koshland, Proc. Nat. Acad. Sci. U.S.A., 66, 445 (1970)

    Article  CAS  Google Scholar 

  36. Reference 9, Chapter 5 and references therein.

    Google Scholar 

  37. R. Lumry and R. Biltonin in Biological Macromolecules, Vol. 2, p. 65, S. N. TimashefF and G. D. Fasman, ( Marcel Dekker, New York, 1969 ).

    Google Scholar 

  38. B. H. J. Hofstee, J. Biol. Chem., 207, 219 (1954)

    CAS  Google Scholar 

  39. R. Lumry in The Enzymes, Vol. 1, p. 157, P. D. Boyer, H. Lardy, and K. Myrbäck, (Academic Press, New York, 2nd edn., 1959 )

    Google Scholar 

  40. B. H. J. Hofstee, Biochim. Biophys. Acta, 32, 182 (1959)

    Article  CAS  Google Scholar 

  41. C. Niemann, Z. Physiol. Chem, 143, 1287 (1964)

    CAS  Google Scholar 

  42. M. L. Bender and F. J. Kezdy, Ann. Rev. Biochem., 34, 49 (1965)

    Article  CAS  Google Scholar 

  43. For recent reviews see (a) G. P. Hess, J. McConn, E. Ku, and G. McConkey, Phil. Trans. Roy. Soc. (B), 257, 89 (1970); (b) S. A. Bernhard and H. Gutfreund, Phil. Trans. Roy. Soc. (B), 257, 105 (1970)

    Google Scholar 

  44. G. Lowe, Phil. Trans. Roy. Soc. (B), 257, 237 (1970)

    Article  CAS  Google Scholar 

  45. P. M. Hinkle and J. F. Kirsch, Biochemistry, 10, 2717 (1971)

    Article  CAS  Google Scholar 

  46. P. Greenzaid and W. P. Jencks, Biochemistry, 10, 1210 (1971)

    Article  CAS  Google Scholar 

  47. P. M. Hinkle and J. F. Kirsch, Biochemistry, 9, 4633 (1970)

    Article  Google Scholar 

  48. P. M. Hinkle, Thesis, University of California (1970)

    Google Scholar 

  49. D. M. Chipman and N. Sharon, Z. Physiol. Chem, 165, 454 (1969)

    CAS  Google Scholar 

  50. C. Hansch, E. W. Deutsch, and R. N. Smith, J. Amer. Chem. Soc., 87, 2738 (1965)

    Article  CAS  Google Scholar 

  51. R. L. Nath and H. N. Rydon, Biochem. J., 57, 1 (1954)

    CAS  Google Scholar 

  52. A. N. Hall, S. Hollingshead, and H. N. Rydon, Biochem. J., 84, 390 (1962)

    CAS  Google Scholar 

  53. O. P. Malhotra and P. M. Dey, Biochem. J., 103, 739 (1967)

    CAS  Google Scholar 

  54. (a) B. Capon, Chem. Rev., 69,407 (1969); (b)D. C. Phillips, Prac. Nat. Acad. Sci. U.S.A., 57, 484 (1967); (c) E. Holler, J. A. Rupley, and G. P. Hess, Biochem. Biophys. Res. Comm., 37, 423 (1969); G. L. Rossi, E. Holler, S. Kumar, J. A. Rupley, and G. P. Hess, Biochem. Biophys. Res. Comm., 37, 757 (1969); I. Pecht, Y. I. Teichberg, and N. Sharon, FEBS Letters, 10, 241 (1970)

    Google Scholar 

  55. G. Lowe, G. Sheppard, M. L. Sinnott, and A. Williams, Biochem. J., 104, 893 (1967)

    CAS  Google Scholar 

  56. C. S. Tsai, J. Y. Tang, and S. C. Subbarao, Biochem. J., 114, 529 (1969)

    CAS  Google Scholar 

  57. T. Rand-Meir, F. W. Dahlquist, and M. A. Raftery, Biochemistry, 8, 4206 (1969)

    Article  CAS  Google Scholar 

  58. T. H. Fife and L. K. Jao, J. Amer. Chem. Soc., 90, 4081 (1968); T. H. Fife and L. H. Brod, J. Amer. Chem. Soc., 92, 1681 (1970)

    Google Scholar 

  59. L. N. Johnson, D. C. Phillips, and J. A. Rupley, Brookhaven Symp. Biol., 21, 120 (1969)

    Google Scholar 

  60. F. W. Dahlquist, T. Rand-Meir, and M. A. Raftery, Biochemistry, 8, 4214 (1969)

    Article  CAS  Google Scholar 

  61. Reference 34, p. 704

    Google Scholar 

  62. M. Caplow and W. P. Jencks, Biochemistry, 1, 883 (1962)

    Article  CAS  Google Scholar 

  63. D. M. Blow, J. J. Birktoft, and B. S. Hartley, Nature, 221, 337 (1969). References to the original suggestion are given in reference 62.

    Google Scholar 

  64. C. D. Hubbard and J. F. Kirsch, Federation Proc., 29, Abst. 3656 (1970), and in preparation.

    Google Scholar 

  65. M. L. Bender and K. Nakamura, J. Amer. Chem. Soc., 84, 2577 (1962)

    Article  CAS  Google Scholar 

  66. T. C. Bruice and S. J. Benkovic, J. Amer. Chem. Soc., 86,418 (1964); J. F. Kirsch and W. P. Jencks, J. Amer. Chem. Soc., 86, 837 (1964)

    Article  Google Scholar 

  67. J. Gerstein and W. P. Jencks, J. Amer. Chem. Soc., 86, 4655 (1964)

    Article  CAS  Google Scholar 

  68. A. Williams, Biochemistry, 9, 3383 (1970)

    Article  CAS  Google Scholar 

  69. Calculated from data given by E. L. Becker, Biochim. Biophys. Acta, 147, 289 (1967)

    Google Scholar 

  70. T. Inagami, S. S. York, and A. Patchornik, J. Amer. Chem. Soc., 87, 126 (1965)

    Article  CAS  Google Scholar 

  71. M. Caplow, J. Amer. Chem. Soc., 91, 3639 (1969); see also reference 43(a).

    Google Scholar 

  72. L. Parker and J. H. Wang, J. Biol. Chem., 243, 3729 (1968)

    CAS  Google Scholar 

  73. G. Lowe and A. Williams, Biochem. J., 96, 199 (1965)

    CAS  Google Scholar 

  74. J. F. Kirsch and M. Igelstrom, Biochemistry, 5, 783 (1966)

    Article  CAS  Google Scholar 

  75. G. Lowe and Y. Yuthavong, unpublished results quoted in reference 44.

    Google Scholar 

  76. K. B. Jacobson, J. Biol. Chem., 236, 343 (1961)

    Google Scholar 

  77. B. Riddle and W. P. Jencks, Biol. Chem., 246, 3250 (1971)

    CAS  Google Scholar 

  78. O. P. Malhotra and G. Philip, Biochem. Z., 346, 386 (1966)

    CAS  Google Scholar 

  79. J. K. Stoops, D. J. Horgan, M. T. C. Runnegar, J. de Jersey, E. C. Webb, and B. Zerner, Biochemistry, 8, 2026 (1969)

    Google Scholar 

  80. References cited in reference 46.

    Google Scholar 

  81. O. Gawron, C. J. Grelecki, and M. Duggan, Arch. Biochem. Biophys., 44, 455 (1953)

    Article  CAS  Google Scholar 

  82. G. D. Hegeman, E. Y. Rosenberg, and G. L. Kenyon, Biochemistry, 9, 4029 (1970)

    Article  CAS  Google Scholar 

  83. G. L. Kenyon and G. D. Hegeman, Biochemistry, 9, 4036 (1970)

    Article  CAS  Google Scholar 

  84. K. S. Dodgson, B. Spencer, and K. Williams, Biochem. J., 64, 216 (1956)

    CAS  Google Scholar 

  85. J. F. Koster and C. Veeger, Biochim. Biophys. Acta, 167, 48 (1968)

    CAS  Google Scholar 

  86. A. De Kok and C. Veeger, Biochim. Biophys. Acta, 167, 35 (1968)

    Google Scholar 

  87. A. H. Neims, D. C. De Luca, and L. Hellerman, Biochemistry, 5, 203 (1966). For further discussion related to the mechanism of action of D-amino acid oxidase see the article by A. H. Neims and L. Hellerman, Ann. Rev. Biochem., 39, 867 (1970)

    Google Scholar 

  88. R. A. Deitrich, L. Hellerman, and J. Wein, J. Biol. Chem., 237, 560 (1962)

    CAS  Google Scholar 

  89. C. H. Blomquist, Acta Chem. Scand., 20, 1747 (1966)

    Article  CAS  Google Scholar 

  90. B. Tabakoff and V. G. Erwin, J. Biol. Chem., 245, 3263 (1970)

    CAS  Google Scholar 

  91. H. W. Duckworth and J. E. Coleman, J. Biol. Chem., 245, 1613 (1970)

    CAS  Google Scholar 

  92. J. A. Mazrimas, P.-S. Song, L. L. Ingraham, and R. D. Draper, Arch. Biochem. Biophys., 100, 409 (1963)

    Article  CAS  Google Scholar 

  93. G. E. Lienhard, Biochemistry, 9, 3011 (1970)

    Google Scholar 

  94. S. Mahadevan and K. V. Thimann, Arch. Biochem. Biophys., 107, 62 (1964)

    Article  CAS  Google Scholar 

  95. D. Levine, T. W. Reid, and I. B. Wilson, Biochemistry, 8,2374 (1969); D. R. Trentham and H. Gutfreund, Biochem. J., 106, 455 (1968)

    Google Scholar 

  96. A. C. Henry and J. F. Kirsch, Biochemistry, 6, 3536 (1967)

    Article  CAS  Google Scholar 

  97. A. L. Fink and M. L. Bender, Biochemistry, 8, 5109 (1969) and references therein.

    Google Scholar 

  98. O. Viratelle, J. P. Tenu, J. Gamier, and J. Yon, Biochem. Biophys. Res. Comm., 37, 1036 (1969)

    Google Scholar 

  99. Reference 9, Chapter 2

    Google Scholar 

  100. T. H. Fife and J. B. Milstien, Biochemistry, 6, 2901 (1967); J. B. Milstien and T. H. Fife, Biochemistry, 8, 623 (1969)

    Article  Google Scholar 

  101. See reference 9, Chapter 3 for further discussion.

    Google Scholar 

  102. Reference 9, Chapter 4; J. H. Richards in The Enzymes, Vol. 2, p. 321, P. D. Boyer, ed. (Academic Press, New York, 3rd edn., 1970 )

    Google Scholar 

  103. P. W. Inward and W. P. Jencks, J. Biol. Chem., 240, 1986 (1965)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Publishing Company Ltd.

About this chapter

Cite this chapter

Kirsch, J.F. (1972). Linear Free Energy Relationships in Enzymology. In: Chapman, N.B., Shorter, J. (eds) Advances in Linear Free Energy Relationships. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8660-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8660-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8662-3

  • Online ISBN: 978-1-4615-8660-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics