Skip to main content

Second and Third Generation Cholinesterase Inhibitors: From Preclinical Studies to Clinical Efficacy

  • Conference paper
Alzheimer Disease

Part of the book series: Advances in Alzheimer Disease Therapy ((AADT))

Abstract

Four main pharmacological effects of cholinesterase inhibitors (ChEI) constitute the theoretical basis for therapy of Alzheimer disease (AD): 1) functional improvement of central cholinergic synapses mediated through muscarinic and nicotinic mechanisms (Summers et al., 1994; Cuadra et al., 1994); 2) protection against neuronal degeneration mediated through nicotinic receptor activation (Janson and Moller, 1993; Sjak-shie et al., 1990); 3) modification of amyloid precursor protein (APP) processing mediated through muscarinic M1 receptor activation (Nitsch et al., 1993; Buxbaum et al., 1992); and 4) regional enhanced synthesis of neurotrophic molecules [nerve growth factor (NGF) and brain derived nerve factor (BDNF)] via muscarinic receptor stimulation (Lindfors et al., 1992; Berzaghi et al., 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alhainen K (1992): Anticholinesterase drug, tacrine, in Alzheimer’s disease. Discrimination of responders and nonresponders. Neurologia klinikian julkaisusarja; Series of Reports, No. 27. Department of Neurology, University of Kuopio, Finland, p. 78.

    Google Scholar 

  • Arendt T, Bruckner MK, Lange M and Bigl V (1992): Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development–a study of molecular forms. Neurochem Int 21 (3): 381–396.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin HA, De Souza RI, Sarna GS, Murray TK, Green AR and Cross AJ (1991): Measurements of tacrine and monoamines in brain by in vivo microdialysis argue against release of monoamines by tacrine at therapeutic doses. Brit J Pharmacol 103: 1946–1950.

    CAS  Google Scholar 

  • Beani L, Tanganelli S, Antonelli T and Bianchi C (1986): Noradrenergic modulation of cortical acetylcholine release is both direct and y-aminobutyric acid-mediated. J Pharmacol Exp Ther 236: 230–236.

    PubMed  CAS  Google Scholar 

  • Becker R and Giacobini E (1988a): Mechanisms of cholinesterase inhibition in senile dementia of the Alzheimer type: clinical, pharmacological and therapeutic aspects. Drug Dey Res 12: 163–195.

    Article  CAS  Google Scholar 

  • Becker R and Giacobini E (19886): Pharmacokinetics and pharmacodynamics of acetyicholinesterase inhibition: can acetylcholine levels in teh brain be improved in Alzheimer’s disease? Drug Dey Res 14: 235–246.

    Google Scholar 

  • Becker R, Colliver J, Elble R, Feldman E, Giacobini E et al (1990): Effects of metrifonate, a long-acting cholinesterase inhibitor, in Alzheimer disease: report of an open trial. Drug Dey Res 19: 425–434.

    Article  Google Scholar 

  • Becker R, Moriearty P and Unni L (1991): The second generation of cholinesterase inhibitors: clinical and pharmacological effects. In: Cholinergic Basis for Alzheimer Therapy, Becker RE and Giacobini E, eds. Boston: Birkhauser, pp. 263–296.

    Google Scholar 

  • Beninger RJ (1983): The role of dopamine in locomotor activity and learning. Brain Res Rev 6: 173–196.

    Article  CAS  Google Scholar 

  • Berzaghi M, Cooper J, Castren E, Zafra F, Sofroniew M, Thoenen H and Lindholm D (1993): Cholinergic regulation of brain-derived neurotrophic factor and nerve growth factor but not neurotrophin-3 mRNA levels in the developing rat hippocampus. J Neurosci 13: 3818–3826.

    CAS  Google Scholar 

  • Buxbaum JD, Oishi M, Chen HI, Pinkas-Kramarski R, Jaffe EA, Gandy SE and Greengard P (1992): Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer Ăź/A4 amyloid protein precursor. Proc Natl Acad Sci USA 89: 10075–10078.

    Article  PubMed  CAS  Google Scholar 

  • Carson KA, Geula C and Mesulam M-M (1991): Electron microscopic localization of cholinesterase activity in Alzheimer’s brain tissue. Brain Res 540: 204–208.

    Article  PubMed  CAS  Google Scholar 

  • Cuadra G, Summers K and Giacobini E (1994): Cholinesterase inhibitors effects on neurotransmitters in rat cortex in vivo. J Pharmacol Exptl Therapeutics 270: (In Press).

    Google Scholar 

  • Davis KL, Thai U, Gamzu ER, Davis CS, Woolson RF, Gracon SI, Drachman DA, Schneider LS, Whitehouse PJ, Hoover TM, Morris JC, Kawas CH, Knopman DS, Earl NL, Kumar V and Doody RS (1992): A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer’s disease. New Engl J Med 327: 1253–1259.

    Article  PubMed  CAS  Google Scholar 

  • Day J and Fibiger HC. (1992): Dopaminergic regulation of cortical acetylcholine release. Synapse 12: 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Decker MW and McGaugh JL (1991): The role of interactions between cholinergic system and other neuromodulatory systems in learning and memory. Synapse 7: 151–168.

    Article  PubMed  CAS  Google Scholar 

  • DeSarno P, Pomponi M, Giacobini E, Tang XC and Williams E (1989): The effect of heptyl-physostimgine, a new cholinesterase inhibitor, on the central cholinergie system of the rat. Neurochemical Res 14(10):971–977.

    Article  CAS  Google Scholar 

  • Eagger S, Morant N, Levy R and Sahakian B (1992): Tacrine in Alzheimer’s disease–time course of changes in cognitive function and practice effects. Brit J Psychiatry 160: 36–40.

    Article  CAS  Google Scholar 

  • Farlow M, Gracon S, Hershey LA, Lewis KW, Sadowsky CH and Dolan-Ureno J (1992): A controlled trial of tacrine in Alzheimer’s disease. J Amer Med Assoc 268: 2523–2529.

    Article  CAS  Google Scholar 

  • Gauthier S, Bouchard R, Lamontagne A, et al (1990): Tetrahydroaminoacridine-lecithin combination treatment in patients with intermediate-stage Alzheimer’s disease. New Engl J Med 322: 1272–1276.

    Article  PubMed  CAS  Google Scholar 

  • Giacobini E (1959): The distribution and localization of cholinesterases in nerve cells. Academic dissertation. Acta Physiol Scand 45 (Suppl 156): 1–45.

    CAS  Google Scholar 

  • Giacobini E (1991): The second generation of cholinesterase inhibitors: pharmacological aspects. In: Cholinergic Basis for Alzheimer Therapy, Becker RE and Giacobini E, eds. Boston: Birkhauser, pp. 247–262.

    Google Scholar 

  • Giacobini E (1993): Pharmacotherapy of Alzheimer’s disease: new drugs and novel strategies. In: Alzheimer’s Disease: Advances in Clinical and Basic Research, Corain B, Iqbal K, Nicolini M, Winblad B, Wisniewski H and Zatta P, eds. John Wiley & Sons Ltd., New York, pp. 529–538.

    Google Scholar 

  • Hardy J, Adolfsson R, Alafuzoff I, Bucht G, Marcusson J, Nyberg P, Perdahl E, Wester P and Winblad B (1985): Transmitter deficits in Alzheimer’s disease. Neurochem Int 7: 545–563.

    Article  PubMed  CAS  Google Scholar 

  • Janson AM and Moller A (1993): Chronic nicotine treatment counteracts nigral cell loss induced by a partial mesiodiencephalic hemitransection: an analysis of the total number and mean volume of neurons and glia in substantia nigra of the male rat. Neuroscience 57 (4): 931–941.

    Article  PubMed  CAS  Google Scholar 

  • Knapp MJ, Knopman DS, Solomon PR, Pendlebury WW, Davis CS and Gracon SI (1994): A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. Journal Amer Med Assoc 271 (13): 985–991.

    Article  CAS  Google Scholar 

  • Kosasa T, Yamanishi Y, Ogura H and Yamatsu K (1990): Effect of E2020 on the extracellular level of acetylcholine in the rat cerebral cortex measured by microdialysis without addition of cholinesterase inhibitor. Eur J Pharmacol 183: 19–36.

    Article  Google Scholar 

  • Lindfors N, Ernfors P, Falkenberg T and Persson H (1992): Septal cholinergic afferents regulate expression of brain-derived neurotrophic factor and beta-nerve growth factor mRNA in rat hippocampus. Exp Brain Res 88: 78–90.

    Article  Google Scholar 

  • McGaugh JL, Introini-Collison I and Decker MW (1992). Interaction of hormones and neurotransmitters in the modulation of memory storage. In: Memory Function and Aging-Related Disorders, Morley JE, Coe RM, Strong R and Grossberg GT, eds. New York: Springer Publishing Company, pp. 37–64.

    Google Scholar 

  • Messamore E, Ogane N and Giacobini E (1993a): Cholinesterase inhibitor effects on extracellular acetylcholine in rat striatum. Neuropharmacology 32 (3): 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Messamore E, Warpman U, Ogane N and Giacobini E (1993b): Cholinesterase inhibitor effects on extracellular acetylcholine in rat cortex. Neuropharmacology 32 (8): 745–750.

    Article  PubMed  CAS  Google Scholar 

  • Messamore E, Warpman U, Williams E and Giacobini E (1993c): Muscarinic receptors mediate attenuation of extracellular acetylcholine levels in rat cerebral cortex after cholinesterase inhibition. Neuroscience Letters 158: 205–208.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam M-M and Geula C (1988): Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 275: 216–240.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam M-M and Geula C (1991): Cortical cholinesterases in Alzheimer’s disease: anatomical and ezymatic shifts from the normal pattern. In: Cholinergic Basis for Alzheimer Therapy, Becker RE and Giacobini E, eds. Birkhauser Boston, pp. 25–30.

    Google Scholar 

  • Moroni F, Tanganelli S, Antonelli T, Carla V, Bianchi C and Beani L (1983): Modulation of cortical acetylcholine and gamma-aminobutyric acid release in freely moving guinea pigs: effects of clonidine and other adrenergic drugs. J Pharmacol Exp Ther 236: 230–236.

    Google Scholar 

  • Nitsch RM, Farber SA, Growdon JH and Wurtman RJ (1993): Release of amyloid 3-protein precursor derivatives by electrical depolarization of rat hippocampal slices. Proc Natl Acad Sci USA 90: 5191–5193.

    Article  PubMed  CAS  Google Scholar 

  • Ogane N, Giacobini E and Messamore E (1992a): Preferential inhibition of acetylcholinesterase molecular forms in rat brain. Neurochemical Res. 17 (5): 489–495.

    Article  CAS  Google Scholar 

  • Ogane N, Giacobini E and Struble R (1992b): Differential inhibition of acetylcholinesterase molecular forms in normal and Alzheimer disease brain. Brain Research 589: 307–312.

    Article  PubMed  CAS  Google Scholar 

  • Parnavelas JG (1990): Neurotransmitters in the cerebral cortex. In: Progress in Brain Research, Vol. 85, Uylings HBM, Van Eden CG, De Bruin JPC, Corner MA and Feenstra MGP, eds., Netherlands: Elsevier, pp. 13–29.

    Google Scholar 

  • Santucci AC, Haroutunian V and Davis KL (1991): Pharmacological alleviation of combined cholinergic/noradrenergic lesion-induced memory deficits in rats. Clin Neuropharmacol14:1–8.

    Article  Google Scholar 

  • Sjak-shie NN, Burks JN and Meyer EM (1990): Long-term actions on nicotinic receptor stimulation in nucleus basalis lesioned rats: blockade of trans-synaptic cell loss. In: Advances in Behavioral Biology, Vol. 2, Nagatsu T, Fisher A and Yoshida M, eds. New York: Plenum Press, pp. 471–475.

    Google Scholar 

  • Summers KL, Cuadra G, Naritoku D and Giacobini E (1994): Effects of nicotine levels on acetylcholine and biogenic amines in rat cortex. Drug Dev Res 31: 108–119.

    Article  CAS  Google Scholar 

  • Thal LJ, Maasur DM, Fuld PA, Sharpless NS and Davies P (1983): Memory improvement with oral physostigmine and lecithin in Alzheimer’s disease. In: Banbury Report: Biological Aspects of Alzheimer’s Disease, Vol. 15, Katzman R, ed. Cold Spring Harbor, pp. 461–469.

    Google Scholar 

  • Tucek S (1993): Short-term control of the synthesis of acetylcholine. Prog Biophys Molec Biol 60: 59–69.

    Article  CAS  Google Scholar 

  • Vizi ES (1980): Modulation of cortical release of acetylcholine by noradrenaline released from nerves arising from the rat locus coeruleus. Neuroscience 5: 2139–2144.

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1978): Catecholamine theories of reward: a critical review. Brain Res 152: 215–247.

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Nakamura Y, Yamamoto T, Natori K, Irie T, Utsumi H and Kato T (1991): Determination of basal acetylcholine release in vivo by rat brain dialysis with a U-shaped cannula: Effect of SM-10888, a putative therapeutic drug for Alzheimer’s disease. Neurosci Lett 123: 179–182.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Boston

About this paper

Cite this paper

Giacobini, E., Cuadra, G. (1994). Second and Third Generation Cholinesterase Inhibitors: From Preclinical Studies to Clinical Efficacy. In: Giacobini, E., Becker, R.E. (eds) Alzheimer Disease. Advances in Alzheimer Disease Therapy. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-8149-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8149-9_28

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-8151-2

  • Online ISBN: 978-1-4615-8149-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics