Skip to main content

M Currents

  • Chapter
Ion Channels

Abstract

The M-current story began with some speculative and enjoyable experiments with Paul Adams in his laboratory at the Department of Physiology and Biophysics, UTMB, Galveston, Texas. We were trying to understand the voltage sensitivity of the apparent increase in membrane resistance, and the repetitive firing, produced by muscarine in sympathetic ganglia which Andy Constanti and I had noted in some tests on rat sympathetic neurons (Brown and Constanti, 1980). Kuba and Koketsu (1976) had previously noted a similar voltage sensitivity to the component of decreased conductance seen during the slow epsp in frog ganglia, but their explanation that acetylcholine inhibited the delayed rectifier seemed unlikely to us because muscarine did not prolong the action potential and its action differed radically from that of tetraethylammonium. Membrane currents induced by muscarine are small and require high-amplitude, low-noise voltage-clamp recording. Under these conditions we were immediately struck by the prominent time-dependent relaxations during voltage steps applied in the resting state and their disappearance in muscarine solution—the inverse of the situation seen with nicotinic agonists, where voltage-dependent current relaxations appear only during agonist application (Adams, 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P. R., 1975, Kinetics of agonist conductance changes during hyperpolarization at frog endplates, Br. J. Pharmacol. 53:308–310.

    PubMed  CAS  Google Scholar 

  • Adams, P. R., 1982, Voltage-dependent conductances of vertebrate neurones, Trends Neurosci. 5:116–119.

    Google Scholar 

  • Adams, P. R., and Brown, D. A., 1980, Luteninizing hormone-releasing factor and muscarinic agonists act on the same voltage-sensitive K+-current in bullfrog sympathetic neurones, Br. J. Pharmacol 68:353–355.

    PubMed  CAS  Google Scholar 

  • Adams, P. R., and Brown, D. A., 1982, Synaptic inhibition of the M-current: Slow excitatory post-synaptic potential mechanism in bullfrog sympathetic neurones, J. Physiol. (London) 332:263–272.

    CAS  Google Scholar 

  • Adams, P. R., and Brown, D. A., 1986, Effects of phorbol ester on slow potassium currents of bullfrog ganglion cells, Biophys.J. 49:215a.

    Google Scholar 

  • Adams, P. R., and Lancaster, B., 1985, Components of Ca-activated K-current in rat hippocampal neurones invitro, J. Physiol. (London) 362:23P.

    Google Scholar 

  • Adams, P. R., Brown, D. A., and Halliwell, J. V., 1981, Cholinergic regulation of M-current in hippocampal pyramidal cells, J. Physiol. (London) 317:29–30P.

    Google Scholar 

  • Adams, P. R., Brown, D. A., and Constanti, A., 1982a, M-currents and other potassium currents in bullfrog sympathetic neurones, J. Physiol. (London) 330:537–642.

    CAS  Google Scholar 

  • Adams, P. R., Brown, D. A., and Constanti, A., 1982b, Pharmacological inhibition of the Mcurrent, J. Physiol. (London) 332:223–262.

    CAS  Google Scholar 

  • Adams, P. R., Constanti, A., Brown, D. A., and Clark, R. B., 1982c, Intracellular Ca2+ activates a fast voltage sensitive K+ current in vertebrate sympathetic neurones, Nature 296:746–749.

    PubMed  CAS  Google Scholar 

  • Adams, P. R., Brown, D. A., and Jones, S. W., 1983, Substance P inhibits the M-current in bullfrog sympathetic neurones, Br. J. Pharmacol. 79:330–333.

    PubMed  CAS  Google Scholar 

  • Akasu, T., 1981, Voltage-clamp analysis of muscarinic effects on action potentials in sympathetic ganglion cells of bullfrogs, Neurosci. Lett.Suppl. 6:559.

    Google Scholar 

  • Akasu, T., and Koketsu, K., 1981, Modulation of voltage-dependent currents by muscarinic receptor in sympathetic neurones of bullfrog, Neurosci. Lett. 29:41–45.

    Google Scholar 

  • Akasu, T., Hirai, K., and Koketsu, K., 1983a, Modulatory actions of ATP on membrane potentials of bullfrog sympathetic ganglion cells, Brain Res. 358:313–317

    Google Scholar 

  • Akasu, T., Nishimura, T., and Koketsu, K., 1983b, Substance P inhibits the action potentials in bullfrog sympathetic ganglion cells, Neurosci. Lett. 41:161–166.

    PubMed  CAS  Google Scholar 

  • Akasu, T., Gallagher, J. P., Koketsu, K., and Shinnick-Gallagher, P., 1984, Slow excitatory postsynaptic currents in bullfrog sympathetic neurones, J. Physiol. (London) 351:583–593.

    CAS  Google Scholar 

  • Armstrong, C. M., and.Taylor, S. R., 1980, Interaction of barium ions with potassium channels in squid giant axons, Biophys.J. 30:473–488.

    PubMed  CAS  Google Scholar 

  • Baraban, J. M., Snyder, S. H., and Alger, B. E., 1985, Protein kinase C regulates ionic conductance in hippocampal neurones: Electrophysiological effects of phorbol esters, Proc. Natl. Acad. Sci. USA 82:2538–2546.

    PubMed  CAS  Google Scholar 

  • Barrett, E. F., and Barrett, J. N., 1976, Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones, J. Physiol. (London) 255:737–774.

    CAS  Google Scholar 

  • Batty, I. R., Nahorski, S. R., and Irvine, R. F., 1985, Rapid formation of inositol-1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices, Biochem. J. 232:211–215.

    PubMed  CAS  Google Scholar 

  • Benardo, L. S., and Prince, D. A., 1981, Acetylcholine induced modulation of hippocampal pyramidal neurones, BrainRes. 211:227–234.

    CAS  Google Scholar 

  • Benardo, L. S., and Prince, D. A., 1982, Cholinergic excitation of mammalian hippocampal pyramidal cells, Brain Res. 249:315–331.

    PubMed  CAS  Google Scholar 

  • Benham, C. D., Bolton, T. B., Lang, R. J., and Takewaki, T., 1985, The mechanism of action of Ba2+ and TEA on single Ca2 +-activated K+-channels in arterial and intestinal smooth muscle cell membranes, Pfluegers Arch. 403:120–127.

    CAS  Google Scholar 

  • Blackman, J. G., Ginsborg, B. L., and Ray, C., 1963, Synaptic transmission in the sympathetic ganglion of the frog, J. Physiol. (London) 167:355–373.

    CAS  Google Scholar 

  • Bone, E. A., Fretten, P., Palmer, S., Kirk, C. J., and Michell, R. H., 1984, Rapid accumulation of inositol phosphates in isolated rat superior cervical ganglia exposed to V1-vasopressin and muscarinic cholinergic stimuli, Biochem. J. 221:803–811.

    PubMed  CAS  Google Scholar 

  • Breitweiser, G. E., and Szabo, G., 1985, Uncoupling of cardiac muscarinic receptor and β-adrenergic receptors from ion channels by a guanine nucleotide analogue, Nature 317:538–540.

    Google Scholar 

  • Briggs, C. A., Horwitz, J., McAfee, D. A., Tsymbalov, S., and Periman, R. L., 1985, Effects of neuronal activity on inositol phospholipid metabolism in the rat autonomic nervous system, J. Neurochem. 44:731–739.

    PubMed  CAS  Google Scholar 

  • Brown, D. A., 1983, Slow cholinergic excitation—a mechanism for increasing neuronal excitability, TrendsNeurosci. 6:302–307.

    Google Scholar 

  • Brown, D. A., 1986, Voltage-sensitive ion channels mediating modulatory effects of acetylcholine, amines and peptides, in: Fast and Slow ChemicalSignalling in the Nervous System (L. L. Iversen and E. Goodman, eds.), Oxford University Press, London, pp. 130–150.

    Google Scholar 

  • Brown, D. A., and Adams, P. R., 1979, Muscarinic modification of voltage-sensitive currents in sympathetic neurones, Neurosci. Abstr. 5:585.

    Google Scholar 

  • Brown, D. A., and Adams, P. R., 1980, Muscarinic suppression of a novel voltage-sensitive K + current in a vertebrate neurone, Nature 283:673–676.

    PubMed  CAS  Google Scholar 

  • Brown, D. A., and Constanti, A., 1980, Intracellular observations on the effects of muscarinic agonists on rat sympathetic neurones, Br. J. Pharmacol. 70:593–608.

    PubMed  CAS  Google Scholar 

  • Brown, D. A., and Griffith, W. H., 1984, Substance-P (SP) mediated inward currents in voltage-clamped guinea-pig inferior mesenteric ganglion (IMG) cells in vitro, J. Physiol. (London) 357: 17P.

    Google Scholar 

  • Brown, D. A., and Selyanko, A. A., 1985a, Two components of muscarine-sensitive membrane current in rat sympathetic neurones, J. Physiol. (London) 365:335–364.

    Google Scholar 

  • Brown, D. A., and Selyanko, A. A., 1985b, Membrane currents underlying the cholinergic slow excitatory post-synaptic potential in the rat sympathetic ganglion, J. Physiol. (London) 365:365–387.

    CAS  Google Scholar 

  • Brown, D. A., Constanti, A., and Marsh, S. J., 1980a, Angiotensin mimics the action of muscarinic agonists on rat sympathetic neurones, Brain Res. 193:614–619.

    CAS  Google Scholar 

  • Brown, D. A., Fatherazi, S., Garthwaite, J., and White, R. D., 1980b, Muscarinic receptors in rat sympathetic ganglia, Br. J. Pharmacol. 70:577–592.

    PubMed  CAS  Google Scholar 

  • Brown, D. A., Forward, A., and Marsh, S., 1980c, Antagonist discrimination between ganglionic and ileal muscarinic receptors, Br. J. Pharmacol. 71:362–364.

    PubMed  CAS  Google Scholar 

  • Brown, D. A., Adams, P. R., and Constanti, A., 1982, Voltage-sensitive K-currents in sympathetic neurones and their modulation by neurotransmitters, J. Aut. Nerv. Syst. 6:23–35.

    CAS  Google Scholar 

  • Brown, D. A., Constanti, A., and Adams, P. R., 1983, Ca-activated potassium current in vertebrate sympathetic neurones, Cell Calcium 4:407–420.

    PubMed  CAS  Google Scholar 

  • Brown, D. A., Adams, P. R., Jones, S.W., Griffith, W. H., Hills, J., and Constanti, A., 1985, Some ionic mechanisms of slow peptidergic neuronal excitation, Regul. Peptides 10:157–164.

    Google Scholar 

  • Brown, D. A., Gähwiler, B. H., Marsh, S. J., and Selyanko, A. A., 1986, Mechanisms of muscarinic excitatory synaptic transmission in ganglia and brain, Trends Pharmacol. Sci. Suppl. 66–71.

    Google Scholar 

  • Burnstock, G., 1972, Purinergic nerves, Pharmacol. Rev. 24:509–581.

    PubMed  CAS  Google Scholar 

  • Caulfield, M. P., and Stubley, J. K., 1982, Pilocarpine selectively stimulates muscarinic receptors in rat sympathetic ganglia, Br. J. Pharmacol. 76:216P.

    Google Scholar 

  • Chesnoy-Marchais, D., 1983, Characterization of a chloride conductance activated by hyper-polarization in Aplysia neurones, J. Physiol. (London) 342:277–308.

    CAS  Google Scholar 

  • Cole, A. E., and Nicoll, R. A., 1984, Characterization of a slow cholinergic post-synaptic potential in vitro from rat hippocampal pyramidal cells, J. Physiol. (London) 352:173–188.

    CAS  Google Scholar 

  • Constanti, A., and Brown, D. A., 1981, M-currents in voltage-clamped mammalian sympathetic neurones, Neurosci. Lett. 24:289–294.

    PubMed  CAS  Google Scholar 

  • Constanti, A., and Galvan, M., 1983a, M-currents in voltage-clamped olfactory cortex neurones, Neurosci. Lett. 39:65–70.

    PubMed  CAS  Google Scholar 

  • Constanti, A., and Galvan, M., 1983b, Fast inward-rectifying current accounts for anomalous rectification in olfactory cortex neurones, J. Physiol. (London) 335:153–178.

    CAS  Google Scholar 

  • Constanti, A., and Sim, J. A., 1987, Muscarinic receptors mediating suppression of the M-current in guinea-pig olfactory cortex neurones may be of the M2 subtype, Br. J. Pharmacol. 90:3–5.

    PubMed  CAS  Google Scholar 

  • Constanti, A., Adams, P. R., and Brown, D. A., 1981, Why do barium ions imitate acetylcholine? BrainRes. 206:244–250.

    CAS  Google Scholar 

  • Crill, W. E., and Schwindt, P. C., 1983, Active currents in mammalian central neurones, Trends Neurosci. 6:236–240.

    Google Scholar 

  • Dodd, J., and Horn, J. P., 1983, Muscarinic inhibition of sympathetic C neurones in the bullfrog, J. Physiol. (London) 334:271–291.

    CAS  Google Scholar 

  • Dodd, J., Dingledine, R., and Kelly, J. S., 1981, The excitatory action of acetylcholine on hippocampal neurones of the guinea pig and rat maintained in vitro, BrainRes. 207:109–127.

    CAS  Google Scholar 

  • Dun, N. J., and Jiang, Z. G., 1982, Non-cholinergic excitatory transmission in inferior mesenteric ganglia of the guinea-pig: Possible mediation by substance P, J. Physiol. (London) 325:145–159.

    CAS  Google Scholar 

  • Dun, N. J., and Minota, S., 1981, Effects of substance P on neurones of the inferior mesenteric ganglion, J. Physiol. (London) 321:259–271.

    CAS  Google Scholar 

  • Dunlap, J., and Brown, J. H., 1984, Differences and similarities in muscarinic receptor of rat heart and retina: Effects of agonists, guanine nucleotides and N-ethyl-maleimide, J.Neurochem. 43: 214–220.

    PubMed  CAS  Google Scholar 

  • Eaton, D. C., and Brodwick, M., 1980, Effects of barium on the potassium conductance of squid axons, J. Gen. Physiol. 75:727–750.

    PubMed  CAS  Google Scholar 

  • Eiden, L. E., Loumaye, E., Sherwood, N., and Eskay, R. L., 1982, Two chemically and immunologically distinct forms of luteinizing hormone-releasing hormone are differentially expressed in frog neural tissues, Peptides 3:323–327.

    PubMed  CAS  Google Scholar 

  • Erneux, C., Delvaux, A., Moreau, C., and Dumont, J. E., 1986, Characterization of D-myo-inositol 1,4,5-triphosphate phosphatase in rat brain, Biochem. Biophys. Res. Commun. 134:351–358.

    PubMed  CAS  Google Scholar 

  • Evans, T., Hepler, J. R., Masters, S. B., Brown, J. H., and Harden, T. K., 1985, Guanine nucleotide regulation of agonist binding to muscarinic cholinergic receptors, Biochem. J. 232:751–757.

    PubMed  CAS  Google Scholar 

  • Fantie, B. D., and Goddard, G. V., 1982, Septal modulation of the population spike in the fascia dentata produced by perforant path stimulation, Brain Res. 252:226–237.

    Google Scholar 

  • Fisher, S. K., Klinger, P. D., and Agranoff, B. W., 1983, Muscarinic agonist binding and phospholipid turnover in brain, J. Biol. Chem. 258:7358–7363.

    PubMed  CAS  Google Scholar 

  • Freschi, J. E., 1983, Membrane currents of cultured rat sympathetic neurones under voltage clamp, J. Neurophysiol. 50:1460–1477.

    PubMed  CAS  Google Scholar 

  • Gähwiler, B. H., 1984, Facilitation by acetylcholine of tetrodotoxin-resistant spikes in rat hippocampal pyramidal cells, Neuroscience 11:381–388.

    PubMed  Google Scholar 

  • Gähwiler, B. H., and Brown, D. A., 1985, Functional innervation of cultured hippocampal neurones by cholinergic affĂ©rents from co-cultured septal expiants, Nature 313:577–579.

    PubMed  Google Scholar 

  • Galvan, M., and Behrends, J., 1985, Apamin blocks calcium-dependent spike after-hyper-polarization in rat sympathetic neurones, PfluegersArch. 403 (Suppl. 2):R50.

    Google Scholar 

  • Galvan, M., and Sedlmeir, C., 1984, Outward currents in voltage-clamped rat sympathetic neurones, J. Physiol (London) 356:115–134.

    CAS  Google Scholar 

  • Galvan, M., Satin, L., and Adams, P. R., 1984, Comparison of conventional microelectrode and whole-cell patch clamp recordings from cultured frog ganglion cells, Neurosci. Abstr. 10:146.

    Google Scholar 

  • Ginsborg, B. L., 1965, The actions of McN-A-343, pilocarpine and acetyl-β-methylcholine on sympathetic ganglion cells of the frog, J. Pharmacol. Exp. Ther. 150:216–219.

    PubMed  CAS  Google Scholar 

  • Gonzales, R. A., and Crews, F. T., 1984, Characterization of the cholinergic stimulation of phosphoinositide hydrolysis in rat brain slices, J. Neurosci. 4:3120–3127.

    PubMed  CAS  Google Scholar 

  • Grandt, R., Greiner, C., Zubin, P., and Jakobs, K. H., 1986, Bradykinin stimulates GTP hydrolysis in NG108–15 membrane by a high affinity pertussis toxin-insensitive GTPase, FEBS Lett. 196:279–283.

    PubMed  CAS  Google Scholar 

  • Haas, H. L., and Konnerth, A., 1983, Histamine and nonradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells, Nature 302:432–434.

    PubMed  CAS  Google Scholar 

  • Haga, K., and Haga, T., 1985, Purification of the muscarinic acetylcholine receptor from porcine brain, J. Biol. Chem. 260:7927–7935.

    PubMed  CAS  Google Scholar 

  • Haga, K., Haga, T., Ichiyama, A., Katada, T., Kurose, H., and Ui, M., 1985, Functional reconstitution of purified muscarinic receptors and inhibitory guanine nucleotide regulatory protein, Nature 316:731–733.

    PubMed  CAS  Google Scholar 

  • Halliwell, J. V., 1985, Current and voltage responses from human neocortical neurones in vitro,J. Physiol. (London) 369:49P.

    Google Scholar 

  • Halliwell, J. V., 1986, M-currents in human neocortical neurones, Neurosci. Lett. 67:1–6.

    PubMed  CAS  Google Scholar 

  • Halliwell, J. V., and Adams, P. R., 1982, Voltage-clamp analysis of muscarinic excitation in hippocampal neurones, Brain Res. 250:71–92.

    PubMed  CAS  Google Scholar 

  • Hammer, R., and Giachetti, A., 1982, Muscarinic receptor subtypes: Ml and M2 biochemical and functional characterization, Life Sci. 31:2991–2998.

    PubMed  CAS  Google Scholar 

  • Hashiguchi, T., Kobayashi, H., Tosaka, T., and Libet, B., 1982, Two muscarinic depolarizing mechanisms in mammalian sympathetic neurones, Brain Res. 242:378–382.

    PubMed  CAS  Google Scholar 

  • Hermann, A., and Gorman, A. L. F., 1979, Blockade of voltage-dependent and Ca2+-dependent K + -current components by internal Ba2+ in molluscan pacemaker neurones, Experientia 35:229–231.

    PubMed  CAS  Google Scholar 

  • Higashida, H., and Brown, D. A., 1986a, Bradykinin (BK) induces two membrane currents in a neuronal cell line via two products of phosphatidylinositol breakdown, Neurosci. Abstr., 12:16.

    Google Scholar 

  • Higashida, H., and Brown, D. A., 1986b, Two polyphosphatidylinositide metabolites control two K+ currents in a neuronal cell, Nature 323:333–335.

    PubMed  CAS  Google Scholar 

  • Holz, G. G., Rane, S. G., and Dunlap, K., 1986, GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels, Nature 319:670–672.

    PubMed  CAS  Google Scholar 

  • Horwitz, J., Tsymbalov, S., and Perimän, R. L., 1984, Muscarine increases tyrosine-3-monooxygenase activity and phospholipid metabolism in the superior cervical ganglion of the rat, J. Pharmacol. Exp. Ther. 239:577–582.

    Google Scholar 

  • Hughes, A. R., Martin, M. W., and Harden, T. K., 1984, Pertussis toxin differentiates between two mechanisms of attenuation of cyclic AMP accumulation by muscarinic cholinergic receptors, Proc. Natl. Acad. Sci. USA 81:5680–5684.

    PubMed  CAS  Google Scholar 

  • Hulme, E. C., Berrie, C. P., Birdsall, N. J., and Burgen, A. S. V., 1981, Interaction of muscarinic receptor with guanine nucleotides and adenylate cyclase, in: Drug Receptors and Their Effectors (N. J. M. Birdsall, ed.), Macmillan & Co., London, pp. 23–24.

    Google Scholar 

  • Iwatsuki, N., and Petersen, O. H., 1985, Inhibition of Ca2+ -activated K+ channels in pig pancreatic acinar cells by Ba2 +, Ca2+, quinine and quinidine, Biochim. Biophys. Acta 819:249–257.

    PubMed  CAS  Google Scholar 

  • Jan, L. Y., and Jan, Y. N., 1982, Peptidergic transmission in sympathetic ganglia of the frog, J. Physiol. (London) 327:219–246.

    CAS  Google Scholar 

  • Jan, Y. N., and Jan, L. Y., 1983, Coexistence and corelease of cholinergic and peptidergic transmitters in frog sympathetic ganglia, Fed. Proc. 42:2929–2933.

    PubMed  CAS  Google Scholar 

  • Jan, Y. N., Jan, L. Y., and Kuffler, S. W., 1979, A peptide as a possible transmitter in sympathetic ganglia of the frog, Proc. Natl. Acad. Sci. USA 76:1501–1505.

    PubMed  CAS  Google Scholar 

  • Jan, Y. N., Jan, L. Y., and Kuffler, S. W., 1980, Further evidence for peptidergic transmission in sympathetic ganglia, Proc. Natl. Acad. Sci. USA 77:5008–5012.

    PubMed  CAS  Google Scholar 

  • Johnson, S. M., Katayama, Y., and North, R. A., 1980, Slow synaptic potentials in guinea pig mysenteric neurones, J. Physiol. (London) 301:505–526.

    CAS  Google Scholar 

  • Jones, S. W., 1984, Muscarinic and peptidergic actions on C cells of bullfrog sympathetic ganglia, Neurosci. Abstr. 10:207.

    Google Scholar 

  • Jones, S.W., 1985, Muscarinic and peptidergic excitation of bullfrog sympathetic neurones, J.Physiol. (London) 366:63–87.

    CAS  Google Scholar 

  • Jones, S. W., Adams, P. R., Brownstein, M. J., and Rivier, J. E., 1984, Teleost luteinizing hormone-releasing hormone: Action on bullfrog sympathetic ganglia is consistent with role as neurotransmitter, J. Neurosci. 4:420–429.

    PubMed  CAS  Google Scholar 

  • Katayama, Y., and Nishi, S., 1982, Voltage-clamp analysis of peptidergic slow depolarizations in bullfrog sympathetic ganglion cells, J. Physiol. (London) 333:305–313.

    CAS  Google Scholar 

  • Katayama, Y., North, R. A., and Williams, J. T., 1979, The action of substance P on neurones of the myenteric plexus of the guinea-pig small intestine, Proc. R. Soc. London Ser. B 206:191–208.

    CAS  Google Scholar 

  • Kawai, N., and Watanabe, M., 1986, Blockage of Ca-activated K-conductance by apamin in rat sympathetic neurones, Br. J. Pharmacol. 87:225–232.

    PubMed  CAS  Google Scholar 

  • Kawai, N., Oka, J., and Watanabe, M., 1985, Hexamethonium increases the excitability of sympathetic neurones by the blockade of the Ca-activated K-channels, Life Sci. 36:2339–2346.

    PubMed  CAS  Google Scholar 

  • Kawatani, M., Rutigliano, M., and DeGroat, W. C., 1985, Depolarization and muscarinic excitation induced in a sympathetic ganglion by vasoactive intestinal polypeptide, Science 229:879–881.

    PubMed  CAS  Google Scholar 

  • Kebabian, J. W., Steiner, A. L., and Greengard, P., 1975, Muscarinic cholinergic regulation of cyclic guanosine-3′5′-monophosphate in autonomic ganglia: Possible role in synaptic transmission, J. Pharmacol. Exp. Ther. 193:474–488.

    PubMed  CAS  Google Scholar 

  • Kobayashi, H., and Libet, B., 1968, Generation of slow post-synaptic potentials without increase in ionic conductance, Proc. Natl. Acad. Sci. USA 60:1304–1311.

    PubMed  CAS  Google Scholar 

  • Kobayashi, H., Hashiguchi, T., Tosaka, T., and Mochida, S., 1981, Muscarinic antagonism of a persistent outward current in sympathetic neurones of rabbits and its partial contribution to the generation of the slow epsp, Neurosci. Lett.Suppl. 6:564.

    Google Scholar 

  • Koketsu, K., Akasu, T., and Miyagawa, M., 1982, Identification of GK systems activated by Ca, Brains Res. 243:369–372.

    CAS  Google Scholar 

  • Konishi, S., and Otsuka, M., 1974, Excitatory action of hypothalamic substance P on spinal motoneurones of newborn rats, Nature 252:734–735.

    PubMed  CAS  Google Scholar 

  • Konishi, S., Tsunoo, A., and Otsuka, M., 1981, Substance P and non-cholinergic excitatory transmission in guinea-pig sympathetic ganglia, Proc. Jpn. Acad. Ser. B 55:525–530.

    Google Scholar 

  • Krnjevic, K., 1977, Effects of substance P on central neurones in cats, in: Substance P (U. S. von Euler and B. Pernow, eds.), Raven Press, New York, pp. 217–230.

    Google Scholar 

  • Krnjevic, K., and Ropert, N., 1982, Electrophysiological and pharmacological characteristics of facilitation of hippocampal population spikes by stimulation of the medial septum, Neuroscience 7:2165–2183.

    PubMed  CAS  Google Scholar 

  • Krnjevic, K., Pumain, R., and Renaud, L. P., 1971, The mechanism of excitation by acetylcholine in the cerebral cortex, J.Physiol. (London) 215:247–268.

    CAS  Google Scholar 

  • Kuba, K., 1980, Release of calcium ions linked to the activation of potassium conductance in a caffeine-treated sympathetic neurone, J. Physiol. (London) 298:251–269.

    CAS  Google Scholar 

  • Kuba, K., and Koketsu, K., 1976, Analysis of the slow excitatory post-synaptic potential in bullfrog sympathetic ganglion cells, Jpn. J. Physiol. 26:651–669.

    PubMed  CAS  Google Scholar 

  • Kuffler, S. W., and Sejnowski, T. J., 1983, Peptidergic and muscarinic excitation at amphibian synapses, J.Physiol. (London) 341:257–278.

    CAS  Google Scholar 

  • Lancaster, B., and Pennefather, P., 1987, Potassium currents evoked by brief depolarization in bullfrog sympathetic ganglion cells, J. Physiol. (London) 387:519–548.

    CAS  Google Scholar 

  • Lee, T.-P., Kuo, J. F., and Greengard, P., 1972, Role of muscarinic cholinergic receptors in regulation of guanosine-3′5′-cyclic monophosphate content in mammalian brain, heart muscle and intestinal smooth muscle, Proc. Natl. Acad. Sci. USA 69:3287–3291.

    PubMed  CAS  Google Scholar 

  • Levitän, I. B., 1985, Phosphorylation of ion channels, J. Membr. Biol. 87:177–190.

    PubMed  Google Scholar 

  • Libet, B., Chichubu, S., and Tosaka, T., 1968, Slow synaptic responses and excitability in sympathetic ganglia of the bullfrog,J. Neurophysiol. 31:383–395.

    PubMed  CAS  Google Scholar 

  • MacDermott, A. B., and Weight, F. F., 1980, The pharmacological blockage of potassium conductance in voltage-clamped bullfrog sympathetic neurones, Fed. Proc. 39:2074.

    Google Scholar 

  • McKinney, M., and Richelson, E., 1984, The coupling of the neuronal muscarinic receptor to responses, Annu. Rev. Pharmacol. 24:121–146.

    CAS  Google Scholar 

  • Madison, D. V., and Nicoll, R. A., 1982, Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus, Nature 299:636–638.

    PubMed  CAS  Google Scholar 

  • Madison, D. V., and Nicoll, R. A., 1984, Control of repetitive discharge of rat CA1 pyramidal neurones in vitro,J. Physiol. (London) 354:319–331.

    CAS  Google Scholar 

  • Madison, D. V., Lancaster, B., Nicoll, R. A., and Adams, P. R., 1985, Voltage clamp analysis of slow cholinergic synaptic transmission in the hippocampus, Neurosci. Abstr. 11:467.

    Google Scholar 

  • Madison, D. V., Malenka, R. C., and Nicoll, R. A., 1986, Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells, Nature 321:695–697.

    PubMed  CAS  Google Scholar 

  • Madison, D. V., Lancaster, B., and Nicoll, R. A., 1987, Voltage clamp analysis of cholinergic action in the hippocampus, J. Neurosci. 6:475–480.

    Google Scholar 

  • Malenka, R. C., Madison, D. V., Andrade, R., and Nicoll, R. A., 1986, Phorbol esters mimic some cholinergic actions in hippocampal pyramidal cells, J. Neurosci. 6:475–480.

    PubMed  CAS  Google Scholar 

  • Marrion, N. V., Smart, T. G., and Brown, D. A., 1987, Membrane currents in adult rat superior cervical ganglia in dissociated tissue culture, Neurosci.Lett. 77:55–60.

    PubMed  CAS  Google Scholar 

  • Mayer, M. L., and Westbrook, G. L., 1983, A voltage clamp analysis of inward (anomalous) rectification in mouse spinal sensory ganglion neurones, J.Physiol. (London) 340:19–46.

    CAS  Google Scholar 

  • Mo, N., and Dun, N. J., 1984, Vasoactive intestinal polypeptide facilitates muscarinic transmission in mammalian sympathetic ganglia, Neurosci. Lett. 52:19–23.

    PubMed  CAS  Google Scholar 

  • Murase, K., and Randic, M., 1984, Action of substance P on rat spinal dorsal horn neurones, J.Physiol. (London) 346:203–217.

    CAS  Google Scholar 

  • Murase, K., Ryu, P. D., and Randic, M., 1986, Substance P augments a persistent slow inward calcium-sensitive current in voltage-clamped spinal dorsal horn neurone of the rat, BrainRes. 365:369–376.

    CAS  Google Scholar 

  • Newberry, N. R., Priestley, T., and Woodruff, G. N., 1985, Pharmacological distinction between two muscarinic responses on the isolated superior cervical ganglion of the rat, Eur. J.Pharmacol. 116:191–192.

    PubMed  CAS  Google Scholar 

  • Nishi, S., and Koketsu, K., 1960, Electrical properties and activities in single sympathetic neurones in frogs, J. Cell. Comp. Physiol. 55:15–30.

    PubMed  CAS  Google Scholar 

  • Nishi, S., and Koketsu, K., 1968, Early and late after-discharges of amphibian sympathetic ganglion cells,J. Neurophysiol. 31:109–121.

    PubMed  CAS  Google Scholar 

  • Nishi, S., Soeda, H., and Koketsu, K., 1968, Unusual nature of ganglionic slow e.p.s.p. studied by a voltage-clamp method, Life Sci. 8:33–42.

    Google Scholar 

  • Nohmi, M., and Kuba, K., 1984, (+) Tubocurarine blocks the Ca2+ -dependent K + -channel of the bullfrog sympathetic ganglion cell, Brain Res. 301:146–148.

    PubMed  CAS  Google Scholar 

  • North, R. A., and Tokimasa, T., 1982, Muscarinic synaptic potentials in guinea-pig myenteric neurones,J. Physiol. (London) 333:151–156.

    CAS  Google Scholar 

  • North, R. A., and Tokimasa, T., 1983, Depression of calcium-dependent potassium conductance of guinea-pig myenteric neurones by muscarinic agonists, J. Physiol. (London) 342:253–266.

    CAS  Google Scholar 

  • Nowak, L. M., and MacDonald, R. L., 1981, Substance P decreases a potassium conductance of spinal cord neurones in cell cultures, BrainRes. 214:416–423.

    CAS  Google Scholar 

  • Nowak, L. M., and MacDonald, R. L., 1982, Substance P: Ionic basis for depolarizing responses of mouse spinal neurones in cell culture, J. Neurosci. 2:1119–1128.

    PubMed  CAS  Google Scholar 

  • Nowak, L. M., and MacDonald, R. L., 1983, Muscarine-sensitive voltage-dependent potassium current in cultured murine spinal cord neurones, Neurosci.Lett. 35:85–91.

    PubMed  CAS  Google Scholar 

  • Ogata, N., 1979, Substance P causes direct depolarization of neurones of guinea-pig interpedunucular nucleus in vitro, Nature 277:480–481.

    PubMed  CAS  Google Scholar 

  • Ogata, N., and Abe, H., 1982, Substance P decreases membrane conductance in neurones of the guinea pig hypothalamus in vitro, Neuropharmacology 21:187–189.

    PubMed  CAS  Google Scholar 

  • Onali, P., Olianis, M. C., Schwartz, J. P., and Costa, E., 1983, Involvement of a high affinity GTPase in the inhibitory coupling of striatal muscarinic receptors to adenylate cyclase, Mol. Pharmacol. 24:380–386.

    PubMed  CAS  Google Scholar 

  • Patterson, B. A., and Voile, R. L., 1984, Muscarinic receptors and [3H]inositol incorporation in a rat sympathetic ganglion, J. Aut. Nerv.Syst. 10:69–72.

    CAS  Google Scholar 

  • Pearce, B., Morrow, C., and Murphy, S., 1986, Receptor-mediated phospholipid hydrolysis in astrocytes, Eur. J. Pharmacol. 121:231–243.

    PubMed  CAS  Google Scholar 

  • Pennefather, P., 1986, The rate of activation of M current at positive potentials in bullfrog sympathetic ganglion cells,Biophys. J. 49:166a.

    Google Scholar 

  • Pennefather, P., Jones, S. W., and Adams, P. R., 1985a, Modulation of repetitive firing in bullfrog sympathetic ganglion cells by two distinct K currents, Neurosci. Abstr. 11:148.

    Google Scholar 

  • Pennefather, P., Lancaster, B., Adams, P. R., and Nicoll, R. A., 1985b, Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells, Proc. Natl. Acad. Sci. USA 82:3040–3044.

    PubMed  CAS  Google Scholar 

  • Pfaffinger, D. W., Martin, J. M., Hunter, D. D., Nathanson, N. M., and Hille, B., 1985, GTP-binding proteins couple cardiac muscarinic receptors to a K-channel, Nature 317:536–539.

    PubMed  CAS  Google Scholar 

  • Scholfield, C. N., 1978, Electrical properties of neurones in the olfactory cortex slice in vitro, J. Physiol. (London) 275:537–546.

    Google Scholar 

  • Schulman, J. A., and Weight, F. F., 1976, Synaptic transmission: Long-lasting potentialism by a postsynaptic mechanism, Science 194:1437–1439.

    PubMed  CAS  Google Scholar 

  • Segal, M., 1982, Multiple actions of acetylcholine at a muscarinic receptor studied in the rat hippocampal slice, Brain Res. 246:77–87.

    PubMed  CAS  Google Scholar 

  • Selyanko, A. A., 1984, Cd2+ suppresses a time-dependent Cl‒ current in rat sympathetic neurones, J. Physiol. (London) 350:49P.

    Google Scholar 

  • Siggins, G. R., Gruol, D., Padjen, A., and Forman, D., 1977, Purine and pyrimidine mononucleotides depolarize neurones of explanted amphibian sympathetic ganglia, Nature 270:263–265.

    PubMed  CAS  Google Scholar 

  • Sims, S. M., Singer, J. J., and Walsh, J. V., Jr., 1985a, Cholinergic agonists suppress a potassium current in freshly dissociated smooth muscle cells of the toad, J. Physiol. (London) 367:503–529.

    CAS  Google Scholar 

  • Sims, S. M., Walsh, J. V., and Singer, J. J., 1985b, Substance P can suppress a K + current in single gastric smooth muscle cells, J. Gen. Physiol. 86:901.

    Google Scholar 

  • Sims, S. M., Walsh, J. V., and Singer, J. J., 1986a, Substance P and acetylcholine both suppress the same K +-current in dissociated smooth muscle cells, Am. J. Physiol. 251:C580–C587.

    PubMed  CAS  Google Scholar 

  • Sims, S. M., Singer, J. J., and Walsh, J. V., Jr., 1986b, A mechanism of muscarinic excitation in dissociated smooth muscle cells,Trends Pharmacol. Sci. Suppl. 28–32.

    Google Scholar 

  • Storey, D. J., Shears, S. B., Kirk, C. J., and Michell, R. H., 1984, Stepwise enzymatic dephosphorylation of inositol 1,4,5-trisphosphate to inositol in liver, Nature 312:374–376.

    PubMed  CAS  Google Scholar 

  • Streb, H., Irvine, R. F., Berridge, M. J., and Schultz, I., 1983, Release of Ca2+ from a non-mitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate,Nature 306:67–69.

    PubMed  CAS  Google Scholar 

  • Takeshige, C., and Voile, R. L., 1962, Bimodal responses of sympathetic ganglia to acetylcholine following eserine or repetitive preganglionic stimulation, J. Pharmacol. Exp. Ther. 138:66–73.

    PubMed  CAS  Google Scholar 

  • Tokimasa, T., 1984, Muscarinic agonists depress calcium-dependent GK in bullfrog sympathetic neurones, J. Aut. Nerv.Syst. 10:107–116.

    CAS  Google Scholar 

  • Tokimasa, T., 1985a, Intracellular Ca2+ ions inactivate K + -current in bullfrog sympathetic neurones, Brain Res. 337:386–391.

    PubMed  CAS  Google Scholar 

  • Tokimasa, T., 1985b, Spontaneous muscarinic suppression of the Ca-activated K-current in bullfrog sympathetic neurones, Brain Res. 344:134–141.

    PubMed  CAS  Google Scholar 

  • Tosaka, T., Chichubu, S., and Libet, B., 1968, Intracellular analysis of slow inhibitory and excitatory potentials in sympathetic ganglia of the frog, J. Neurophysiol. 31:396–409.

    PubMed  CAS  Google Scholar 

  • Tosaka, T., Tasaka, J., Miyazaki, T., and Libet, B., 1983, Hyperpolarization following activation of K+ channels by excitatory postsynaptic potentials, Nature 305:148–150.

    PubMed  CAS  Google Scholar 

  • Vergara, C., and Latone, R., 1983, Kinetics of Ca2 +-activated K+ channels from rabbit muscle incorporated into planar bilayers, J. Gen. Physiol. 82:543–568.

    PubMed  CAS  Google Scholar 

  • Vincent, J. D., and Barker, J. L., 1979, Substance P: Evidence for diverse roles in neuronal function in cultured mouse spinal neurones, Science 205:1409–1412.

    PubMed  CAS  Google Scholar 

  • Voile, R. L., Quenzer, L. F., Patterson, B. A., Alkadhi, K. A., and Henderson, E. G., 1981, Cyclic guanosine 3′5′ monophosphate accumulation and 45Ca uptake by rat superior cervical ganglia during preganglionic stimulation, J. Pharmacol. Exp. Ther. 219:338–343.

    Google Scholar 

  • Weight, F. F., and MacDermott, A. B., 1982, Membrane ion channels and nerve cell excitability, in: Physiology and Pharmacology of Epileptogenic Phenomena (M. R. Klee, H. D. Lux, and E. J. Speckmann, eds.), Raven Press, New York, pp. 227–233.

    Google Scholar 

  • Weight, F. F., and Votava, Z., 1970, Slow synaptic excitation in sympathetic ganglion cells: Evidence for synaptic inactivation of potassium conductance, Science 170:755–758.

    PubMed  CAS  Google Scholar 

  • Weight, F. F., Petzgold, G., and Greengard, P., 1974, Guanosine-3′5′-monophosphate in sympathetic ganglia: Increase associated with synaptic transmission, Science 186:942–944.

    PubMed  CAS  Google Scholar 

  • Weight, F., Smith, P. A., and Schulman, J. A., 1978, Postsynaptic potential generation appears independent of synaptic elevation of cyclic nucleotides in sympathetic neurones, BrainRes. 258:197–202.

    Google Scholar 

  • Yano, K., Higashida, H., Inoue, R., and Nozawa, Y., 1984, Bradykinin induces rapid breakdown of phosphatidylinositol-4,5-bisphosphate in neuroblastoma Ă— glioma hybrid NG108–15 cells, J. Biol Chem. 259:10201–10207.

    PubMed  CAS  Google Scholar 

  • Yano, K., Higashida, H., Hattori, H., and Nozawa, Y., 1985, Bradykinin-induced transient accumulation of inositol triphosphate in neuron-like cell line NG108–15 cells, FEBS Lett. 181:403–406.

    PubMed  CAS  Google Scholar 

  • Zieglgansberger, W., and Tulloch, I. F., 1979, Effects of substance P on neurones in the dorsal horn of the spinal cord of the cat, Brain Bes. 166:273–282.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Brown, D.A. (1988). M Currents. In: Narahashi, T. (eds) Ion Channels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7302-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7302-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7304-3

  • Online ISBN: 978-1-4615-7302-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics