Skip to main content

Microbial Transformations in the Phosphorus Cycle

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 1))

Abstract

As a result of the current spate of popular literature dealing with phosphorus in the aquatic environment, the expression “the phosphate problem” is firmly equated in most people’s minds with the undesirable effects of the pollution of waterways and basins by phosphorus-containing effluents from urban areas and industrial sites. The importance of dealing with this problem cannot be decried, although some (Griffith, 1973) have deplored the rapid closing down of much research on industrial applications of phosphorus compounds which has unfortunately not been paralleled by a concomitant upsurge in the quantity and quality of such research on analytical methods, biochemistry, and microbiology as is still needed for a full understanding of the phosphorus cycle. Many of the pollution problems are in any case the result of the concentration of population in large conurbations and would undoubtedly have been less difficult to deal with if such socially and economically undesirable megalopolises had never evolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agnihotri,,V. P., 1970, Solubilization of insoluble phosphates by some soil fungi isolated from nursery seedbeds, Can. J. Microbiol. 16: 877.

    Google Scholar 

  • Ahkromeiko, A. I., Shestakova, V. A., 1958, The effect of rhizosphere micro-organisms

    Google Scholar 

  • upon the uptake and release of phosphorus and sulphur by the roots of arboreal

    Google Scholar 

  • seedlings, Proc. Int. Conf. Peaceful Uses Atomic Energy, 2nd Conf., Geneva 27: 193.

    Google Scholar 

  • Ahmed, M. K., Casida, J. E., Nichols, R. E., 1958, Bovine metabolism of organophosphorus insecticides: Significance of rumen fluid with with particular reference to parathion, J. Agric. Food Chem. 6: 740.

    CAS  Google Scholar 

  • Aldridge, W. H., Reiner, E., 1972, Enzyme Inhibitors as Substrates, North-Holland,

    Google Scholar 

  • Amsterdam.

    Google Scholar 

  • Allison, F. E., 1973, Soil Organic Matter and its Role in Crop Production, Elsevier, Amsterdam.

    Google Scholar 

  • Anderson, G., 1956, The identification and estimation of soil inositol phosphates, J. Sci. Food Agric. 7: 437.

    CAS  Google Scholar 

  • Anderson, G., 1967, Nucleic acids, derivatives, and organic phosphates, in: Soil Biochemistry, Vol. 1 ( A. D. McLaren and G. H. Peterson, eds.), pp. 67–90, Marcel Dekker, New York.

    Google Scholar 

  • Anderson, G., 1970, The isolation of nucleoside diphosphates from alkaline extracts of soil, J. Soil Sci. 21: 96.

    CAS  Google Scholar 

  • Anderson, G., Hance, R. J., 1963, Investigation of an organic phosphorus component of fulvic acid, Plant Soil 19: 296.

    Google Scholar 

  • Anderson, G., Malcolm, R. E., 1974, The nature of alkali-soluble soil organic phosphates, J. Soil Sci. 25: 282.

    CAS  Google Scholar 

  • Anderson, G., Russell, J. D., 1969, Identification of inorganic pyrophosphate in alkaline extracts of soil, J. Sci. Food Agric. 20: 78.

    CAS  Google Scholar 

  • Anderson, L., 1972, The cyclitols, in: The Carbohydrates: Chemistry and Biochemistry, Vol. 1A (W. Pigman, D. Morton, eds.), pp. 519–579, Academic Press, New York.

    Google Scholar 

  • Antia, N. J., McAllister, C. D., Parsons, T. R., Stephens, K., Strickland, J. D. H., 1963, Further measurements of primary production using a large-volume plastic sphere, Limnol. Oceanogr. 8: 166.

    Google Scholar 

  • Barber, D. A., 1969, The influence of the microflora on the accumulation of ions by plants, in: British Ecological Society Symposium 9 ( I. H. Rorison, ed.), pp. 191–200, Blackwell Scientific, Oxford.

    Google Scholar 

  • Barr, C. E., Ulrich, A., 1963, Phosphorus fractions in high and low phosphate plants,

    Google Scholar 

  • J. Agric. Food Chem. 11: 313.

    Google Scholar 

  • Bartlett, E. M., Lewis, D. H., 1970, Spectrophotometric determination of phosphate

    Google Scholar 

  • esters in the presence and absence of orthophosphate, Anal. Biochem. 36: 159.

    Google Scholar 

  • Bartlett, E. M., Lewis, D. H., 1973, Surface phosphatase activity of mycorrhizal roots of

    Google Scholar 

  • beech, Soil Biol. Biochem. 5: 249.

    Google Scholar 

  • Benians, G. J., Barber, D. A., 1974, The uptake of phosphate by barley plants from soil

    Google Scholar 

  • under aseptic and non-sterile conditions, Soil Biol. Biochem. 6: 195.

    Google Scholar 

  • Bieleski, R. L., 1973, Phosphate pools, phosphate transport, and phosphate availability, Annu. Rev. Plant Physiol. 24: 225.

    CAS  Google Scholar 

  • Blanchar, R. W., Riego, D., 1975, Phosphate determinations in waters using an anion exchange resin, J. Environ. Qual. 4: 45.

    Google Scholar 

  • Breitenbach, M., Hoffmann-Ostenhof, O., 1971, Biosynthesis of myo-Inositol 1,3,4,5,6-pentakisphosphate in chicken reticulocytes, Hoppe-Seyler’s Z. Physiol. Chem. 352: 488.

    PubMed  CAS  Google Scholar 

  • Bromfield, A. R., 1975, Effects of ground rock phosphate-sulphur mixture on yield and nutrient uptake of groundnuts (Arachis hypogaea) in Northern Nigeria, Expl. Agric. 11: 265.

    CAS  Google Scholar 

  • Bromfield, S. M., Jones, O. L., 1970, The effect of sheep on the recycling of

    Google Scholar 

  • phosphorus in hayed-off pastures, Aust. J. Agric. Res. 21: 699.

    Google Scholar 

  • Bromfield, S. M., Jones, O. L., 1972, The initial leaching of hayed-off pasture plants in

    Google Scholar 

  • relation to the recycling of phosphorus, Aust. J. Agric. Res. 23: 811.

    Google Scholar 

  • Brown, M. E., 1972, Plant growth substances produced by micro-organisms of soil and rhizosphere, J. Appl. Bacteriol. 35: 443.

    CAS  Google Scholar 

  • Cervelli, S., Nannipieri, P., Ceccanti, B., Sequi, P., 1973, Michaelis constant of soil acid phosphatase, Soil Biol. Biochem. 5: 841.

    CAS  Google Scholar 

  • Chamberlain, W., and Shapiro, J., 1973, Phosphate measurements in natural waters—a critique, in: Environmental Phosphorus Handbook (E. J. Griffith, A. Beeton, J. M. Spencer, D. T. Mitchell, eds.), pp. 355–366, John Wiley and Sons, New York.

    Google Scholar 

  • Chen, I. W., Charalampous, F. C., 1967, The mechanism of cyclization of glucose 6-phosphate to D-inositol 1-phosphate, Biochim. Biophys. Acta 136: 568.

    PubMed  CAS  Google Scholar 

  • Chhonkar, P. K., Subba-Rao, N. S., 1967, Phosphate solubilization by fungi associated

    Google Scholar 

  • with legume root nodules, Can. J. Microbiol. 13: 749.

    Google Scholar 

  • Cooper, R., 1959, Bacterial fertilizers in the Soviet Union, Soils Fertilizers 22: 327.

    Google Scholar 

  • Cosgrove, D. J., 1963, The chemical nature of soil organic phosphorus. I. Inositol phosphates, Aust. J. Soil Res. 1: 203.

    CAS  Google Scholar 

  • Cosgrove, D. J., 1966, The chemistry and biochemistry of inositol polyphosphates, Rev. Pure Appl. Chem. 16: 209.

    CAS  Google Scholar 

  • Cosgrove, D. J., 1967, Metabolism of organic phosphates in soil, in: Soil Biochemistry, Vol. 1 ( A. D. McLaren, G. H. Peterson, eds.), pp. 216–228, Marcel Dekker, New York.

    Google Scholar 

  • Cosgrove, D. J., 1969, The chemical nature of soil organic phosphorus. II. Characterization of the supposed DL-chiro-inositol hexaphosphate component of soil phytate as D-chiro-inositol hexaphosphate, Soil Biol. Biochem. 1: 325.

    CAS  Google Scholar 

  • Cosgrove, D. J., 1970, Inositol phosphate phosphatases of microbiological origin. Inositol phosphate intermediates in the dephosphorylation of the hexaphosphates of myo-inositol, scyllo-inositol, and D-chiro-inositol by a bacterial (Pseudomonas sp.) phytase, Aust. J. Biol. Sci. 23: 1207.

    PubMed  CAS  Google Scholar 

  • Cosgrove, D. J., 1972, The origin of inositol polyphosphates in soil. Some model experiments in aqueous systems involving the chemical phosphorylation of myo-inositol and the epimerization of myo-inositol pentaphosphates, Soil Biol. Biochem. 4: 387.

    CAS  Google Scholar 

  • Cosgrove, D. J., 1973, Inositol polyphosphates in activated sludge, J. Environ. Qual. 2: 483.

    CAS  Google Scholar 

  • Cosgrove, D. J., Irving, G. C. J., Bromfield, S. M., 1970, Inositol phosphate phosphatases

    Google Scholar 

  • of microbiological origin. The isolation of soil bacteria having inositol phosphate

    Google Scholar 

  • phosphatase activity, Aust. J. Biol. Sci. 23: 339.

    Google Scholar 

  • Donald, C. M., Williams, C. H., 1954, Fertility and productivity of a podzolic soil as

    Google Scholar 

  • influenced by subterranean clover (Trifolium subterraneum L.) and superphosphate,

    Google Scholar 

  • Aust. J. Agric. Res. 5: 664.

    Google Scholar 

  • Eto, M., 1974, Organophosphorus Pesticides: Organic and Biological Chemistry, C.R.C. Press, Cleveland.

    Google Scholar 

  • Feder, J., 1973, The phosphatases, in: Environmental Phosphorus Handbook ( E. J. Griffith, A. Beeton, J. M. Spencer, D. T. Mitchell, eds.), pp. 475–508, John Wiley and Sons, New York.

    Google Scholar 

  • Floate, M. J. S., 1970a, Decomposition of organic materials from hill soils and pastures. II. Comparative studies on the mineralization of carbon, nitrogen, and phosphorus from plant materials and sheep faeces, Soil Biol. Biochem. 2: 173.

    CAS  Google Scholar 

  • Floate, M. J. S., 1970b, Decomposition of organic materials from hill soils and pastures. III. The effect of temperature on the mineralization of carbon, nitrogen, and phosphorus from plant materials and sheep faeces, Soil Biol. Biochem. 2: 187.

    CAS  Google Scholar 

  • Floate, M. J. S., 1970c, Decomposition of organic materials from hill soils and pastures. IV. The effects of moisture content on the mineralization of carbon, nitrogen, and phosphorus from plant materials and sheep faeces, Soil Biol. Biochem. 2: 275.

    CAS  Google Scholar 

  • Furukawa, H., Kawaguchi, K., 1969, Contribution of organic phosphorus to the increase of easily soluble phosphorus in water-logged soils, especially related to phytate phosphorus, Nippon Dojo-Hiryogako Zasshi 40: 141. (Chem. Abstr. 1970, 71:100348).

    CAS  Google Scholar 

  • Getzin, L. W., 1967, Metabolism of diazinon and zinophos in soils, J. Econ. Entomol 60: 505.

    CAS  Google Scholar 

  • Getzin, L. W., Rosefield, I., 1971, Partial purification and properties of a soil enzyme that degrades the insecticide malathion, Biochim. Biophys. Acta 235: 442.

    PubMed  CAS  Google Scholar 

  • Ghonsikar, C. P., Miller, R. H., 1973, Soil inorganic polyphosphates of microbial origin, Plant Soil 38: 651.

    CAS  Google Scholar 

  • Greaves, M. P., Webley, D. M., 1965, A study of the breakdown of organic phosphates by micro-organisms from the root region of certain pasture grasses, J. Appl. Bactoriol 28: 454.

    CAS  Google Scholar 

  • Griffith, E. J., 1973, Environmental Phosphorus—An Editorial, in: Environmental Phosphorus Handbook (E. J. Griffith, A. Beeton, J. M. Spencer, D. T. Mitchell, eds.), pp. 683–695, John Wiley and Sons, New York.

    Google Scholar 

  • Halstead, R. L., McKercher, R. B., 1975, Biochemistry and cycling of phosphorus, in: Soil Biochemistry, Vol. 4 (E. A. Paul, A. D. McLaren, eds.), pp. 31–63, Marcel Dekker, New York.

    Google Scholar 

  • Harold, F. M., 1966, Inorganic polyphosphates in biology: Structure, metabolism, and function, Bacteriol. Rev. 30: 772.

    PubMed  CAS  Google Scholar 

  • Hayman, D. S., Mosse, B., 1972, Plant growth responses to vesicular-arbuscular mycorrhiza. III. Increased uptake of labile P from soil, New Phytol. 71: 41.

    Google Scholar 

  • Helyar, K. R., Brown, A. L., 1976, Octan-1-ol extraction of molybdophosphoric acid in the colorimetric determination of orthophosphate, Soil Sci. Soc. Amer. J. 40: 43.

    CAS  Google Scholar 

  • Herbes, S. E., Allen, H. E., Mancy, K. H., 1975, Enzymatic characterization of soluble organic phosphorus in lake water, Science 187: 432.

    PubMed  CAS  Google Scholar 

  • Hesse, P. R., 1973, Phosphorus in lake sediments, in: Environmental Phosphorus Handbook ( E. J. Griffith, A. Beeton, J. M. Spencer, D. T. Mitchell, eds.), pp. 573–583, John Wiley and Sons, New York.

    Google Scholar 

  • Hooper, F. F., 1973, Origin and fate of organic phosphorus compounds in aquatic systems, in: Environmental Phosphorus Handbook ( Hooper, F. F., eds.), pp. 179–201, John Wiley and Sons New York.

    Google Scholar 

  • Hutchinson, G. E., 1957, A Treatise on Limnology, John Wiley and Sons, New York.

    Google Scholar 

  • Huxley, A., 1928, Point Counter Point, Chatto and Windus, London.

    Google Scholar 

  • Irving, G. C. J., Cosgrove, D. J., 1970, Interference by myo-inositol hexaphosphate in inorganic orthophosphate determinations, Anal. Biochem. 36: 381.

    Google Scholar 

  • Irving, G. C. J., Cosgrove, D. J., 1971, Inositol phosphate phosphatases of microbiological origin. Some properties of a partially purified bacterial (Pseudomonas sp.) phytase, Aust. J. Biol. Sci. 24: 547.

    PubMed  CAS  Google Scholar 

  • Irving, G. C. J., Cosgrove, D. J., 1972, Inositol phosphate phosphatases of microbiological origin: The inositol pentaphosphate products of Aspergillus ficuum phytases, J. Bacteriol. 112: 434.

    PubMed  CAS  Google Scholar 

  • Irving, G. C. J., Cosgrove, D. J., 1974, Inositol phosphate phosphatases of microbiological origin. Some properties of the partially purified phosphatases of Aspergillus ficuum NRRL 3135, Aust. J. Biol. Sci. 27: 361.

    PubMed  CAS  Google Scholar 

  • Jenkins, D., Menar, A. B., 1967, The fate of phosphorus in sewage treatment processes,

    Google Scholar 

  • I. Primary sedimentation and activated sludge, SERL Report No. 67-6, University of

    Google Scholar 

  • California, Berkeley.

    Google Scholar 

  • Johannes, R. E. 1964, Uptake and release of dissolved organic phosphorus by representatives of a coastal marine ecosystem, Limnol. Oceanogr. 9: 224.

    Google Scholar 

  • Johnson, L. F., Tate, M. E., 1969, Structure of “phytic acids,” Can. J. Chem. 47: 63.

    CAS  Google Scholar 

  • Jones, J. G., 1972, Studies on freshwater micro-organisms: Phosphatase activity in lakes of differing degrees of eutrophication, J. Ecol. 60: 777.

    CAS  Google Scholar 

  • Jones, O. L., Bromfield, S. M., 1969, Phosphorus changes during the leaching and

    Google Scholar 

  • decomposition of hayed-off pasture plants, Aust. J. Agric. Res. 20: 653.

    Google Scholar 

  • Kardos, L. T., 1964, Soil fixation of plant nutrients, in: Chemistry of the Soil ( F. E. Bear, ed.), pp. 369–394, Reinhold, New York.

    Google Scholar 

  • Kimerle, R. A., Rorie, W., 1973, Low-level phosphorus detection methods, in: Environmental Phosphorus Handbook (E. J. Griffith, A. Beeton, J. M. Spencer, D. T. Mitchell, eds.), pp. 367–379, John Wiley and Sons, New York.

    Google Scholar 

  • Ko, W-H., Hora, F. K., 1970, Production of phospholipases by soil micro-organisms, Soil Sci. 110: 355.

    Google Scholar 

  • Ko, W-H., Lockwood, J. L., 1968, Accumulation and concentration of chlorinated hydrocarbon pesticides by micro-organisms in soil, Can. J. Microbiol. 14: 1075.

    PubMed  CAS  Google Scholar 

  • Kowalenko, C. G., McKercher, R. B., 1971, Phospholipid components extracted from Saskatchewan soils, Can. J. Soil Sci. 51: 19.

    CAS  Google Scholar 

  • Kuenzler, E. J., 1970, Dissolved organic phosphorus excretion by marine phytoplankton, J. Phycol. 6: 7.

    CAS  Google Scholar 

  • Lange, W., Kreuger, B., 1932, Über Ester der Monofluorophosphorsäure, Chem. Ber. 65: 1598.

    Google Scholar 

  • L’Annunziata, M. F., 1975, The origin and transformations of the soil inositol phosphate isomers, Soil Sci. Soc. Amer. Proc. 39: 377.

    Google Scholar 

  • L’Annunziata, M. F., and Fuller, W. H., 1971, Soil and plant relationships of inositol phosphate stereoisomers; the identification of D-chiro- and muco-inositol phosphates in a desert soil and plant system, Soil Sci. Soc. Amer. Proc. 35: 587.

    Google Scholar 

  • L’Annunziata, M. F., Fuller, W. H., Brantley, D. S., 1972, D-chiro-inositol phosphate in a forest soil, Soil Sci. Soc. Amer. Proc. 36: 183.

    Google Scholar 

  • Larsen, S., 1967, Soil phosphorus, in: Advances in Agronomy, Vol. 19 ( A. G. Norman, ed.), pp. 151–210, Academic Press, New York.

    Google Scholar 

  • Lean, D. R. S., 1973, Phosphorus dynamics in lake water, Science 179: 678.

    PubMed  CAS  Google Scholar 

  • Lean, D. R. S., 1975, Phosphorus dynamics in lake water: Contribution by death and decay, Science 187: 455.

    Google Scholar 

  • Lévesque, M., 1969, Characterization of model and soil organic matter metal-phosphate complexes, Can. J. Soil Sci. 49: 365.

    Google Scholar 

  • Lévesque, M., 1970, Contribution de 1’acide fulvique et des complexes fulvo-métalliques à la nutrition minérale des plantes, Can. J. Soil Sci. 50: 385.

    Google Scholar 

  • Levin, G. V., Topol, G. J., Tarnay, A. G., 1975, Operation of full-scale biological

    Google Scholar 

  • phosphorus removal plant, J. Water Pollut. Control Fed. 47: 577.

    Google Scholar 

  • Leyden, D. E., Nonidez, W. K., Carr, P. W., 1975, Determination of parts per billion

    Google Scholar 

  • phosphate in natural waters using X-ray fluorescence spectrometry, Anal. Chem. 47: 1449.

    Google Scholar 

  • Lichtenstein, E. P., 1972, Persistence and fate of pesticides in soils, water, and crops: Significance to humans, in: Pesticide Chemistry, Proceedings 2nd International IUPAC Congress. VI (A. S. Tahori, ed.), pp. 1–22, Gordon & Breach, London.

    Google Scholar 

  • Loewus, F. A., 1974, The biochemistry of myo-inositol in plants, in: Recent Advances in Phytochemistry 8 (V. C. Runeckles, E. E. Conn, eds.), pp. 179–207, Academic Press, New York.

    Google Scholar 

  • Martin, J. K., 1973, The influence of rhizosphere microflora on the availability of 32-P-myo-inositol hexaphosphate phosphorus to wheat, Soil Biol. Biochem. 5: 473.

    CAS  Google Scholar 

  • Martin, J. K., and Cunningham, R. B., 1973, Factors controlling the release of phosphorus from decomposing wheat roots, Aust. J. Biol. Sci. 26: 715.

    CAS  Google Scholar 

  • Martin, J. K., Molloy, L. F., 1971, A comparison of the organic phosphorus compounds extracted from soil, sheep faeces, and plant material collected at a common site, N.Z.J. Agric. Res. 14: 329.

    CAS  Google Scholar 

  • Matsumura, F., 1972, Metabolism of insecticides in microorganisms and insects, in: Environmental Quality and Safety, Vol. 1 ( Matsumura, F., eds.), p. 96, Georg Thieme, Stuttgart.

    Google Scholar 

  • Matsumura, F., Boush, G. M., 1966, Malathion degradation by Trichoderma viride and a Pseudomonas species, Science 153: 1278.

    PubMed  CAS  Google Scholar 

  • Matsumura, F., Boush, G. M., 1971, Metabolism of insecticides by micro-organisms, in: Soil Biochemistry, Vol. 2 (A. D. McLaren, J. Skujins, eds.), pp. 320–336, Marcel Dekker, New York.

    Google Scholar 

  • McKercher, R. B., Anderson, G., 1968, Content of inositol penta- and hexaphosphates in some Canadian soils, J. Soil Sci. 19: 47.

    CAS  Google Scholar 

  • McLaren, A. D., Luse, R. A., Skujins, J. J., 1962, Sterilization of soil by irradiation and some further observations on soil enzyme activity, Soil Sci. Soc. Amer. Proc. 26: 371.

    CAS  Google Scholar 

  • Mehta, N. C, Legg, J. O., Goring, C. A. I., Black, C. A., 1954, Determination of organic phosphorus in soils. I. Extraction method, Soil Sci. Soc. Amer. Proc. 18: 443.

    CAS  Google Scholar 

  • Mick, D. L., Dahm, P. A., 1970, Metabolism of parathion by two species of Rhizobium, J. Econ. Entomol. 63: 1155.

    PubMed  CAS  Google Scholar 

  • Minear, R. A., 1972, Characterization of naturally occurring dissolved organophosphorus compounds, Environ. Sci. Technol. 6: 431.

    CAS  Google Scholar 

  • Minear, R. A., 1975, Phosphorus dynamics in lake water: Contribution by death and decay, Science 187: 454.

    PubMed  CAS  Google Scholar 

  • Mortland, M. M., Raman, K. V., 1967, Catalytic hydrolysis of some organic phosphate

    Google Scholar 

  • pesticides by copper (II), J. Agric. Food Chem. 15: 163.

    Google Scholar 

  • Mosse, B., 1973, Plant growth responses to vesicular-arbuscular mycorrhiza. IV. In soil given additional phosphate, New Phytol. 72: 127.

    Google Scholar 

  • Mosse, B., Hayman, D. S., Arnold, D. J., 1973, Plant growth responses to vesicular-arbuscular mycorrhiza. V. Phosphate uptake by three plant species from P-deficient soils labelled wit 32P, New Phytol. 72: 809.

    CAS  Google Scholar 

  • Moyer, J. R., Thomas, R. L., 1970, Organic phosphorus and inositol phosphates in

    Google Scholar 

  • molecular size fractions of a soil organic matter extract, Soil Sci. Soc. Amer. Proc. 34: 80.

    Google Scholar 

  • Nesbitt, J. B., 1969, Phosphorus removal—the state of the art, J. Water Pollut. Control Fed. 41: 701.

    CAS  Google Scholar 

  • Nesbitt, J. B., 1973, Phosphorus in waste water treatment, in: Environmental Phosphorus Handbook (E. J. Griffith, A. Beeton, J. M. Spencer, D. T. Mitchell, eds.), pp. 649–668, John Wiley and Sons, New York.

    Google Scholar 

  • Nishikawa, S., Kuriyama, M., 1974a, Nucleic acid as a component of mucilage in activated sludge, J. Ferment. Technol. 52: 335.

    CAS  Google Scholar 

  • Nishikawa, S., Kuriyama, M., 1974b, Phytic acid as a component of mucilage in activated sludge, J. Ferment. Technol. 52: 339.

    CAS  Google Scholar 

  • Nørgaard Pedersen, E. J., 1953, On phytin phosphorus in the soil, Plant Soil 4: 252.

    Google Scholar 

  • O’Connor, P. W., Syers, J. K., 1975, Comparison of methods for the determination of

    Google Scholar 

  • total phosphorus in waters containing particulate material, J. Environ. Qual. 4: 347.

    Google Scholar 

  • Omotoso, T. I., Wild, A., 1970, Occurrence of inositol phosphates and other organic

    Google Scholar 

  • phosphate components in an organic complex, J. Soil Sci. 21: 224.

    Google Scholar 

  • Paul, N. B., Sundara Rao, W. V. B., 1971, Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes, Plant Soil 35: 127.

    Google Scholar 

  • Pepper, I. L., Miller, R. H., 1974, Factors influencing the synthesis of inorganic polyphosphates in soils, Trans. 10th Int. Congr. Soil Sci. 4: 290.

    CAS  Google Scholar 

  • Pipes, W. O., 1966, The ecological approach to the study of activated sludge, in: Advances in Applied Microbiology 8 ( W. W. Umbreit, ed.), pp. 77–103, Academic Press, New York

    Google Scholar 

  • Postgate, J. R., 1975, Rhizobium as a free-living nitrogen fixer, Nature (London) 256: 363.

    Google Scholar 

  • Powell, C. LL., 1975, Plant growth responses to vesicular-arbuscular mycorrhiza. VIII. Uptake of P by onion and clover infected with different Endogene spore types in 32P labelled soils, New Phytol. 75: 563.

    Google Scholar 

  • Ramirez Martinez, J. R., 1968, Organic phosphorus mineralization and phosphatase activity in soils, Folia Microbiol. 13: 161.

    CAS  Google Scholar 

  • Rammler, D. H., Parkinson, C, 1973a, Hydrolytic enzyme substrates. III. Phosphomonoesterase substrates, Anal. Biochem. 52: 208.

    PubMed  CAS  Google Scholar 

  • Rammler, D. H., Haugland, R., Shavitz, R., 1973b, Hydrolytic enzyme substrates.

    Google Scholar 

  • I. Chemical synthesis and characterization, Anal. Biochem. 52: 180.

    Google Scholar 

  • Reichardt, W., 1971, Catalytic mobilization of phosphate in lake water and by Cyanophyta, Hydrobiologia 38: 377.

    CAS  Google Scholar 

  • Reichardt, W., Overbeck, J., Steubing, L., 1967, Free dissolved enzymes in lake waters,

    Google Scholar 

  • Nature (London) 216: 1345.

    Google Scholar 

  • Riego, D. C., 1974, Amounts and hydrolysis of pyrophosphate and tripolyphosphate in sediments, Ph. D. Thesis, University of Missouri, Columbia.

    Google Scholar 

  • Rigler, F. H., 1961, The uptake and release of inorganic phosphorus by Daphnia magna Straus, Limnol. Oceanogr. 6: 165.

    CAS  Google Scholar 

  • Rigler, F. H., 1973, A dynamic view of the phosphorus cycle in lakes, in: Environmental Phosphorus Handbook (E. J. Griffith, A. Beeton, J. M. Spencer, D. T. Mitchell, eds.), pp. 539–572, John Wiley and Sons, New York.

    Google Scholar 

  • Rodel, M. G., Armstrong, D. E., 1973, Unpublished observations cited by W. C. Weimer (1973)

    Google Scholar 

  • Roinestad, F. A., Yall, I., 1970, Volutin granules in Zoogloea ramigera, Appl. Microbiol. 19: 973.

    CAS  Google Scholar 

  • Rovira, A. D., 1965, Effects of Azotobacter, Bacillus, and Clostridium on the growth of wheat, in: Plant Microbe Relationships (J. Macura, V. Vancura, eds.), pp. 193–200, Czechoslovakian Academy of Science, Prague.

    Google Scholar 

  • Russell, E. W., 1961, Soil Conditions and Plant Growth, 9th Ed., Longmans, London.

    Google Scholar 

  • Sanders, F. E., and Tinker, P. B., 1971, Mechanism of absorption of phosphate from soil by Endogene mycorrhizas, Nature (London) 233: 278.

    CAS  Google Scholar 

  • Schnitzer, M., Khan, S. U., 1972, Humic Substances in the Environment, Marcel Dekker, New York.

    Google Scholar 

  • Schrader, G., 1952, Die Entwicklunge neuer Insektizide auf Grundlage organischer Fluor- und Phosphor-Verbindungen, Monographic Nr. 62 zu Angewandte Chemie und Chemie-Ingenieur-Technik, Verlag Chemie, Weinheim.

    Google Scholar 

  • Sethunathan, N., Yoshida, T., 1969. Fate of diazinon in submerged soil. Accumulation of

    Google Scholar 

  • hydrolysis product, J. Agric. Food Chem. 17: 1192.

    Google Scholar 

  • Sherman, W. R., Goodwin, S. L., Gunnell, K. D., 1971, neo-Inositol in mammalian tissues. Identification, measurement, and enzymatic synthesis from mannose 6-phosphate, Biochemistry 10: 3491.

    PubMed  CAS  Google Scholar 

  • Shieh, T. R., Ware, J. H., 1968, Survey of micro-organisms for the production of extracellular phytase, Appl. Microbiol. 16: 1348.

    Google Scholar 

  • Sinha, M. K., 1972, Organo-metallic phosphates. IV. The solvent action of fulvic acids on insoluble phosphates, Plant Soil 37: 457.

    CAS  Google Scholar 

  • Skujins, J. J., 1967, Enzymes in soil, in: Soil Biochemistry, Vol. 1 ( A. D. McLaren and J. J. Skujins, eds.), pp. 371–414, Marcel Dekker, New York.

    Google Scholar 

  • Skujins, J. J., Braal, L., McLaren, A. D., 1962, Characterization of phosphatase in a

    Google Scholar 

  • terrestial soil sterilized with an electron beam, Enzymologia 25: 125.

    Google Scholar 

  • Smith, F., Fairbanks, D., Atlas, R., Delwiche, C. C., Gordon, D., Hazen, W., Hitchcock,

    Google Scholar 

  • D., Pramer, D., Skujins, J., Stuiver, M., 1972, Cycles of elements, in: Man in the Living Environment (R. F. Inger, A. D. Hasler, F. H. Bormann, W. F. Blair, eds.), pp. 48–89, University of Wisconsin Press, Madison.

    Google Scholar 

  • Smith, J. H., Allison, F. E., Soulides, D. A., 1961, Evaluation of phosphobacterin as a

    Google Scholar 

  • soil inoculant, Soil Sci. Soc. Amer. Proc. 25: 109.

    Google Scholar 

  • Sommers, L. E., 1971, Organic phosphorus in lake sediments, Ph.D. Thesis, University of

    Google Scholar 

  • Wisconsin, Madison.

    Google Scholar 

  • Sommers, L. E., Harris, R. F., Williams, J. D. H., Armstrong, D. E., and Syers, J. K., 1970, Determination of total organic phosphorus in lake sediments, Limnol. Oceanogr. 15: 301.

    CAS  Google Scholar 

  • Sommers, L. E., Harris, R. F., Williams, J. D. H., Armstrong, D. R, and Syers, J. K., 1972, Fractionation of organic phosphorus in lake sediments, Soil Sci. Soc. Amer. Proc. 36: 51.

    CAS  Google Scholar 

  • Speir, T. W., Ross, D. J., 1975, Effects of storage on the activities of protease, urease, phosphatase, and sulphatase in three soils under pasture, N.Z. J. Sci. 18: 231.

    CAS  Google Scholar 

  • Stevenson, F. J., 1967, Organic acids in soil, in: Soil Biochemistry, Vol. 1 ( A. D. McLaren, G. H. Peterson, eds.), pp. 119–146, Marcel Dekker, New York.

    Google Scholar 

  • Steward, J. H., Tate, M. E., 1969, Gel chromatography of inositol polyphosphates and the avian haemoglobin-inositol pentaphosphate complex, J. Chromatogr. 45: 400.

    PubMed  CAS  Google Scholar 

  • Steward, J. H., and Tate, M. E., 1971, Gel chromatography of soil organic phosphorus, J. Chromatogr. 60: 75.

    CAS  Google Scholar 

  • Strickland, J. D. H., Parsons, T. R., 1960, A manual of sea water analysis, Bull Fish. Res. Board Can. 125: 1.

    Google Scholar 

  • Strickland, J. D. H., Solorzano, L., 1966, Determination of monoesterase hydrolysable phosphate and monoesterase activity in sea water, in: Some Contemporary Studies in Marine Science (H. Barnes, ed.), pp. 665–674, Allen and Unwin, London.

    Google Scholar 

  • Strzelczyk, E., Donerski, W., Lewosz, W., 1972, Occurrence of microorganisms capable of decomposing organic phosphorus compounds in two types of bottom sediments of eutrophic Lake Jeziorak, Acta Microbiol. Pol, Ser. B 4(3): 101.

    CAS  Google Scholar 

  • Swaby, R. J., 1975, Biosuper-biological superphosphate, in: Sulphur in Australasian Agriculture ( K. D. McLachlan, ed.), pp. 213–220, Sydney University Press, Sydney, Australia.

    Google Scholar 

  • Swaby, R. J., 1976, Unpublished observations.

    Google Scholar 

  • Syers, J. K., Harris, R. F., Armstrong, D. E., 1973, Phosphate chemistry in lake sediments, J. Environ. Qual. 2: 1.

    CAS  Google Scholar 

  • Tabatabai, M. A., Bremner, J. M., 1969, Use of p-nitrophenyl phosphate for assay of soil phosphatase activity, Soil Biol. Biochem. 1: 301.

    CAS  Google Scholar 

  • Thilo, E., 1962, Condensed phosphates and arsenates, in: Advances in Inorganic Chemistry and Radiochemistry, Vol. 4 ( H. J. Emeleus, A. G. Sharpe, eds.), pp. 1–75, Academic Press, New York.

    Google Scholar 

  • Thomas, R. L., 1976, Unpublished observations.

    Google Scholar 

  • Thomas, R. L., Bowman, B. T., 1966, The occurrence of high molecular weight organic phosphorus compounds in soil, Soil Sci. Soc. Amer. Proc. 30: 799.

    CAS  Google Scholar 

  • Vacker, D., Connell, C. H., Wells, W. N., 1967, Phosphate removal through municipal wastewater treatment at San Antonio, Texas, J. Water Pollut. Control Fed. 39: 750.

    CAS  Google Scholar 

  • Veinot, R. L., Thomas, R. L., 1972, High molecular weight organic phosphorus complexes in soil organic matteninositol and metal content of various fractions, Soil Sci. Soc. Amer. Proc. 36: 71.

    CAS  Google Scholar 

  • Watt, W. D., Hayes, F. R., 1963, Tracer study of the phosphorus cycle in sea water,

    Google Scholar 

  • Limnol. Oceanogr. 8: 276.

    Google Scholar 

  • Weimer, W. C., 1973, Inositol phosphate esters in lake sediments, Ph.D. Thesis, University of Wisconsin, Madison.

    Google Scholar 

  • Westland, A. D., Boisclair, L, 1974, Analytical separation of phosphate from natural water by ion exchange, Water Res. 8: 467.

    CAS  Google Scholar 

  • Wild, A., Oke, O. L., 1966, Organic phosphate compounds in calcium chloride extracts of soils:Identification and availability to plants, J. Soil Sci. 17: 356.

    CAS  Google Scholar 

  • Williamson, B., Alexander, I. J., 1975, Acid phosphatase localized in the sheath of beech mycorrhiza, Soil Biol. Biochem. 7: 195.

    CAS  Google Scholar 

  • Yall, L, Sinclair, N. A., 1971, Mechanisms of biological luxury phosphate uptake, Water Pollution Control Research Series, Project No. 17010DDQ, Report for the U.S. Environmental Protection Agency.

    Google Scholar 

  • Yall, I., Boughton, W. H., Roinestad, F. A., Sinclair, N. A., 1972, Logical removal of phosphorus, Progr. Water Technol. 1: 231.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Cosgrove, D.J. (1977). Microbial Transformations in the Phosphorus Cycle. In: Alexander, M. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8219-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8219-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8221-2

  • Online ISBN: 978-1-4615-8219-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics