Skip to main content

Physical Phenomena Induced by Passage of Intense Electromagnetic Pulses (Including CO2 Lasers) through the Atmosphere

  • Chapter
Laser Interaction and Related Plasma Phenomena

Abstract

The electron fluid equations are combined with Maxwell’s equations to investigate the physical phenomena that occurs when short, intense electromagnetic pulses (including the CO2 laser pulse) interact with the atmosphere. The phenomena of “tailed erosion” occurs when the pulse intensity exceeds the air-breakdown threshold. In some cases, the erosion of the pulse occurs first in the middle of the pulse and then occurs in the tail of the pulse. In addition, we discovered that the amount of the energy that a pulse carries through the atmosphere is independent of whether it is propagating vertically upward from the Earth’s surface or vertically downward toward the Earth’s surface, provided the distance the pulse travels is the same for both directions of the propagation.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. Kroll and K. M. Watson, Phys. Rev. A, Vol. 5, No. 4, p. 1883 (1972).

    Article  MathSciNet  Google Scholar 

  2. A. D. MacDonald, Microwave Breakdown in Gases, (Wiley, New York, 1966), pp. 160–186.

    Google Scholar 

  3. P. Felsenthal and J. M. Proud, Phys. Rev. 139, A1796 (1965).

    Article  Google Scholar 

  4. W. W. Scharfman, W. C. Taylor, and T. Morita, Research Study of Micro wave Breakdown of Air at High Altitudes, AFCRL-62–732, SRI Project No. 3345, Contract AF 19 (601)-7367, SRI International, Menlo Park, California (August 1962).

    Google Scholar 

  5. G. Bekefi, Principles of Laser Plasmas, (Wiley, New York, 1976), p. 457.

    Google Scholar 

  6. A. W. Ali and T. Coffey, On the Microwave Interaction with Matter and Microwave Breakdown of Air, Naval Research Laboratory, Washington, D.C., NRL Report 4320 (1980).

    Google Scholar 

  7. F. W. Perkin and R. G. Roble, J. Geophys. Res. 83, 1611 (1978).

    Article  Google Scholar 

  8. S. G. Brown, Basic Data of Plasma Physics, (Cambridge, Massachusetts, MIT Press, 1966).

    Google Scholar 

  9. J. W. Gallagher, E. C. Beaty, J. Dutton, and L. C. Pitchford, J. Phys. Chem. Ref. Data. 12, 109 (1983).

    Article  Google Scholar 

  10. J. H. Yee, “Propagation of Short, Intense Microwave Pulses in the Atmosphere and the Microwave Breakdown Threshold,” Conference Record — Abstracts 1984 IEEE International Conference on Plasma Science (IEEE Nuclear and Plasma Science Society, St. Louis, Missouri, 1984), p. 108.

    Google Scholar 

  11. J. H. Yee, R. A. Alvarez, D. J. Mayhall, and J. D. DeGroot, Theory of Short, Intense Electromagnetic Pulse Propagation Through Atmosphere, Lawrence Livermore National Laboratory, Livermore, California, UCRL-91622, Rev. 2 (1985), to be published in The Physics of Fluids.

    Google Scholar 

  12. B. Goldstein and C. Longmire, Mission Research Corporation, Santa Barbara, California, private communication (1984).

    Google Scholar 

  13. C. Yee and R. Johnston, Science Application, Inc., Los Altos, California, private communication (1984).

    Google Scholar 

  14. J. H. Yee, R. A. Alvarez, D. J. Mayhall, N. K. Madsen, and H. S. Cabayan, Dynamic Characteristic of Intense Short Microwave Propagation in an Atmosphere, Lawrence Livermore National Laboratory, Livermore, California, UCRL-88711, Rev. 1, (1983).

    Google Scholar 

  15. R. J. Briggs and S. Yu, Modeling Beam Front Dynamics on Low Gas Pres sures, Lawrence Livermore National Laboratory, Livermore, California, UCID-19399 (1982).

    Book  Google Scholar 

  16. A. G. Englehartdt, A. V. Phelps, and C. G. Risk, Phys. Rev. 135, A1566 (1966).

    Article  Google Scholar 

  17. J. P. Bromberg, J. Chem. Phys. 52, 1243 (1970).

    Article  Google Scholar 

  18. C. L. Longmire, Mission Research Corporation, Santa Barbara, California, private communication (1983).

    Google Scholar 

  19. R. A. Alvarez, D. L. Birx, D. P. Byrne, E. J. Lauer, and D. J. Scalapino, Particle Accelerators 125 (1981).

    Google Scholar 

  20. C. L. Yee and A. W. Ali, Microwave Energy Deposition, Breakdown and Heating of Nitrogen and Air, Naval Research Laboratory, Washington, D.C., NRL Memorandum Report 4617 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Yee, J.H., Mayhall, D.J., Alvarez, R. (1986). Physical Phenomena Induced by Passage of Intense Electromagnetic Pulses (Including CO2 Lasers) through the Atmosphere. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7335-7_65

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7335-7_65

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7337-1

  • Online ISBN: 978-1-4615-7335-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics