Skip to main content

An Information Theory of Line Shape in Nuclear Magnetic Resonance

  • Conference paper
Magnetic Resonance

Abstract

A method is described for finding the actual line shape of an absorption line, or the Bloch decay, in nuclear magnetic resonance, given only a limited number of moments of the line. The line shape found is the most probable one, given the information available. If only the second moment is known, for example, the most probable line shape is gaussian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Bloch, W.V. Hansen and M. Packard, Phys. Rev. 70 460, 474 (1946).

    Article  CAS  Google Scholar 

  2. I.J. Lowe and R.E. Norberg, Phys. Rev. 107, 46 (1975)

    Article  Google Scholar 

  3. A. Abragam, The Principles of Nuclear University Press, 1961.

    Google Scholar 

  4. L.J.F. Broer, Physica 10, 801 (1943).

    Article  Google Scholar 

  5. J.H. Van Vleck, Phys. Rev. 74, 1168 (1949).

    Article  Google Scholar 

  6. P.I. Richards, Manual of Mathematical Pergamon, Oxford, 1959, p. 286.

    Google Scholar 

  7. J.G. Powles and J.H. Strange, Proc. Phys. Soc. 82, 6–15 (1963).

    Article  CAS  Google Scholar 

  8. G.E. Pake, J. Chem. Phys. 16, 327 (1948).

    Article  CAS  Google Scholar 

  9. E.R. Andrew and R. Bersohn, J. Chem. Phys. 18, 159 (1950).

    Article  CAS  Google Scholar 

  10. R. Bersohn and H.S. Gutowsky, J. Chem. Phys. 22, 651 (1954).

    Article  CAS  Google Scholar 

  11. S. Clough and I.R. McDonald, Proc. Phys. Soc. 86, 833 (1965).

    Article  CAS  Google Scholar 

  12. W.A.B. Evans and J.G. Powles, Physics Letters 24A, 218 (1967)

    Google Scholar 

  13. P. Borckmans and D. Walgraeff, Phys. Rev. 167, 167 (1968).

    Article  Google Scholar 

  14. E.g. A. Katz, Principles of Statistical Mechanics: the information theory approach,Freeman, 1967, especially p. 84.

    Google Scholar 

  15. H. Jeffries, The Theory of Probability, Oxford University Press, 1961.

    Google Scholar 

  16. E.T. Whittaker and G.N. Watson, Modern Analysis, Cambridge, 1946, pp. 346–347.

    Google Scholar 

  17. M. Abramovitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, 1965.

    Google Scholar 

  18. C.R. Bruce, Phys. Rev. 107, 43 (1957).

    Article  CAS  Google Scholar 

  19. R.E. Norberg, private communication.

    Google Scholar 

  20. G.E. Pake, J. Chem. Phys. 16, 327 (1948).

    Article  CAS  Google Scholar 

  21. B. Pederson and D.F. Holcomb, J. Chem. Phys. 38, 61 (1963).

    Article  Google Scholar 

  22. J.W. McGrath, A.A. Silvidi and J.C. Carroll, J. Chem. Phys. 31, 1444 (1959).

    Article  CAS  Google Scholar 

  23. D.F. Holcomb and B. Pederson, J. Chem. Phys. 38, 61 (1963).

    Article  Google Scholar 

  24. J. Itoh, R. Kusaka, Y. Yamagata, R. Kiriyama and H. Ibamoto, J. Phys. Soc. Japan 8, 393 (1953).

    Google Scholar 

  25. H.S. Gutowsky, G.B. Kistiakowsky, G.E. Pake and E.M. Purcell, J. Chem. Phys. 17, 972 (1949).

    Article  CAS  Google Scholar 

  26. P.W. Anderson and P.R. Weiss, Rev. Mod. Phys. 73, 679 (1953).

    Google Scholar 

  27. J.G. Powles and B.I. Hunt, Proc. Phys. Soc. 88, 513 (1966).

    Article  Google Scholar 

  28. R. Bersohn and T.P.Das, Phys. Rev. 130, 98 (1963).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this paper

Cite this paper

Powles, J.G., Carazza, B. (1970). An Information Theory of Line Shape in Nuclear Magnetic Resonance. In: Coogan, C.K., Ham, N.S., Stuart, S.N., Pilbrow, J.R., Wilson, G.V.H. (eds) Magnetic Resonance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7373-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7373-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7375-3

  • Online ISBN: 978-1-4615-7373-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics