Skip to main content

Part of the book series: Progress in Inorganic Biochemistry and Biophysics ((PIBB,volume 2))

Abstract

Nuclear spin relaxation is a particularly useful tool for investigating molecular motion in liquid crystals because there are many motional processes with correlation times in the vicinity of nuclear Larmor frequencies. A partial list of such processes includes molecular reorientation, quasicoherent director fluctuations (1), fluctuations of local order (2), translation-rotation coupling (3, 4), and chemical exchange between “sites” of different degrees of local order (5). It is generally far from trivial to decide what combination of processes is the dominant source of spin relaxation, and measurements over as wide a range of Larmor frequencies as possible are needed. In addition, different motional processes may have characteristically different temperature dependence, although it must be noted that quantitative analysis of the temperature dependence is often hindered by lack of sufficient information about hydrodynamic parameters which appear in director fluctuation theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Pincus, Solid State Commun. 7, 415 (1969).

    Article  Google Scholar 

  2. J.H. Freed, J.Chem.Phys. 66, 4183 (1977).

    Article  Google Scholar 

  3. R. Blinc, M. Luzar, M. Vilfan and M. Burgar, J.Chem.Phys. 63, 3445 (1975).

    Article  Google Scholar 

  4. G. Moro and P.L Nordio, J.Phys.Chem., 89, 997, (1985).

    Article  Google Scholar 

  5. J.F. Martin, R.R. Vold and R.L. Vold, J.Chem.Phys. 80, 2237 (1984).

    Article  Google Scholar 

  6. J.W. Doane, C.E. Tarr and M.A. Nickerson, Phys.Rev.Lett. 33, 620 (1974)

    Article  Google Scholar 

  7. H. Bildsoe, J.P. Jacobsen and K. Schaumburg, J.Magn.Reson. 23, 137 (1976).

    Google Scholar 

  8. R.R. Vold and R.L. Vold, J.Chem.Phys. 66, 4018 (1977).

    Article  Google Scholar 

  9. R.L. Vold and R.R. Vold, Progr.NMR Spectrosc. 12, 79 (1978).

    Article  Google Scholar 

  10. R.L. Vold, W.H. Dickerson and R.R. Vold, J.Magn.Reson. 43, 213 (1981).

    Google Scholar 

  11. T.C. Wong and K.R. Jeffrey, Mol.Phys. 46, 1 (1982).

    Article  Google Scholar 

  12. P.A. Beckmann, J.W. Emsley, G.R. Luckhurst and D.L. Turner, Mol.Phys. 50, 699 (1983).

    Article  Google Scholar 

  13. R.R.Vold, in press.

    Google Scholar 

  14. P. Ukleja, J. Pirs and J.W. Doane, Phys.Rev. A14, 414 (1976).

    Google Scholar 

  15. C.F. Polnaszek and J.H. Freed, J.Phys.Chem. 79, 2283 (1975).

    Article  Google Scholar 

  16. H.A. Lopes Cardozo, J. Bulthuis and C. McLean, J.Magn.Reson. 33, 27 (1977).

    Google Scholar 

  17. J. Jeener and P. Broekaert, Phys.Rev. 157, 232 (1967).

    Article  Google Scholar 

  18. W.H. Dickerson, R.R. Vold and R.L. Vold, J.Phys.Chem. 87, 166 (1983).

    Article  Google Scholar 

  19. R.L. Vold and R.R. Vold, J.Magn.Reson. 55, 78 (1983).

    Google Scholar 

  20. M. Mehring, E.K. Wolff and M.E. Stoll, J.Magn.Reson. 37, 475 (1980).

    Google Scholar 

  21. R.R. Vold and G. Bodenhausen, J.Magn.Reson. 39, 363 (1980).

    Google Scholar 

  22. R.L. Vold and R.R. Vold, Poster presented at 26th ENC, Asilomar, Ca. (1985).

    Google Scholar 

  23. R.W. Vaughan, D.D. Ellman, L.M. Stacey, W.K. Rhim and J.W. Lee, Rev.Sci. Instr. 43, 1356 (1972).

    Article  Google Scholar 

  24. P.M. Henrichs, J.M. Hewitt and M. Linder, J.Magn.Reson., 60, 280 (1984)

    Google Scholar 

  25. J.F. Martin, R.L. Vold and R.R. Vold, J.Magn.Reson. 51, 164 (1983).

    Google Scholar 

  26. D.E. Woessner, J.Chem.Phys. 36, 1 (1962).

    Article  Google Scholar 

  27. W.T. Huntress, Jr., Adv.Magn.Reson. 4, 1 (1970).

    Google Scholar 

  28. H. Burgi and J. Dunitz, Chem.Comm. 472 (1969).

    Google Scholar 

  29. J.F.Martin, R.L. Vold and R.R. Vold, to be published.

    Google Scholar 

  30. R.R. Vold, P.H. Kobrin and R.L. Vold, J.Chem.Phys. 69, 3430 (1978).

    Article  Google Scholar 

  31. B.C.Nishida,R.L.Vold and R.R. Vold, to be published.

    Google Scholar 

  32. R. Poupko, R.L. Vold and R.R. Vold, J.Phys.Chem. 84, 3444 (1980).

    Article  Google Scholar 

  33. L.S. Selwyn, R.R. Vold and R.L. Vold, Mol.Phys., in press.

    Google Scholar 

  34. L.S. Selwyn, Ph.D. Dissertation, University of California, San Diego, 1984.

    Google Scholar 

  35. G. Lipari and A. Szabo, J.Amer.Chem.Soc. 104, 4546 (1982).

    Article  Google Scholar 

  36. S.H. Glarum and J.H. Marshall, J.Chem.Phys. 46, 55 (1967).

    Article  Google Scholar 

  37. C.C. Wang and R. Pecora, J.Chem.Phys. 72, 5333 (1980).

    Article  Google Scholar 

  38. L.S. Selwyn, R.R. Vold and R.L. Vold, J.Chem.Phys. 80, 5418 (1984).

    Article  Google Scholar 

  39. P.L. Nordio, G. Rigatti and U. Segre, J.Chem.Phys. 56, 2117 (1972).

    Article  Google Scholar 

  40. J.M. Bernassau, E.P. Black and D.M. Grant, J.Chem.Phys. 76, 253 (1982).

    Article  Google Scholar 

  41. I. Haller, J.Chem.Phys. 57, 1400 (1972).

    Article  Google Scholar 

  42. S. Meiboom and R.C. Hewitt, Phys.Rev.Lett. 30, 261 (1973).

    Article  Google Scholar 

  43. I. Zupancic, J. Pirs, M. Luzar, R. Blinc and J.W. Doane, Solid State Comm. 15, 227 (1974).

    Article  Google Scholar 

  44. R.Y. Dong, E. Tomchuk, C.G. Wade, J.J. Visintainer and E. Bock, J.Chem. Phys. 66, 4121 (1977).

    Article  Google Scholar 

  45. P.R. Luyten, R.R. Vold and R.L. Vold, J.Phys.Chem. 89, 545 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Birkhäuser Boston, Inc.

About this chapter

Cite this chapter

Vold, R.L., Vold, R.R., Martin, J.F., Nishida, B.C., Selwyn, L.S. (1986). Deuterium Spin Relaxation and Molecular Motion in Liquid Crystals. In: Niccolai, N., Valensin, G. (eds) Advanced Magnetic Resonance Techniques in Systems of High Molecular Complexity. Progress in Inorganic Biochemistry and Biophysics, vol 2. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-8521-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8521-3_19

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-8523-7

  • Online ISBN: 978-1-4615-8521-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics