Skip to main content

IMP Dehydrogenase and GTP as Targets in Human Leukemia Treatment

  • Chapter
Purine and Pyrimidine Metabolism in Man VII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 309B))

Abstract

GTP has multi-faceted cellular functions. Apart from its role in metabolism, in biosynthesis of RNA, proteins, biopterins, UTP and tubulin, GTP is an intricate part of signal transduction mechanisms, production of c-GMP and adenylates, G-protein action and expression of ras oncogene family. Guanylates are indispensable in DNA biosynthesis, since from GDP dGDP is formed and then dGTP, which is rate-limiting as it is the smallest pool among the dNTPs1,2 (Fig. 1). Curtailing GTP and dGTP pools is an important chemotherapeutic objective. GTP de novo biosynthesis is governed by IMP dehydrogenase (EC 1.1.1.205), the rate-limiting enzyme1,2. GTP pools are influenced by the activity of GPRT (guanine-hypoxanthine phosphoribosyltransferase, EC 2.4.2.8), the salvage enzyme, which can recycle guanine to GMP in one step. The significance of GTP in cancer biochemistry and chemotherapy was highlighted by the discovery that IMP dehydrogenase activity increased in a transformation- and progression-linked fashion in rat hepatomas of different growth rates1,2. IMP dehydrogenase activity increased in all murine and 4 human cancer cell lines and was particularly high in rapidly proliferating neoplastic cells such as leukemic cells1–3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Weber, Biochemical strategy of cancer cells and the design of chemotherapy: G.H.A. Clowes Memorial Lecture, Cancer Res. 43: 3466 (1983).

    CAS  PubMed  Google Scholar 

  2. R. C. Jackson, H. P. Morris and G. Weber, IMP dehydrogenase: A proliferation and malignancy-linked enzyme, Nature 256: 331 (1975).

    Article  CAS  PubMed  Google Scholar 

  3. G. Weber, N. Prajda and R. C. Jackson, Key enzymes of IMP metabolism: Transformation-and proliferation-linked alterations in gene expression, Advan. Enzyme Regul. 14:3 (1976).

    Article  CAS  Google Scholar 

  4. G. Weber, M. Nagai, Y. Natsumeda, H. Nakamura, J. N. Eble, H. N. Jayaram, W. Zhen, E. Paulik, R. Hoffman and G. Tricot, Regulation of de novo and salvage pathways, Advan. Enzyme Regul. 31:45 (1991).

    Article  Google Scholar 

  5. G. J. Tricot, H. N. Jayaram, E. Lapis, Y. Natsumeda, Y. Yamada, C. R. Nichols, P. Kneebone, N. Heerema, G. Weber and R. Hoffman, Biochemically directed therapy of leukemia with tiazofurin, a selective blocker of IMP dehydrogenase activity, Cancer Res. 49: 3696 (1989).

    PubMed  CAS  Google Scholar 

  6. G. Tricot, H. N. Jayaram, G. Weber and R. Hoffman, Tiazofurin: Biological effects and clinical uses, Intl. J. Cell Cloning 8:161 (1990).

    Article  CAS  Google Scholar 

  7. R. K. Robins, Nucleoside and nucleotide inhibitors of inosine monophosphate (IMP) dehydrogenase as potential antitumor inhibitors, Nucleosides and Nucleotides 1: 35 (1982).

    Article  CAS  Google Scholar 

  8. H. N. Jayaram, Biochemical mechanisms of resistance to tiazofurin, Advan. Enzyme Regul. 24:67 (1986).

    Article  Google Scholar 

  9. Y. Yamada, Y. Natsumeda, Y. Yamaji and G. Weber, Kinetic properties and TAD inhibition of IMP dehydrogenase in leukemic leukocytes, Leukemia Res. 13: 179 (1989).

    Article  CAS  Google Scholar 

  10. H. N. Jayaram, K. Pillwein, C. R. Nichols, R. Hoffman and G. Weber, Selective sensitivity to tiazofurin of human leukemic cells, Biochem. Pharmacol. 35:2029 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. G. Weber, H. N. Jayaram, E. Lapis, Y. Natsumeda, Y. Yamada, Y. Yamaji, G. J. Tricot and R. Hoffman, Enzyme-pattern-targeted chemotherapy in human leukemia, Advan. Enzyme Requl. 27:405 (1988).

    Article  CAS  Google Scholar 

  12. G. Weber, M. Nagai, Y. Natsumeda, J. N. Eble, H. N. Jayaram, E. Paulik, W. Zhen, R. Hoffman and G. Tricot, Tiazofurin down-regulates expression of c-Ki-ras oncogene in a leukemic patient, Cancer Commun. 3: 51 (1991).

    CAS  Google Scholar 

  13. E. Olah, Y. Natsumeda, T. Ikegami, Z. Kote, M. Horanyi, J. Szelenyi, E. Paulik, T. Kremmer, S. R. Hollan, J. Sugar and G. Weber, Induction of erythroid differentiation and modulation of gene expression by tiazofurin in K-562 leukemia cells, Proc. Natl. Acad. Sci. U.S.A. 85:6533 (1988).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. M. Nagai, Y. Natsumeda and G. Weber, Tiazofurin action in HL-60 cells, Submitted for publication (1991).

    Google Scholar 

  15. E. Olah, Z. Kote, Y. Natsumeda, Y. Yamaji, G. Jarai, E. Lapis, I. Financsek and G. Weber, Down-regulation of c-myc and c-Ha-ras gene expression by tiazofurin in rat hepatoma cells, Cancer Biochem. Biophys. 11:107 (1990).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Weber, G. (1991). IMP Dehydrogenase and GTP as Targets in Human Leukemia Treatment. In: Harkness, R.A., Elion, G.B., Zöllner, N. (eds) Purine and Pyrimidine Metabolism in Man VII. Advances in Experimental Medicine and Biology, vol 309B. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7703-4_64

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7703-4_64

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-7705-8

  • Online ISBN: 978-1-4615-7703-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics