Skip to main content

Early Biochemical Events in T-Lymphocyte Activation by Mitogens

  • Chapter
Immunopharmacology Reviews

Abstract

From the original discovery by Hungerford et al (1959) that extract of kidney bean Phasiolus vulgaris caused altered morphology and mitosis in lymphocytes has grown a considerable field of study on the early biochemical events of lymphocyte transformation by plant lectin mitogens. In 1971, the first textbook in the field emerged (Ling, 1971) and was followed in 1975 by a second (Ling and Kay, 1975). Throughout this period, numerous workshops and symposia, including the International Congresses of Immunology (see Progresses in Immunology II-VI), Leukocyte Culture Conferences, and a Cold Spring Harbor Conference on Cell Proliferation (Clarkson and Baserga, 1974), have chronicled the evolution of this field. The list of mitogens has grown from the original phytohemagglutinin (PHA) to include concanavalin A (Con A), and several other plant lectins, phorbol myristate acetate (PMA), calcium ionophore (A23187), and sodium periodate. The relative selectivity of the actions of these mitogens on thymus-dependent (T) lymphocytes has been demonstrated and the general biochemical parameters have been well documented. Central to the study of T- lymphocyte activation by mitogens has been the quest to attach causal significance to early changes and to establish a mitogen signal sequence leading to cellular replication. In some senses this quest has recreated the parable of the blind men and the elephant and to this day there exist schools of adherents to one causal notion or another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abraham, R. T., Steffan, N., and McKean, D. J., 1986, Signal requirements for the activation of an interleukin-1 responsive T cell lymphoma. Sixth International Congress of Immunology, Toronto Canada, p. 230 (abst.).

    Google Scholar 

  • Abrass, L, and Scarpace, P., 1982, Catalytic unit of adenylate cyclase: Reduced activity in aged human lymphocytes, J. Clin. Endocrinol. Metabol. 55:1026–1028.

    CAS  Google Scholar 

  • Ahmann, G. B., and Sage, H. J., 1974, Stimulation of guinea pig lymphocytes by lenz culinaris lectin-A, Cell. Immunol. 10:183–195.

    PubMed  CAS  Google Scholar 

  • Alford, R. H., 1970, Metal cation requirements for phytohemagglutinin-induced transformation of human peripheral blood lymphocytes, J. Immunol. 104:698–703.

    PubMed  CAS  Google Scholar 

  • Allan, D., and Michell, R. H., 1974, Phosphatidylinositol cleavage catalyzed by the soluble fraction from lymphocytes, Biochem. J. 142:591–597.

    PubMed  CAS  Google Scholar 

  • Allan, D., and Michell, R. H., 1977, A comparison of the effects of PHA and of calcium ionophore A23187 on the metabolism of glycerolipids in small lymphocytes, Biochem. J. 164:389–397.

    PubMed  CAS  Google Scholar 

  • Allfrey, V. G., Inoue, A., Kam, J., Johnson, E. M., Good, R. A., and Hadden, J. W., 1975, Sequence-specific DNA-binding by non-histone proteins of the lymphocyte nucleus and evidence for their migration from cytoplasm to nucleus at times of gene activation, in: The Structure and Function of Chromatin, Ciba Foundation Symposium, 28:199–228.

    CAS  Google Scholar 

  • Allwood, G., Asherson, G. L., Davey, M. J., and Goodford, P. J., 1971, The early uptake of radioactive calcium by human lymphocytes treated with phytohaemagglutinin, Immunology 21: 509–516.

    PubMed  CAS  Google Scholar 

  • Ananthakrishnan, R., Coffey, R. G., and Hadden, J. W., 1981, Cyclic GMP and calcium in lymphocyte activation by phytohemagglutinin, Lymphocyte Diff. 1:183–196.

    CAS  Google Scholar 

  • Andersson, J., Edelman, G. M., Moller, G., and Sjoberg, O., 1972, Activation of B lymphocytes by locally concentrated concanavalin A, Eur. J. Immunol. 2:233–235.

    PubMed  CAS  Google Scholar 

  • Ashman, R. F., 1984, The influence of cell interactions on early biochemical activation events in human mononuclear cells. Prog. Immunol. 5:339–359.

    Google Scholar 

  • Atkinson, J. P., Kelly, J. P., Weiss, A., Wedner, J. H., and Parker, C. W., 1978, Enhanced intracellular cGMP concentrations and lectin-induced lymphocyte transformation, J. Immunol. 121:2282–2291.

    PubMed  CAS  Google Scholar 

  • Atluru, D., Lianos, E. A., and Goodwin, J. S., 1986, Arachidonic acid inhibits 5-lipoxygenase in human T cells, Biochem. Biophys. Res. Commun. 135:670–676.

    PubMed  CAS  Google Scholar 

  • Aubry, J., Zachowski, A., Paraf, A., and Colombani, J., 1979, Modulation of membrane-bound enzyme activity by binding of antibodies to major histocompatability complex antigens, Ann. Immunol. 130C:17–27.

    Google Scholar 

  • Averdunk, R., 1972, Uber die wirking von phytohemagglutinin und antilymphozytenserum auf den kalium-, glucose- und aminosaure-transport bei menschlichen lymphozyten, Hoppe Seylers Z. Physiol. Chem. 353:79–87.

    PubMed  CAS  Google Scholar 

  • Averdunk, R., and Lauf, P. K., 1975, Effects of mitogens on sodium-potassium transport, 3H- ouabain binding and adenosine triphosphatase activity in lymphocytes, Exp. Cell. Res. 93:331–342.

    PubMed  CAS  Google Scholar 

  • Averdunk, A., and Gunther, T., 1980, Effect of concanavalin A on Ca2+ binding, Ca2+ uptake and the Ca2+ ATPase of lymphocyte plasma membranes, Biochem. Biophys. Res. Commun. 97: 1146–1153.

    PubMed  CAS  Google Scholar 

  • Averdunk, R., Mueller, J., and Wenzel, B., 1976, Studies on the mechanism of activation of lymphocyte membrane ATPase by concanavalin A, J. Clin. Chem. and Clin. Biochem. 14:339–344.

    CAS  Google Scholar 

  • Avemer, M. J., Brock, M. L., and Jost, J. P., 1972, Stimulation of ribonucleic acid synthesis in horse lymphocytes by exogenous cyclic adenosine 3′,5′-monophosphate, J. Biol. Chem. 247: 413–417.

    Google Scholar 

  • Bachvaroff, R. J., Miller, F., and Rapoport, F. T., 1984, The role of calmodulin in the regulation of human lymphocyte activation. Cell Immunol. 85:135–153.

    PubMed  CAS  Google Scholar 

  • Bailey, J. M., Bryant, R. W., Low, C.-E., Pupillo, M. B., and Vanderhoek, J. Y., 1982a, Regulation of T-lymphocyte mitogenesis by the leukocyte product 15-hydroxy-eicosatetraenoic acid (15-HETE), Cell. Immunol. 67:112–120.

    PubMed  CAS  Google Scholar 

  • Bailey, J. M., Bryant, R. W., Low, E. C., Pupillo, M. B., and Vanderhoek, J. Y., 1982b, Role of lipoxygenases in regulation of PHA and phorbol ester-induced mitogenesis. Adv. Prostaglandins Thromboxanes Leukotrienes Res. 9:341–353.

    CAS  Google Scholar 

  • Bailey, J. M., Coffey, R., Merrit, W. D., and Hadden, J. W., 1986, Role of licosanoids in lymphocyte activation: A review, in: Advances in Immunopharmacology. Vol. 3 (L. Chedid, J. W. Hadden, F. Spreafice, P. Dukor, and D. Willoughby, eds.), pp. 177–188, Pergamon, Oxford.

    Google Scholar 

  • Baran, D. T., Lichtman, M. A., and Peck, W. A., 1972, Alpha-aminoisobutyric acid transport in human leukemic lymphocytes: In vitro characteristics and inhibition by Cortisol and cycloheximide, J. Clin. Invest. 51:2181–2189.

    PubMed  CAS  Google Scholar 

  • Bard, E., Colwill, R., L’Anglais, R., and Kaplan, J. G., 1978, Response of human lymphocytes to mitogen: At what stage is there a requirement for Ca2+, Can. J. Biochem. 56:900–904.

    PubMed  CAS  Google Scholar 

  • Bamett, R. E., Scott, R. E., Furcht, L. T., and Kersey, J. H., 1974, Evidence that mitogenic lectins induce changes in lymphocyte membrane fluidity. Nature (Lond.) 249:465–466.

    Google Scholar 

  • Beckner, S. K., and Farrar, W. L., 1985, Generation of lymphokine activated killer (LAK) cells and stimulation of proliferation by interleukin 2 (IL-2) are both modulated by cAMP; regulation of growth factor mediated differentiation and proliferation by common mechanism. Fed. Proc. 44: 1792.

    Google Scholar 

  • Beckner, S. K., and Farrar, W. L., 1986, Interleukin 2 modulation of adenylate Cyclase, J. Biol. Chem. 261:3043–3047.

    PubMed  CAS  Google Scholar 

  • Belmont, J. W., and Rich, R. R., 1981, Role of calcium and magnesium and of cytochalasin- sensitive processes in lectin-stimulated lymphocyte activation. Cell. Immunol. 59:276–288.

    PubMed  CAS  Google Scholar 

  • Ben-Bassat, H., Poliak, A., Rosenbaum, S., Naparstek, E., Shouval, D., and Inbar, M., 1977, Fluidity of membrane lipids and lateral mobility of concanavalin A receptors in the cell surface of normal lymphocytes and lymphocytes from patients with malignant lymphomas and leuke- mias. Cancer Res. 37:1307–1312.

    PubMed  CAS  Google Scholar 

  • Berger, N. A., and Skinner, A. M., 1974, Characterization of lymphocyte transformation induced by zinc ions, J. Cell Biol. 61:45–55.

    PubMed  CAS  Google Scholar 

  • Bernard, D. P., Carboni, J. M., and Waksman, B. H., 1975, Regulation of lymphocyte responses in vitro. VI. Potentiation of the response to phytohemagglutinin by cytochalasin B, Ann. Immunol. 126:107–120.

    CAS  Google Scholar 

  • Berridge, M. J., 1975, The interaction of cyclic nucleotides and calcium in the control of cellular activity. Adv. Cyclic Nucleotide Res. 6:1–98.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1984, Inositol triphosphate and diacylglycerol as second messengers, Biochem. J. 220:345–360.

    PubMed  CAS  Google Scholar 

  • Best, K., Sever, A., Mathias, P. C. F., and Malaisse, W. J., 1984, Inhibition by mepacrine and p- bromophenacyl bromide of phosphoinositide hydrolysis, glucose oxidation, calcium uptake and insulin release in rat pancreatic islets, Biochem. Pharmacol. 33:2657–2662.

    PubMed  CAS  Google Scholar 

  • Besterman, J. M., May, W. S., Levine, H., Cragoe, E. J., and Cuatrecases, P., 1985, Amiloride inhibits phorbol ester-stimulated Na+/H+ exchange and protein kinase C, J. Biol. Chem. 260: 1155–1159.

    PubMed  CAS  Google Scholar 

  • Betel, I., and Martijnse, J., 1976, Drugs that disrupt microtubuli do not inhibit lymphocyte activation, Nature (Lond.) 261:318–319.

    CAS  Google Scholar 

  • Betel, I., and Van den Berg, K. J., 1972, Interaction of concanavalin A with rat lymphocytes, Eur. J. Biochem. 30:571–578.

    PubMed  CAS  Google Scholar 

  • Betel, I., and Van den Berg, K. J., 1975, The relationship between “early events” and DNA synthesis in mitogen stimulated lymphocytes, in: Immune Recognition, Proceedings of the Ninth Leukocyte Culture Conference (A. S. Rosenthal, ed.), pp. 505–509, Academic, New York.

    Google Scholar 

  • Betel, I., Martijnse, J., and Van den Berg, K. J., 1974, Absence of an early increase of phos- pholipid-phosphate turnover in mitogen stimulated B lymphocytes, Cell. Immunol. 14:429–434.

    PubMed  CAS  Google Scholar 

  • Billah, M. M., Lapetina, E. G., and Cautrecasas, P., 1981, Activity specific for phosphatidic acid. A possible mechanism for the production of arachidonic acid in platelets, J. Biol. Chem. 256: 5399–5403.

    PubMed  CAS  Google Scholar 

  • Birch, R. E., and Polmar, S. H., 1982, Pharmacological modification of immunoregulatory T lymphocytes. I. Effect of adenosine. H1 and H2 histamine agonists upon T lymphocyte regulation of B lymphocyte differentiation in vitro, Clin. Exp. Immunol. 48:218–230.

    PubMed  CAS  Google Scholar 

  • Birx, D. L., Berger, M., and Fleisher, T. A., 1984, The interference of T cell activation by calcium channel blocking agents, J. Immunol. 133:2904–2909.

    PubMed  CAS  Google Scholar 

  • Blitstein-Willinger, E., and Diamantstein, T., 1978, Inhibition by isoptin (a calcium antagonist) of the mitogenic stimulation of lymphocytes prior to the S-phase, Immunology 34:303–308.

    PubMed  CAS  Google Scholar 

  • Bloom, F. E., Wedner, H., and Parker, C. W., 1973, The use of antibodies to study cell structure and metabolism, Pharmacol Rev. 25:343–358.

    PubMed  CAS  Google Scholar 

  • Borghetti, A. F., Kay, J. E., and Wheeler, K. P., 1979, Enhanced transport of natural amino acids after activation of pig lymphocytes, Biochem. J. 182:27–32.

    PubMed  CAS  Google Scholar 

  • Bougnoux, P., Bonvini, E., Chang, Z. L., and Hoffman, T., 1983, Effect of interferon on phospholipid methylation by peripheral blood mononuclear cells, J. Cell. Biochem. 20:215–224.

    Google Scholar 

  • Bourguignon, L. Y. W., and Hsing, Y-C., 1983, The participation of adenylate cyclase in lymphocyte capping, Biochim. Biophys. Acta 728:186–190.

    PubMed  CAS  Google Scholar 

  • Boyett, J. D., and Hofert, J. F., 1972, Stimulatory effect of insulin on glucose metabolism of thymus lymphocytes, Horm. Metab. Res. 4:163–167.

    CAS  Google Scholar 

  • Bray, M. A., Powell, R. G., and Lydyard, P. M., 1981, Prostaglandin generation by separated human blood mononuclear cell fractions, Int. J. Immunopharmacol. 3:377–381.

    PubMed  CAS  Google Scholar 

  • Bretscher, M. S., and Raff, M. C., 1975, Mammalian plasma membranes. Nature (Lond.) 258:43–49.

    CAS  Google Scholar 

  • Brewer, C. F., Marcus, D. N., Grollman, A. P., 1974, Interactions of saccharides with concanavalin A, J. Biol. Chem. 249:4614–4616.

    PubMed  CAS  Google Scholar 

  • Brock, J. H., 1981, The effect of iron and transferrin on the response of serum-free cultures of mouse lymphocytes to concanavalin A and LPS, Immunology 43:387–392.

    PubMed  CAS  Google Scholar 

  • Brock, J. H., and Mainou-Fowler, T., 1983. The role of iron and transferrin in lymphocyte transformation, Immunol. Today 4:347–351.

    CAS  Google Scholar 

  • Brock, J. H., and Rankin, C., 1981, Transferrin binding and iron uptake by mouse lymph node cells during transformation in response to concanavalin A, Immunology 43:393–398.

    PubMed  CAS  Google Scholar 

  • Buckley, A. R., Montgomery, D. W., Kibler, R., Putnam, C. W., Zukoski, C. F., Gout, P. W., Beer, C. T., and Russell, D. H., 1986, Prolactin stimulation of ornithine decarboxylase and mitogenesis in Nb2 node lymphoma cells: The role of protein kinase C and calcium mobilization. Immunopharmacology 12:37–51.

    CAS  Google Scholar 

  • Burgess, G. M., Godfrey, P. P., McKinney, J. S., Berridge, M. J., Irvine, R. F., and Putney, J. W., Jr., 1984, The second messenger linking receptor activation to internal Ca release in liver, Nature (Lond.) 309:63–65.

    CAS  Google Scholar 

  • Burgoyne, L. A., Wagar, M. A., and Atkinson, M. R., 1970, Initiation of DNA synthesis in rat thymus: Correlation of calcium-dependent initiation in thymocytes and in isolated thymus nuclei, Biochem. Biophys. Res. Commun. 39:918–922.

    PubMed  CAS  Google Scholar 

  • Burleson, D. G., and Sage, H. J., 1976, Effect of lectins on the levels of cAMP and cGMP in guinea pig lymphocytes: Early responses of lymph node cells to mitogenic and non-mitogenic lectins, J. Immunol 116:696–703.

    CAS  Google Scholar 

  • Butman, B. T., Jacobsen, T., Cabatu, O. G., and Bourguignon, L. Y. W., 1981, The involvement of cAMP in lymphocyte capping, Cell. Immunol. 61:397–403.

    PubMed  CAS  Google Scholar 

  • Byus, C. v., Klimpel, G. R., Lucas, D. O., and Russell, D. H., 1977, Type I and type II cyclic AMP-dependent protein kinase as opposite effectors of lymphocyte mitogenesis. Nature (Lond.) 268:63–64.

    CAS  Google Scholar 

  • Byus, C. v., Klimpel, G. R., Lucas, D. O., and Russell, D. H., 1978, Ornithine decarboxylase induction in mitogen-stimulated lymphocytes is related to the specific activation of type I adenosine cyclic 3′,5′-monophosphate-dependent protein kinase, Mol. Pharmacol. 14:431–441.

    PubMed  CAS  Google Scholar 

  • Cantrell, D. A., Davies, A. A., and Crumpton, M. J., 1985, Activators of protein kinase C down- regulate and phosphorylate the T3/T-cell antigen receptor complex of human T lymphocytes. Proc. Natl. Acad. Sci. USA 82:8158–8162.

    PubMed  CAS  Google Scholar 

  • Carpentieri, U., Brouhard, B. H., LaGrone, L., and Lockhart, L. H., 1980a, Observations on prostaglandins in normal and leukemic human lymphocytes, Prostaglandins 20:1117–1129.

    PubMed  CAS  Google Scholar 

  • Carpentieri, U., Minguell, J. J., and Haggard, M. E., 1980b, Variation of activity of protein kinase in unstimulated and phytohemagglutinin-stimulated normal and leukemic human lymphocytes, Cancer Res. 40:2714–2718.

    PubMed  CAS  Google Scholar 

  • Carpentieri, U., Monahan, T. M., and Gustavson, L. P., 1980c, Observations on the level of cyclic nucleotides in three populations of human lymphocytes in culture, J. Cyclic Nucleotide Res. 6: 253–259.

    PubMed  CAS  Google Scholar 

  • Carpentieri, U., Minguell, J. J., and Gardner, F. H., 1981, Adenylate cyclase and guanylate cyclase activity in normal and leukemic human lymphocytes, Blood 57:975–978.

    PubMed  CAS  Google Scholar 

  • Casnellie, J. E., and Lamberts, R. J., 1986, Tumor promoters cause changes in the state of phosphorylation and apparent molecular weight of a tyrosine protein kinase in T lymphocytes. J. Biol. Chem. 261:4921–4925.

    PubMed  CAS  Google Scholar 

  • Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257:7847–7851.

    PubMed  CAS  Google Scholar 

  • Chambers, D. A., Martin, D. W., Jr., and Weinstein, Y., 1974, The effect of cyclic nucleotides on purine biosynthesis and the induction of PRPP synthetase during lymphocyte activation. Cell 3: 375–380.

    PubMed  CAS  Google Scholar 

  • Chandy, K. G., DeCoursey, T. E., Cahalan, M. D., McLaugulin, C., and Gupta, S., 1984, Voltage- gated potassium channels are required for human T lymphocyte activation, J. Exp. Med. 160: 369–385.

    PubMed  CAS  Google Scholar 

  • Chaplin, D. D., Wedner, H. J., and Parker, C. W., 1980, Protein phosphorylation in human peripheral blood lymphocytes: Mitogen-induced increases in protein phosphorylation in intact lymphocytes, J. Immunol. 124:2390–2398.

    PubMed  CAS  Google Scholar 

  • Chauwla, R. K., Shlaer, M., Laurson, D. H., Murray, T., Schmidt, F., Shoji, M., Nixon, D., Richmond, A., Rudman, D., 1980, Elevated plasma and urinary guanosine 3’,5’-monophosphate and increased production rate in patients with neoplastic disease. Cancer Res. 40:3915–3920.

    Google Scholar 

  • Chen, S-H. S., 1979, Relationship between phosphatidylcholine biosynthesis and cellular commitment in concanavalin A-stimulated lymphocytes, Exp. Cell. Res. 121:283–290.

    PubMed  CAS  Google Scholar 

  • Chesters, J. K., 1975, Comparison of the effects of zinc deprivation and actinomycin D on ribonucleic acid synthesis by stimulated lymphocytes, Biochem. J. 150:211–218.

    PubMed  CAS  Google Scholar 

  • Cheung, R. K., Grinstein, S., Gelfand, E. W., 1983, Permissive role of calcium in the inhibition of T cell mitogenesis by calmodulin antagonists, J. Immunol 131:2291–2294.

    PubMed  CAS  Google Scholar 

  • Chien, M. M., and Ashman, R. P., 1983, Phospholipid synthesis by activated human B lymphocytes, J. Immunol 130:2568–2573.

    PubMed  CAS  Google Scholar 

  • Chisari, F. V., and Curtis, L. K., 1981, Modulation of peripheral blood mononuclear cell cyclic adenosine monophosphate levels of human very low density lipoprotein. Cell Immunol 65: 325–336.

    Google Scholar 

  • Claflin, A., Vesely, D., Hudson, J., Bagwell, C., Lekotay, D., Lo, T., Fletcher, M., Block, N., and Levey, G., 1977, Inhibition of growth and guanylate cyclase activity of an undifferentiated prostate adenocarcinoma by an extract of the balsam pear (Momordica charantia abbreviata), Proc. Natl Acad. Scl USA 75:989–993.

    Google Scholar 

  • Clarkson, B., and Baserga, R., 1974, Control of Proliferation in Animal Cells, Cold Spring Harbor Conferences on Cell Proliferation, Vol. 1, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Coffey, R. G., 1977, Assays for cyclic nucleotides including clinical applications, in: Immunophar- macology (J. Hadden, R. Coffey, and F. Spreafico, eds.), pp. 389–412, Plenum, New York.

    Google Scholar 

  • Coffey, R. G., 1986, Phosphatidylserine and phorbol myristate acetate stimulation of human lymphocyte guanylate cyclase. Int. J. Biochem. 18:665–670.

    PubMed  CAS  Google Scholar 

  • Coffey, R. G., and Hadden, J. W., 1981a, Phorbol myristate acetate stimulation of lymphocyte guanylate cyclase, Biochem. Biophys. Res. Commun. 101:584–590.

    PubMed  CAS  Google Scholar 

  • Coffey, R. G., and Hadden, J. W., 1981b, Arachidonate and metabolites in mitogen activation of lymphocyte guanylate cyclase, in: Advances in Immunopharmacology (J. Hadden, L. Chedid, R. Spreafico, and P. Mullen, eds.), pp. 365–373, Pergamon, Oxford.

    Google Scholar 

  • Coffey, R. G., and Hadden, J. W., 1983a, Phorbol myristate acetate stimulation of lymphocyte guanylate cyclase and cyclic guanosine 3’,5’-monophosphate phosphodiesterase and reduction of adenylate cyclase. Cancer Res. 43:150–158.

    PubMed  CAS  Google Scholar 

  • Coffey, R. G., and Hadden, J. W., 1983b, Calcium and guanylate cyclase in lymphocyte activation, in: Advances in Immunopharmacology. Vol. 2 (L. Chedid, J. Hadden, and A. Willoughby, eds.), pp. 87–94, Pergamon, Oxford.

    Google Scholar 

  • Coffey, R. G., and Hadden, J. W., 1984, Cyclic nucleotides in neurohumoral and hormonal regulation of cells of the immune system, in: Stress, Immunity, and Aging (E. L. Cooper, ed.), pp. 225–247, Dekker, New York.

    Google Scholar 

  • Coffey, R. G., and Hadden, J. W., 1985, Stimulation of lymphocyte guanylate cyclase by HETEs, in: Prostaglandins, Leukotrienes, and Lipoxins: Biochemistry, Mechanism of Action, and Clinical Applications (J. M. Bailey, ed.), pp. 501–509, Plenum, New York.

    Google Scholar 

  • Coffey, R. G., Hadden, E. M., and Hadden, J. W., 1975, Norepinephrine stimulation of membrane ATPase in human lymphocytes, Endocrinol Res. Commun. 12:179–198.

    Google Scholar 

  • Coffey, R. G., Hadden, E. M., and Hadden, J. W., 1977, Evidence for cyclic GMP and calcium mediation of lymphocyte activation by mitogens, J. Immunol 119:1387–1394.

    PubMed  CAS  Google Scholar 

  • Coffey, R. G., Hadden, E. M., Lopez, C., and Hadden, J. W., 1978, Cyclic GMP and calcium in the initiation of cellular proliferation. Adv. Cyclic Nucleotide Res. 9:661–676.

    PubMed  CAS  Google Scholar 

  • Coffey, R. G., Hadden, E. M., and Hadden, J. W., 1981, Phytohemagglutinin stimulation of guanylate cyclase in human lymphocytes, J. Biol Chem. 256:4418–4424.

    PubMed  CAS  Google Scholar 

  • Cohen, S., Wong, R., Gutowski, J., and Goldfarb, R. H., 1986, The cytoplasmic protein (ADR) that triggers DNA synthesis in interleukin 2-stimulated lymphocytes appears to be a protease. Sixth International Congress of Immunology, Toronto, Canada, p. 236 (abst.).

    Google Scholar 

  • Cooper, H. L., 1968, Ribonucleic acid metabolism in lymphocytes stimulated by phytohemagglutinin. II. Rapidly synthesized ribonucleic acid and the production of ribosomal ribonucleic acid, J. Biol Chem. 243:34–43.

    PubMed  CAS  Google Scholar 

  • Cooper, H. L., 1972, Studies on RNA metabolism during lymphocyte activation. Transplant Rev. 11:3–38.

    PubMed  CAS  Google Scholar 

  • Cooper, H. L., 1974, Studies of poly(A)-bearing RNA in resting and growing human lymphocytes, in: Control of Proliferation in Animal Cells (B. Clarkson and R. Baserga, eds.), Vol. 4, pp. 769–800, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Cooper, H. L., and Braverman, R., 1980, Protein synthesis in resting and growth-stimulated human peripheral lymphocytes, Exp. Cell. Res. 127:351–359.

    Google Scholar 

  • Cooper, H. L., and Braverman, R., 1981, Close correlation between initiator methionyl-tRNA level and rate of protein synthesis during human lymphocyte growth cycle, J. Biol. Chem. 256:7461–7467.

    PubMed  CAS  Google Scholar 

  • Cooper, H. L., and Lester, E. P., 1982, Nuclear activation and regulation of lymphocyte protein synthesis, in: Advances in Immunopharmacology, Vol. 2, (J. Hadden, L. Chedid, P. Dukor, and D. Willoughby, eds.), pp. 95–100, Pergamon, New York.

    Google Scholar 

  • Cooper, H. L., and Rubin, A. D., 1965, RNA metabolism in lymphocytes stimulated by phy- tohemagglutinin: Initial response to phytohemagglutinin. Blood 25:1014–1027.

    PubMed  CAS  Google Scholar 

  • Cotner, T., Williams, J. M., Strom, T. B., and Strominger, J. L., 1982, The relationship between early T cell activation antigens and T cell proliferation, in: Advances in Immunopharmacology, Vol. 2 (J. Hadden, L. Chedid, P. Dukor, F. Spreafico, and D. Willoughby, eds.), pp. 63–68, Pergamon, Oxford.

    Google Scholar 

  • Coulson, A. S., and Kennedy, L. A., 1971, Lymphocyte membrane enzymes. Blood 38:485–490.

    PubMed  CAS  Google Scholar 

  • Cross, M. E., and Ord, M. G., 1971, Changes in histone phosphorylation and associated early metabolic events in pig lymphocyte cultures transformed by phytohaemagglutinin or 6-N,2’-0- dibutyryladenosine 3’,5’-cyclic monophosphate, Biochem. J. 124:241–248.

    PubMed  CAS  Google Scholar 

  • Crumpton, M. J., Auger, J., Green, N. M., and Maino, V. C., 1976, Surface membrane events following activation by lectins and calcium ionophore, in: Mitogens in Immunobiology (J. J. Oppenheim and D. L. Rosenstreich, eds.), pp. 85–101, Academic, New York.

    Google Scholar 

  • Cuthbert, J. A., and Shay, J. W., 1983, Microtubules and lymphocyte responses: Effects of colchicine and taxol on mitogen-induced human lymphocyte activation and proliferation, J. Cell. Physiol. 116:127–134.

    PubMed  CAS  Google Scholar 

  • Darzynkiewicz, A., Bolund, L., and Ringertz, N. R., 1969, Nucleoprotein changes and initiation of RNA synthesis in PHA stimulated lymphocytes, Exp. Cell. Res. 56:418–424.

    PubMed  CAS  Google Scholar 

  • Davis, L., and Lipsky, P. E., 1986, Signals involved in T cell activation, J. Immunol. 136:3588–3596.

    PubMed  CAS  Google Scholar 

  • Davis, L., Vida, R., and Lipsky, P. E., 1986, Regulation of human T lymphocyte mitogenesis by antibodies to CD3, J. Immunol. 137:3758–3767.

    PubMed  CAS  Google Scholar 

  • Dawson, A. P., and Irvine, R. F., 1984, Inositol (l,4,5)-triphosphate-promoted Ca2+ release from microsomal fractions of rat liver, Biochem. Biophys. Res. Commun. 120:858–864.

    PubMed  CAS  Google Scholar 

  • DeCoursey, T. E., Chandy, K. G., Gupta, S., and Cahalan, M. D., 1984, Voltage gated K + channels in human T lymphocytes: A role in mitogenesis?, Nature (Lond.) 307:465–468.

    CAS  Google Scholar 

  • Degen, J. L., Neubauer, M. G., Degen, S. J. F., Seyfried, C. E., and Morris, D. R., 1983, Regulation of protein synthesis in mitogen-activated bovine lymphocytes. Analysis of active- specific and total mRNA accumulation and utilization, J. Biol. Chem. 258:12153–12162.

    PubMed  CAS  Google Scholar 

  • DeLaclos, B. F., and Braquet, P., and Borgeat, P., 1984, Characteristics of leukotriene and HETE synthesis in human leukocytes in vitro. Effect of arachidonic acid concentration, Prostaglandins Leukotrienes Med. 13:47–52.

    Google Scholar 

  • Depper, J. M., Leonard, W. J., Drogula, C. L., Kronke, M., Waldmann, T. A., and Greene, W. C., 1985, J. Cell. Biochem. 27:267–276.

    PubMed  CAS  Google Scholar 

  • DeRubertis, F. R., and Zenser, T., 1976, Activation of murine lymphocytes by cyclic guanosine 3’,5’-monophosphate: Specificity and role in mitogen action, Biochim. Biophys. Acta 428:91–103.

    CAS  Google Scholar 

  • DeRubertis, F. R., Zenser, T. V., Adler, W. H., and Hudson, T., 1974, Role of cyclic adenosine 3’,5’-monophosphate in lymphocyte mitogenesis, J. Immunol. 113:151–161.

    PubMed  CAS  Google Scholar 

  • Deutsch, C., and Price, M. A., 1982, Cell calcium in human peripheral blood lymphocytes and the effect of mitogen, Biochim. Biophys. Acta 687:211–218.

    CAS  Google Scholar 

  • Deutsch, C., Taylor, J. S., and Wilson, D. P., 1982, Regulation of intracellular pH by human peripheral blood lymphocytes as measured by if NMR, Proc. Natl. Acad. Sci. USA 79:7944–7948.

    Google Scholar 

  • Deviller, P., Cille, Y., and Betuel, H., 1975, Guanyl cyclase activity of human blood lymphocytes. Enzyme 19:300–313.

    PubMed  CAS  Google Scholar 

  • Diamantstein, T., and Odenwald, M. V., 1974, Control of the immune response in vitro by calcium ions. Immunology 27:531–541.

    PubMed  CAS  Google Scholar 

  • Diamantstein, T., and Ulmer, A., 1975a, The control of immune response in vitro by Ca2+. II. The Ca2-t--dependent period during mitogenic stimulation, Immunology 28:121–126.

    PubMed  CAS  Google Scholar 

  • Diamantstein, T., and Ulmer, A., 1975b, Effect of cyclic nucleotides on DNA synthesis in mouse lymphoid cells, Immunol. Commun. 4:51–62.

    PubMed  CAS  Google Scholar 

  • Diamantstein, T., and Ulmer, A., 1975c, Regulation of DNA synthesis by guanosine-5’-diphosphate, cyclic guanosine-3’,5’-monophosphate, and cyclic adenosine-3’,5’-monophosphate in mouse lymphoid cells, Exp. Cell. Res. 93:309–314.

    PubMed  CAS  Google Scholar 

  • Diamantstein, T., and Ulmer, A., 1975d, Stimulation by cyclic GMP of lymphocytes mediated by soluble factor released from adherent cells. Nature (Lond.) 256:418–419.

    CAS  Google Scholar 

  • Diaz-Espada, P., and Lopez-Alarcon, L., 1982, Mitogen-induced changes in glycolytic enzymes of mouse lymphocytes: Influence of insulin on cell activation in vitro. Immunology 46:705–712.

    CAS  Google Scholar 

  • Dinarello, C. A., Mamoy, S. O., and Rosenwasser, L. J., 1983, Role of arachidonate metabolism in the immunoregulatory function of human leukocyte pyrogen/lymphocyte-activating factor in interleukin 1, J. Immunol. 130:890–895.

    PubMed  CAS  Google Scholar 

  • Dobson, P., and Mellors, A., 1980, Inhibition of acyltransferase in lymphocytes by concanavalin A, Biochim. Biophys. Acta 629:305–316.

    PubMed  CAS  Google Scholar 

  • Domand, J., Mani, J-C., Mousseron-Canet, M., and Pau, B., 1974, Properties of a Ca2 +and Mg2 + dependent ATPase from plasmic membranes of lymphocytes. Effects of concanavalin A upon membrane ATPases, Biochimie 56:1425–1432.

    Google Scholar 

  • Domand, J., Reminiac, C., and Mani, J-C., 1978, Studies of (Na+ + K +) sensitive ATPase activity in pig lymphocytes. Effects of concanavalin A, Biochim. Biophys. Acta 509:194–200.

    Google Scholar 

  • Domand, J., Bonnafous, J-C., Mani, J-C., 1980, 5’-Nucleotidase-adenylate cyclase relationships in mouse thymocytes, FEBS Lett. 110:30–34.

    Google Scholar 

  • Duncan, M. R., and Hadden, J. W., 1982, Concanavalin-induced human lymphocyte mitogenic factor: Activity distinct from interleukin 1 and 2, J. Immunol. 129:56–62.

    PubMed  CAS  Google Scholar 

  • Earp, H. S., Utsinger, P. D., Yount, W. J., Logue, M., and Steiner, A. L., 1977, Lymphocyte surface modulation and cyclic nucleotides, J. Exp. Med. 145:1087–1092.

    PubMed  CAS  Google Scholar 

  • Edelman, O. M., 1976, Surface modulation in cell recognition and cell growth. Science 194:218–226.

    Google Scholar 

  • Edelman, G. M., Yahara, I., and Wang, J. L., 1973, Receptor mobility and receptor-cytoplasmic interactions in lymphocytes, Proc. Natl. Acad. Sci. USA 70:1442–1446.

    PubMed  CAS  Google Scholar 

  • Ellegaard, J., and Dimitrov, N. V., 1973, Ouabain-sensitive and oligomycin-sensitive adenosine triphosphatase activities of normal human lymphocytes, Br. J. Haematol. 25:309–320.

    PubMed  CAS  Google Scholar 

  • Epstein, P., Mills, J., Ross, C., Strada, S., Hersh, E., and Thompson, W., 1977, Increased cyclic nucleotide phosphodiesterase activity associated with proliferation and cancer in human and murine lymphoid cells. Cancer Res. 37:4016–4023.

    PubMed  CAS  Google Scholar 

  • Farago, A., Hasznos, P., Antoni, F., and Romhanji, T., 1978, Two types of cyclic GMP binding site associated with the cyclic AMP-dependent protein kinase from lymphocytes, Biochim. Biophys. Acta 538:493–504.

    PubMed  CAS  Google Scholar 

  • Farese, R. V., 1983, The phosphatidate-phosphoinositide cycle: An intracellular messenger system in the action of hormones and neurotransmitters. Metabolism 32:628–641.

    PubMed  CAS  Google Scholar 

  • Farrar, W. L., Evans, S. W., Rapp, U. R., and Cleveland, J. J., 1987, Effects of anti-proliferative cyclic AMP on interleukin 2-stimulated gene expression, J. Immunol. 139:2075–2080.

    PubMed  CAS  Google Scholar 

  • Farrar, W. L., and Anderson, W. B., 1985, Interleukin-2 stimulates association of protein kinase C with plasma membrane. Nature (Lond.) 315:233–235.

    CAS  Google Scholar 

  • Farrar, W. L., and Humes, J. L., 1985, The role of arachidonic acid metabolism in the activities of interleukin 1 and 2, J. Immunol. 135:1153–1159.

    PubMed  CAS  Google Scholar 

  • Farrar, W. L., and Ruscetti, F. W., 1986, Association of protein kinase C activation of IL-2 receptor expression, J. Immunol. 136:1266–1273.

    PubMed  CAS  Google Scholar 

  • Farrar, W. L., Cleveland, J. L., Beckner, S. K., Bonvini, E., and Evans, S. W., 1986, Biochemical and molecular events associated with interleukin 2 regulation of lymphocyte proliferation. Immunol. Rev. 92:49–65.

    PubMed  CAS  Google Scholar 

  • Feister, A. J., and Sage, H. J., 1986, Stimulation of phosphatidylinosital turnover by concanavalin A is not sufficient to activate mouse thymocytes, Biochem Biophys. Res. Commun. 141:657–664.

    PubMed  CAS  Google Scholar 

  • Felber, S. M., and Brand, M. D., 1983, Early plasma-membrane potential changes during stimulation of lymphocytes by concanavalin A, Biochem. J. 210:885–891.

    PubMed  CAS  Google Scholar 

  • Ferber, E., and Resch, K., 1973, Phospholipid metabolism of stimulated lymphocytes: Activation of acyl-CoA: Lysolecithin acyl transferases in microsomal membranes, Biochim. Biophys. Acta 296:335–349.

    PubMed  CAS  Google Scholar 

  • Ferber, R., Reilly, C. E., DePasquale, G., and Resch, K., 1974, Lymphocyte stimulation by mitogens: Increase in membrane fluidity caused by changes of fatty acid moieties of phospholipids, in: Lymphocyte Recognition and Effector Mechanisms (K. Lindahl-Kiessling and D. Osoba, eds.), pp. 529–534, Academic, New York.

    Google Scholar 

  • Ferber, E., DePasquale, G. G., and Resch, K., 1975, Phospholipid metabolism of stimulated lymphocytes: Composition of phospholipid fatty acids, Biochim. Biophys. Acta 398:364–376.

    PubMed  Google Scholar 

  • Ferber, E., Reilly, C. E., and Resch, K., 1976, Phospholipid metabohsm of stimulated lymphocytes. Comparison of the activation of acyl-CoA: Lysolecithin acyltransferase with the binding of concanavalin A to thymocytes, Biochim. Biophys. Acta 448:143–154.

    PubMed  CAS  Google Scholar 

  • Ferguson, R. M., Schmidtke, J. R., and Simmons, R. L., 1975, Concurrent inhibition by chlor- promazine of concanavalin A-induced lymphocyte aggregation and mitogenesis. Nature (Lond.) 256:744–745.

    CAS  Google Scholar 

  • Ferguson, R., Schmidtke, J. R., and Simmons, R. L., 1976, Inhibition of mitogen-induced lymphocyte transformation by local anesthetics, J. Immunol. 116:627–634.

    PubMed  CAS  Google Scholar 

  • Fillingame, R. H., and Morris, D. R., 1973, Accumulation of poly amines and its inhibition by methyl glyoxol bis-(guanylhydrazone) during lymphocyte transformation, In: Poly amines in Normal and Neoplastic Growth (D. H. Russell, ed.), pp. 249–260, Raven, New York.

    Google Scholar 

  • Fillingame, R. H., Jorstad, C. M., and Morris, D. R., 1975, Increased cellular levels of spermidine or spermine are required for optimal DNA synthesis in lymphocytes activated by concanavalin A, Proc. Natl. Acad. Sci. USA 72:4042–4045.

    PubMed  CAS  Google Scholar 

  • Fisher, D. B., and Mueller, G. C., 1968, An early alteration in the phospholipid metabolism of lymphocytes by PHA, Proc. Nat. Acad. Sci. USA 60:1396–1402.

    PubMed  CAS  Google Scholar 

  • Fisher, D. B., and Mueller, G. C., 1969, The stepwise acceleration of phosphatidylcholine synthesis in PHA-treated lymphocytes, Biochim. Biophys. Acta 176:316–323.

    PubMed  CAS  Google Scholar 

  • Fisher, D. B., and Mueller, G. C., 1971a, Gamma-hexachlorocyclohexane inhibits the initiation of lymphocyte growth by phytohaemagglutinin, Biochem. Pharmacol. 20:2515–2518.

    PubMed  CAS  Google Scholar 

  • Fisher, D. B., and Mueller, G. C., 1971b, Studies on the mechanism by which phytohemagglutinin rapidly stimulates phospholipid metabolism of human lymphocytes, Biochim. Biophys. Acta 248:434–448.

    CAS  Google Scholar 

  • Fleisher, T. A., and Birx, D. L., 1985, The role of calcium in IL-2 dependent proliferation. Fed. Proc. 44:1309 (abst.).

    Google Scholar 

  • Folch, H., and Waksman, B., 1974, Regulation of lymphocyte responses in vitro. V. Suppression activity of adherent and non-adherent rat lymphoid cells. Cell. Immunol. 9:12–24.

    Google Scholar 

  • Forsdyke, D. R., 1968, Studies of the incorporation of [5–3H]uridine during activation and transformation of lymphocytes induced by phytohemagglutinin, Biochem. J. 107:197–205.

    PubMed  CAS  Google Scholar 

  • Fräser, A. R., Hemperly, J. J., Wang, J. L., and Edelman, G. M., 1976, Monovalent derivatives of concanavalin A, Proc. Natl. Acad. Sci. USA 73:790–794.

    PubMed  Google Scholar 

  • Freedman, M. H., 1979, Early biochemical events in lymphocyte activation, Cell Immunol. 44:290–313.

    PubMed  CAS  Google Scholar 

  • Freedman, M. H., Raff, M. C., and Gomperts, B., 1975, Induction of increased calcium uptake in mouse T-lymphocytes by concanavalin-A and its modulation by cyclic nucleotides, Nature (Land.) 255:378–382.

    CAS  Google Scholar 

  • Freedman, M. H., Khan, N. R., Frew-Marshall, B. J., Guppies, G. G., and Mely-Goubert, B., 1981, Early biochemical events in lymphocyte activation. Cell. Immunol. 58:134–146.

    PubMed  CAS  Google Scholar 

  • Friedman, H., and Kateley, J. R., 1974, Enhanced splenic ATPase activity in immunized mice, Proc. Soc. Exp. Biol. Med. 147:460–463.

    PubMed  CAS  Google Scholar 

  • Galbraith, R. M., Nel, A. E., Dirienzo, W., Ganonica, W., and Goldschmidt-Glermont, P. J., 1985, T3-mediated activation of human T cells involves translocation of Ga/phospholipid-depen- dent G-kinase, Fed. Proc. 44:1132.

    Google Scholar 

  • Gaulton, G. N., and Eardley, D. D., 1986, Interleukin 2-dependent phosphorylation of interleukin-2 receptors and other T cell membrane proteins, J. Immunol. 136:2470–2477.

    PubMed  CAS  Google Scholar 

  • Gelfand, E. W., Gheung, R. K., and Grinstein, S., 1984, Role of membrane potential in the regulation of lectin-induced calcium uptake, J. Cell. Physiol. 121:533–539.

    PubMed  CAS  Google Scholar 

  • Gelfand, E. W., Gheung, R. K., Mills, G. B., and Grinstein, S., 1985, Mitogens trigger a calcium- independent signal for proliferation in phorbol ester-treated lymphocytes. Nature (Lond.) 315: 419–424.

    CAS  Google Scholar 

  • Gelfand, E. W., Gheung, R. K., and Grinstein, S., 1986a, Mitogen-induced changes in Ga permeability are not mediated by voltage-gated K+ channels, J. Biol. Chem. 261:11520–11525.

    PubMed  CAS  Google Scholar 

  • Gelfand, E. W., Gheung, R. K., Grinstein, S., and Mills, G. B., 1986b, Characterization of the role for calcium influx in mitogen-induced triggering of human T cells. Identification of calcium- dependent and calcium-independent signals. Eur. J. Immunol. 16:907–912.

    PubMed  CAS  Google Scholar 

  • Gerson, D. F., and Kiefer, H., 1982, High intracellular pH accompanies mitotic activity in murine lymphocytes, in 7. Cell. Physiol. 112:1–4.

    CAS  Google Scholar 

  • Gerson, D. F., Kiefer, H., and Eufe, W., 1982, Intracellularp Hof mitogen-stimulated lymphocytes. Science 216:1009–1010.

    PubMed  CAS  Google Scholar 

  • Gery, I., and Eidinger, D., 1977, Selective opposing effects of cytochalisn B and other drugs on lymphocyte responses to different doses of mitogens. Cell. Immunol. 30:147–155.

    PubMed  CAS  Google Scholar 

  • Gilmore, W., and Weiner, L. P., 1985, The role of cyclic nucleotides and guanine nucleotide binding proteins in interleukin-2 production. Fed. Proc. 44:505.

    Google Scholar 

  • Goetzl, E. J., 1981, Selective feed-back inhibition of the 5-lipoxygenation of arachidonic acid in human T-lymphocytes, Biochem. Biophys. Res. Commun. 101:344–350.

    PubMed  CAS  Google Scholar 

  • Goldberg, N. D., Haddox, M. K., Dunham, E., Lopez, G., and Hadden, J. W., 1974, The Yin Yang hypothesis of biological control: Opposing influences of cyclic GMP and cyclic AMP in the regulation of cell proliferation and other biological processes, in: Control of Proliferation in Animal Cells Glarkson and R. Baserga, cds.). Cold Spring Harbor Conf Cell Prolif 1:609–626.

    Google Scholar 

  • Goldberg, N. D., Graff, G., Haddox, M. K., Stephenson, J. H., Glass, D. B., and Moser, M. E., 1978, Redox modulation of splenic cell soluble guanylate cyclase activity: Activation by hydro- philic and hydrophobic oxidants represented by ascorbic and dehydroascorbic acids, fatty acid hydroperoxides and prostaglandin endoperoxides. Adv. Cyclic Nucleotide Res. 9:101–130.

    PubMed  CAS  Google Scholar 

  • Goldyne, M. E., 1984, The generation of 5-lipoxygenase-derived arachidonic acid metabolites among human lymphocytes and monocytes. Prostaglandins and Leukotrienes 84—Fourth Int. Washington Spring Symposium.

    Google Scholar 

  • Goldyne, M. E., and Stobo, J. D., 1982, Human monocytes synthesize eicosanoids from T lymphocyte-derived arachidonic acid. Prostaglandins 24:623–630.

    PubMed  CAS  Google Scholar 

  • Goodman, M. G., and Weigle, W. O., 1983, T cell-replacing activity of G8-derivatized guanine ribonucleosides, J. Immunol. 130:2042–2044.

    PubMed  CAS  Google Scholar 

  • Goodman, M. G., Bninton, L. L., and Weigle, W. O., 1981, Modulation of lymphocyte activation, Cell. Immunol. 58:85–96.

    PubMed  CAS  Google Scholar 

  • Goodwin, J. S., 1986, Regulation of T cell activation of leukotriene B4, Immunol. Res. 5:233–248.

    PubMed  CAS  Google Scholar 

  • Goodwin, J. S., Baukhurst, A. D., and Messner, R. P., 1977, Suppression of human T-cell mitogenesis by prostaglandin. Existence of a prostaglandin-producing suppressor cell, J. Exp. Med. 146:1719–1734.

    CAS  Google Scholar 

  • Gordon, D., Nouri, A. M. E., and Thomas, R. U., 1981, Selective inhibition of thromboxane biosynthesis in human blood mononuclear cells and the effects on mitogen-stimulated lymphocyte proliferation, Eur. J. Pharmacol. 74:469–476.

    CAS  Google Scholar 

  • Graff, G., Stephenson, J. H., Glass, D. B., Haddox, M. K., and Goldberg, N. D., 1978, Activation of soluble splenic cell guanylate cyclase by prostaglandin endoperoxides and fatty acid hydroperoxides, J. Biol. Chem. 253:7662–7676.

    PubMed  CAS  Google Scholar 

  • Greaves, M. F., and Bauminger, S., 1972, Activation of T and B lymphocytes by insoluble phy- tomitogens. Nature New Biol. 235:67–70.

    PubMed  CAS  Google Scholar 

  • Greene, W., and Parker, C. W., 1975, A role for cytochalasin-sensitive proteins in the regulation of calcium transport in activated human lymphocytes, Biochem. Biophys. Res. Commun. 65:456–463.

    Google Scholar 

  • Greene, W. C., Parker, C. M., and Parker, C. W., 1976a, Calcium and lymphocyte activation, Cell. Immunol. 25:74–89.

    PubMed  CAS  Google Scholar 

  • Greene, W. C., Parker, C. M., and Parker, C. W., 1976b, Opposing effects of mitogenic and nonmitogenic lectins on lymphocyte activation, J. Biol Chem. 251:4017–4025.

    PubMed  CAS  Google Scholar 

  • Greene, W. C., Parker, C. M., and Parker, C. W., 1976c, Cytochalasin sensitive structures and lymphocyte activation, Exp. Cell. Res. 103:109–118.

    PubMed  CAS  Google Scholar 

  • Greene, W. C., Parker, C. M., and Parker, C. W., 1976d, Colchicine-sensitive structures and lymphocyte activation, J. Immunol. 117:1015–1022.

    PubMed  CAS  Google Scholar 

  • Grinstein, S., Cohen, S., Lederman, H. M., and Gelfand, E. W., 1984, The intracellular pH of quiescent and proliferating human and rat thymic lymphocytes, J. Cell. Physiol. 121:87–95.

    PubMed  CAS  Google Scholar 

  • Gualde, N., Rabinovitch, H., Fredon, M., and Rigaud, M., 1982, Effects of 15-hydroperox- yeicosatetraenoic acid on human lymphocyte sheep erythrocyte rosette formation and response to concanavalin A associated with HLA system, Eur. J. Immunol. 12:773–777.

    PubMed  CAS  Google Scholar 

  • Gualde, N., Chabel-Rabinovitch, H., Motta, C., Durand, J., Beneytout, J. L., and Rigaud, M., 1983, Hydroperoxyeicosatetraenoic acids: Potent inhibitors of lymphocyte responses, Biochim. Biophys. Acta 750:429–433.

    PubMed  CAS  Google Scholar 

  • Gualde, N., Atluru, D., and Goodwin, J., 1985a, Effect of lipoxygenase metabolites of arachidonic acid on proliferation of human T cells and T cell subsets, J. Immunol. 134:1125–1128.

    PubMed  CAS  Google Scholar 

  • Gualde, N., Rigaud, M., and Goodwin, J. S., 1985b, Induction of suppressor cells from peripheral blood T cells by 15-hydroperoxyeicosatetraenoic acid (15-HPETE), J. Immunol. 135:3424–3429.

    PubMed  CAS  Google Scholar 

  • Gunther, G. R., Wang, J. L., Yahara, L, Cunningham, B., and Edelman, G. M., 1973, Concanavalin A derivatives with altered biological activities, Proc. Natl. Acad. Sei. USA 70:1012–1016.

    CAS  Google Scholar 

  • Gunther, G. R., Wang, J. L., and Edelman, G. M., 1976, Kinetics of colchicine inhibition of mitogenesis in individual lymphocytes, Exp. Cell. Res. 98:15–22.

    PubMed  CAS  Google Scholar 

  • Gupta, S., 1979, Subpopulations of human T lymphocytes. XIL In vitro effects of agents modifying intracellular levels of cyclic nucleotides on T cells with receptors for IgM (Tu), IgG (Ty), or Ig A (Ta), J. Immunol. 123:2664–2668.

    PubMed  CAS  Google Scholar 

  • Gutowski, J. K., Mukheiji, B., and Cohen, S., 1984, The role of cytoplasmic intermediates in IL-2- induced T cell growth, J. Immunol. 133:3068–3074.

    PubMed  CAS  Google Scholar 

  • Hadden, J. W., 1977, Cyclic nucleotides in lymphocyte proliferation and differentiation, in: Immunopharmacology (J. W. Hadden, R. G. Coffey, and F. Spreafico, eds.), pp. 1–28, Plenum, New York.

    Google Scholar 

  • Hadden, J. W., and Coffey, R. C., 1982, Cyclic nucleotides in mitogen induced lymphocyte proliferation. Immunology Today 3:299–304.

    CAS  Google Scholar 

  • Hadden, J. W., Hadden, E. M., and Middleton, E., Jr., 1970, Lymphocyte blast transformation. I. Demonstration of adrenergic receptors in human peripheral lymphocytes, J. Cell. Immunol. 1: 583–595.

    CAS  Google Scholar 

  • Hadden, J. W., Hadden, E. M., and Good, R. A., 1971a, Adrenergic mechanisms in human lymphocyte metabolism, Biochim. Biophys. Acta 237:339–347.

    PubMed  CAS  Google Scholar 

  • Hadden, J. W., Hadden, E. M., and Good, R. A., 1971b, Alpha adrenergic stimulation of glucose uptake in the human erythrocyte, lymphocyte, and lymphoblast, Exp. Cell. Res. 68:217–219.

    PubMed  CAS  Google Scholar 

  • Hadden, J. W., Hadden, E. M., and Good, R. A., 1971c, Lymphocyte blast transformation. II. The mechanism of action of alpha-adrenergic receptor effects. Im. Arch. Allergy Appl. Immunol. 40: 526–539.

    CAS  Google Scholar 

  • Hadden, J. W., Hadden, E. M., Haddox, M. K., and Goldberg, N. D., 1972, Guanosine 3’,5’-cyclic monophosphate: A possible intracellular mediator of mitogen influences in lymphocytes, Proc. Natl. Acad. Sci. USA 69:3024–3027.

    PubMed  CAS  Google Scholar 

  • Hadden, J. W., Johnson, E. M., Hadden, E. M., Coffey, R. G., and Johnson, L. D., 1975, Cyclic GMP and lymphocyte activation, in: Immune Recognition (A. Rosenthal, ed.), pp. 359–389, Academic, New York.

    Google Scholar 

  • Hadden, J. W., Hadden, E. M., Sadlik, J. R., and Coffey, R. G., 1976, Effects of concanavalin A and a succinylated derivative on lymphocyte proliferation and cyclic nucleotide levels, Proc. Natl. Acad. Sci. USA 73:1717–1721.

    PubMed  CAS  Google Scholar 

  • Hadden, J. W., Coffey, R. G., Ananthakrishnan, R., and Hadden, E. M., 1979, Part V. Role of intracellular factors in immunity: Cyclic nucleotides and calcium in lymphocyte regulation and activation, Ann. NY Acad. Sci. 332:241–254.

    CAS  Google Scholar 

  • Hadden, J. W., Hadden, E. M., and Coffey, R. G., 1987, IL-2 increases cyclic GMP levels in immature thymocytes and mitogen primed lymphocytes, Int. J. Immunopharmacol. 10:851–858.

    Google Scholar 

  • Haddox, M. K., Furcht, L. T., Gentry, S. R., Moser, M. E., Stephenson, J. H., and Goldberg, N. D., 1976, Periodate-induced increase in cyclic GMP in mouse and guinea pig splenic cells in association with mitogenesis. Nature (Lond.) 262:146–148.

    CAS  Google Scholar 

  • Hait, W., and Weiss, B., 1975, Increased cyclic nucleotide phosphodiesterase activity in leukemic lymphocytes. Nature (Lond.) 259:321–323.

    Google Scholar 

  • Hait, W., and Weiss, B., 1977, Characteristics of the cyclic nucleotide phosphodiesterases of normal and leukemic lymphocytes, Biochim. Biophys. Acta 497:86–100.

    PubMed  CAS  Google Scholar 

  • Hall, D. J., O’Leary, J. J., and Rosenberg, A., 1982, Commitment and proliferation kinetics of human lymphocytes stimulated in vitro: Effects of colchicine on mitogen response, J. Cell. Physiol. 112:157–161.

    PubMed  CAS  Google Scholar 

  • Hamilton, T. A., 1982, Regulation of transferrin receptor expression in concanavalin A stimulated and gross virus transformed rat lymphoblasts, J. Cell. Physiol. 113:40–46.

    PubMed  CAS  Google Scholar 

  • Hamilton, T. A., 1983, Receptor-mediated endocytosis and exocytosis of transferrin in concanavalin A-stimulated rat lymphocytes, J. Cell. Physiol. 114:222–228.

    PubMed  CAS  Google Scholar 

  • Hamilton, L. J., and Kaplan, J. G., 1977, Flux of 86Rb in activated human lymphocytes. Can. J. Biochem. 55:774–778.

    PubMed  CAS  Google Scholar 

  • Hasegawa-Sasaki, H., and Sasaki, T., 1981, Phytomitogen-induced stimulation of synthesis do novo of Ptdlns, phosphatidic acid and diacylglycerol in rat and human lymphocytes, Biochim. Biophys. Acta 666:252–258.

    PubMed  CAS  Google Scholar 

  • Hasegawa-Sasaki, H., and Sasaki, T., 1982, Rapid breakdown of Ptdlns accompanied by accumulation of phosphatidic acid and diacylglycerol in rat lymphocytes, J. Biochem. 91:463–468.

    PubMed  CAS  Google Scholar 

  • Hasegawa-Sasaki, H., and Sasaki, T., 1983, Phytohemagglutinin induces rapid degradation of phosphatidyl-inositol-4,5-bis-phosphate and transient accumulation of phosphatidic acid and diacylglycerol in a human T-lymphoblastoid cell line, CCRF-CEM, Biochim. Biophys. Acta 754:305–314.

    CAS  Google Scholar 

  • Hashizume, H., Yoneda, M., and Kanemoto, K., 1983, Phosphorylation of specific polypeptides in isolated murine splenocyte nuclei which is controlled by cyclic nucleotides, J. Biochem. 94: 961–966.

    PubMed  CAS  Google Scholar 

  • Hausen, P., and Stein, H., 1968, On the synthesis of RNA in lymphcKytes stimulated by phy- tohemagglutinin, Eur. J. Biochem. 4:401–406.

    PubMed  CAS  Google Scholar 

  • Hausen, P., Stein, H., and Peters, H., 1969, On the synthesis of RNA in lymphocytes stimulated by phytohemagglutinin, Eur. J. Biochem. 9:542–549.

    PubMed  CAS  Google Scholar 

  • Hauser, H., Knippers, R., and Schäfer, K. P., 1978, Increased rate of RNA-polyadenylation, Exp. Cell. Res. 111:175–184.

    PubMed  CAS  Google Scholar 

  • Hesketh, R., 1978, Cation fluxes and lymphocyte transformation, in: The Molecular Basis of Immune Cell Function, (J. Gordin Kaplin, ed.), pp. 39–56, Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Hesketh, T. R., Smith, G. A., Housley, M. D., Warren, G. B., and Metcalf, J. C., 1977, Is an early calcium flux necessary to stimulate lymphocytes?. Nature (Lond.) 267:490–494.

    CAS  Google Scholar 

  • Hesketh, T. R., Smith, G. A., Moore, J. P., Taylor, M. V., and Metcalfe, J. C., 1983a, Limits to the early increase in free cytoplasmic calcium concentrations during the mitogenic stimulation of lymphocytes, Biochem. J. 212:685–690.

    PubMed  CAS  Google Scholar 

  • Hesketh, T. R., Smith, G. A., Moore, J. P., Taylor, M. V., and Melcalfe, J. C., 1983b, Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes, J. Biol. Chem. 258:4876–4882.

    PubMed  CAS  Google Scholar 

  • Hesketh, T. R., Moore, J. P., Morris, J. D. H., Taylor, M. V., Rogers, J., Smith, G. A., and Metcalfe, T. C., 1985, A conmion sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature (Lond.) 313:481–484.

    CAS  Google Scholar 

  • Hirata, F., and Axelrod, J., 1980, Phospholipid methylation and biological signal transmission, Science 209:1082–1090.

    PubMed  CAS  Google Scholar 

  • Hirata, F., Toyoshima, S., Axelrod, J., and Waxdal, M. J., 1980, Phospholipid methylation: A biochemical signal modulating lymphocyte mitogenesis, Proc. Natl. Acad. Sci. USA 77:862–865.

    PubMed  CAS  Google Scholar 

  • Hirschhorn, R., Troll, W., Brittinger, G., Weissman, G., 1969, Template activity of nuclei from stimulated lymphocytes. Nature (Lond.) 222:1247–1250.

    CAS  Google Scholar 

  • Hoffman, R., Ferguson, R., and Simmons, R. L., 1977, Effect of cytochalasin B on human lymphocyte responses to mitogens. Time and concentration dependence, J. Immunol. 118: 1472–1479.

    CAS  Google Scholar 

  • Hoffman, T., Hirata, F., Bougnoux, P., Fräser, B. A., Goldfarb, R. H., Haberman, R. B., and Axelrod, J., 1981, Phospholipid methylation and phospholipase A2 activation in cytotoxicity by human natural killer cells, Proc. Natl. Acad. Sci. USA 78:3839–3843.

    PubMed  CAS  Google Scholar 

  • Holta, E., Korpela, H., and Hovi, T., 1981, Several inhibitors of ornithine and adenosylmethionine decarboxylases may also have antiproliferative effects unrelated to poly amine depletion, Biochim. Biophys. Acta 677:90–102.

    Google Scholar 

  • Hokin, M. R., and Hokin, L. E., 1953, Enzyme secretion and the incorporation of P32 into phospholipids of pancreas slices, J. Biol. Chem. 203:967–977.

    PubMed  CAS  Google Scholar 

  • Homa, S. T., Conroy, D. M., and Smith, A. D., 1984, Unsaturated fatty acids stimulate the formation of lipoxygenase and cyclooxygenase products in rat spleen lymphocytes. Prostaglandins Leukotrienes Med. 14:417–427.

    CAS  Google Scholar 

  • Hovi, T., Allison, A. C., and Williams, S. C., 1976, Proliferation of human peripheral blood lymphocytes induced by A23187, a streptomyces antibiotic, Exp. Cell. Res. 97:92–100.

    PubMed  CAS  Google Scholar 

  • Howard, E. F., 1972, Low molecular weight nuclear RNA in human lymphocytes, Exp. Cell. Res. 82:280–286.

    Google Scholar 

  • Huet, S., Wakasugi, H., Sterkers, G., Gilmour, J., Fursz, F., Boumsell, L., and Bernard, A., 1986, T cell activation via CD 2 [T, gp50]: The role of accessory cells in activating resting T cells via CD 2. J. Immunol. 137:1420–1428.

    PubMed  CAS  Google Scholar 

  • Hui, D. Y., and Harmony, J. A. K., 1980a, Inhibition of Ca2+ accumulation in mitogen-activated lymphocytes: Role of membrane-bound plasma lipoproteins, Proc. Nat. Acad. Sci. USA 77: 4764–4768.

    PubMed  CAS  Google Scholar 

  • Hui, D. Y., and Harmony, J. A. K., 1980b, Inhibition by low density lipoproteins of mitogen- stimulated cyclic nucleotide production by lymphocytes, J. Biol. Chem. 255:1413–1419.

    PubMed  CAS  Google Scholar 

  • Hui, D. Y., and Harmony, J. A. K., 1980c, Phosphatidylinositol turnover in mitogen-activated lymphocytes, Biochem. J. 192:91–98.

    PubMed  CAS  Google Scholar 

  • Hui, D. Y., Berebisky, G. L., and Harmony, J. A. K., 1979, Mitogen-stimulated calcium ion accumulation by lymphocytes, J. Biol. Chem. 254:4666–4673.

    PubMed  CAS  Google Scholar 

  • Hume, D. A., and Wiedemann, M. J., 1980, Intracellular second messengers in Mitogenic Lymphocyte Transformation, Res. Monog. Immunol. 2:183–225.

    Google Scholar 

  • Hume, D. A., Hansen, K., Weidemann, M. J., and Ferber, E., 1978a, Cytochalasin B inhibits lymphocyte transformation through its effects on glucose transport, Nature (Lond.) 272:359–362.

    CAS  Google Scholar 

  • Hume, D. A., Vijayakumar, E. K., Schweinberger, F., Russell, L. M., Weidemann, M. J., 1978b, The role of ions in the regulation of rat thymocyte pyruvate oxidation by mitogens, Biochem. J. 174:711–716.

    PubMed  CAS  Google Scholar 

  • Hume, D. A., Weidemann, M. J., and Ferber, E., 1979, Preferential inhibition by quercetin of mitogen-stimulated thymocyte glucose transport, J. Natl. Cancer Inst. 62:1243–1246.

    PubMed  CAS  Google Scholar 

  • Humphries, G. M. K., and Lovejoy, J. P., 1983, Cholesterol-free phospholipid domains may be the membrane feature selected by N-dansyl-1-lysine and merocyanine 540, Biochem. Biophys. Res. Commun. 111:768–774.

    CAS  Google Scholar 

  • Hungerford, D. A., Donnelly, A. J., Nowell, P. C., and Beck, S., 1959, The chromosome constitution of a human phenotype intersex. Am. J. Hum. Genet. 11:215–236.

    PubMed  CAS  Google Scholar 

  • Imboden, J. B., and Stobo, J. D., 1985, Transmembrane signalling by the T cell antigen receptor, J. Exp. Med. 161:446–456.

    PubMed  CAS  Google Scholar 

  • Imboden, J., Weiss, A., and Stobo, J., 1985, The antigen receptor on a human T cell line initiates activation by increasing cytoplasmic free calcium, J. Immunol. 134:663–665.

    PubMed  CAS  Google Scholar 

  • Inbar, M., and Shinitzky, M., 1974a, Increase of cholesterol level in the surface membrane of lymphoma cells and its inhibitory effect on ascites tumor development, Proc. Natl. Acad. Sci. USA 71:2128–2130.

    PubMed  CAS  Google Scholar 

  • Inbar, M., and Shinitzky, M., 1974b, Cholesterol as bioregulator in the developmental inhibition of leukemia, Proc. Natl. Acad. Sci. USA 71:4229–4231.

    PubMed  CAS  Google Scholar 

  • Inbar, M., and Shinitzky, M., 1975, Decrease in microviscosity in lymphocyte surface membrane associated with stimulation induced by concanavalin A, Eur. J. Immunol. 5:166–170.

    PubMed  CAS  Google Scholar 

  • Isakov, N., Bleackley, R. C., Shaw, J., and Altman, A., 1985, The tumor promoter teleocidin induces IL-2 receptor expression and IL-2-independent proliferation of human peripheral blood T cells, J. Immunol. 135:2343–2350.

    PubMed  CAS  Google Scholar 

  • Ishizaka, T., Hirata, F., Ishizaka, K., and Axelrod, J., 1980, Stimulation of phospholipid methyla- tion, Ca2+ influx, and histamine release by bridging of IgE receptors on rat mast cells, Proc. Natl. Acad. Sci. USA 77:1903–1906.

    PubMed  CAS  Google Scholar 

  • Jagus, R., and Kay, J., 1979, Distribution of lymphocyte messenger RNA during stimulation by phytohaemagglutinin, Eur. J. Biochem. 100:503–510.

    PubMed  CAS  Google Scholar 

  • Jazwinski, S. M., Wang, J. L., and Edelman, G. M., 1976, Initiation of replication in chromosomal DNA induced by extracts from proliferating cells, Proc. Natl. Acad. Sci. USA 73:2231–2235.

    PubMed  CAS  Google Scholar 

  • Jensen, P., and Rasmussen, H., 1977, The effect of A23187 upon calcium metabolism in the human lymphocyte, Biochim. Biophys. Acta 468:146–156.

    PubMed  CAS  Google Scholar 

  • Jegasothy, B. V., Pachner, A. R., Waksman, B. H., 1976, Cytokine inhibition of DNA synthesis: Effect on cyclic adenosine monophosphate in lymphocytes, Science 193:1260–1262.

    PubMed  CAS  Google Scholar 

  • Jegasothy, B. V., Namba, Y., and Waksman, B. H., 1978, Regulatory substances produced by lymphocytes. VII. IDS (inhibitor of DNA synthesis) inhibits stimulated lymphocyte proliferation by activation of membrane adenylate cyclase at a restriction point in late G, Immunochemistry 15:551–555.

    PubMed  CAS  Google Scholar 

  • Johnson, E. M., 1977, Cyclic AMP-dependent protein kinase and its nuclear substrate proteins, in:

    Google Scholar 

  • Advances in Cyclic Nucleotides Research, Vol. 8 (P. Greengard, and G. A. Robison, eds.), pp. 267–309, Raven, New York.

    Google Scholar 

  • Johnson, E. M., and Hadden, J. W., 1975, Phosphorylation of lymphocyte nuclear acidic proteins: Regulation by cyclic nucleotides, Science 1807:1198–1200.

    Google Scholar 

  • Johnson, E. M., Kam, J., and Allfrey, V. G., 1974, Early nuclear events in the induction of lymphocyte proliferation by mitogens, J. Biol Chem. 249:4990–4999.

    PubMed  CAS  Google Scholar 

  • Johnson, E. M., Hadden, J. W., Inoue, A., Allfrey, V. G., 1975a, DNA binding by cyclic adenosine 3’,5’-monophosphate dependent protein kinase from calf thymus nuclei, Biochemistry, 14: 3873–3884.

    PubMed  CAS  Google Scholar 

  • Johnson, E. M., Inoue, A., Grouse, L. J., Allfrey, V. G., and Hadden, J. W., 1975b, Effects of cyclic GMP upon DNA binding by a calf thymus nuclear protein fraction, Biochem. Biophys. Res. Commun. 65:714–721.

    PubMed  CAS  Google Scholar 

  • Johnson, H. M., Archer, D. L., and Torres, B. A., 1982, Cyclic GMP as the second messenger on helper cell requirement for gamma-interferon production, J. Immunol. 129:2570–2572.

    PubMed  CAS  Google Scholar 

  • Johnson, H. M., Vallaso, T., and Torres, B. A., 1985, Interleukin 2-mediated events in γ-interferon production are calcium dependent at more than one site, J. Immunol. 134:967–970.

    PubMed  CAS  Google Scholar 

  • Johnson, L. D., and Hadden, J. W., 1975, Cyclic GMP and lymphocyte proliferation: Effects on DNA-dependent RNA polymerase I and II activities, Biochem. Biophys. Res. Commun. 66: 1498–1505.

    PubMed  CAS  Google Scholar 

  • Johnson, L. D., and Hadden, J. W., 1977, Modification of human DNA-dependent RNA polymerase activity by cyclic GMP, Nucleic Acids Res. 4:4007–4014.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., Thomas, A. P., Williams, R. J., Irvine, R. F., and Williamson, J. R., 1984, Myoinositol 1,4,5-triphosphate, a second messenger for the hormonal mobilization of intracellular Ca2+ in liver, J. Biol. Chem. 259:3077–3081.

    PubMed  CAS  Google Scholar 

  • June, C. H., Ledbetter, J. A., Rabinovitch, P. S., Beatty, P. G., Martin, P. J., and Hansen, J. H., 1986, in: Sixth International Congress of Immunology, Toronto, Canada, p. 232 (abst.).

    Google Scholar 

  • Kaibuchi, K., Takai, Y., Ogawa, Y., Kimura, S., Nishizuka, Y., Nakamura, T., Tonomura, A., and Ichihara, A., 1982, Inhibitory action of adenosine 3’,5’-monophosphate on phos- phatidylinositol turnover, Biochem. Biophys. Res. Commun. 104:105–112.

    PubMed  CAS  Google Scholar 

  • Kaibuchi, K., Takai, Y., and Nishizuka, Y., 1985, Protein kinase C and calcium ion in mitogenic response of macrophage-depleted human peripheral lymphocytes, J. Biol. Chem. 260:1366–1369.

    PubMed  CAS  Google Scholar 

  • Kaiser, N., and Edelman, I. S., 1978, Calcium dependence of ionophore A23187-induced lymphocyte cytotoxicity, Cancer Res. 38:3599–3603.

    PubMed  CAS  Google Scholar 

  • Kaplan, J. G., and Owens, T., 1980, Activation of lymphocytes of man and mouse: Monovalent cation fluxes, Ann. NY Acad. Sci. 339:191–200.

    CAS  Google Scholar 

  • Kaplan, J. G., and Owens, T., 1982, The cation pump as a switch mechanism controlling proliferation and differentiation in lymphocytes, Biosci. Rep. 2:577–581.

    PubMed  CAS  Google Scholar 

  • Katagiri, T., Terao, T., and Osawa, T., 1976, Activation of mouse splenic lymphocyte guanylate cyclase by calcium ion, J. Biochem. 79:849–852.

    PubMed  CAS  Google Scholar 

  • Kato, K., Koshihara, Y., and Murota, S., 1986, Contribution of lipoxygenase metabolites to IL-2 production in the early phase of lymphocyte activation, Prosta, Leuk. Med. 22:301–311.

    CAS  Google Scholar 

  • Katz, S. P., Kierszenbaum, F., and Waksman, B. H., 1978, Mechanisms of action of “lymphocyte- activating factor” (LAF), J. Immunol. 121:2386–2391.

    PubMed  CAS  Google Scholar 

  • Kay, J. E., 1968, Early effects of phytohemagglutinin on lymphocyte RNA synthesis, Eur. J. Biochem. 4:225–232.

    PubMed  CAS  Google Scholar 

  • Kay, J. E., 1971, Interaction of lymphocytes and phytohaemagglutinin: Inhibition by chelating agents, Exp. Cell. Res. 68:11–16.

    PubMed  CAS  Google Scholar 

  • Kay, J. E., 1972, Lymphocyte stimulation by phytohaemagglutinin: Role of the early stimulation of potassium uptake, Exp. Cell. Res. 71:245–247.

    PubMed  CAS  Google Scholar 

  • Kay, J. E., and Cooke, A., 1971, Ornithine decarboxylase and ribosomal RNA synthesis during the stimulation of lymphocytes by phytohaemagglutinin, FEBS. Lett. 16:9–12.

    PubMed  CAS  Google Scholar 

  • Kay, J. E., and Handmaker, S. D., 1970, Uridine incorporation and RNA in normal and phy- tohaemagglutinin-stimulated human lymphocytes, Biochim. Biophys. Acta 186:62–84.

    Google Scholar 

  • Kay, J. E., Leventhal, B.C., and Cooper, H. L., 1969, Effects of inhibition of ribosomal RNA synthesis on the stimulation of lymphocytes by phytohaemagglutinin, Exp. Cell. Res. 54:94–100.

    PubMed  CAS  Google Scholar 

  • Kecskemethy, N., and Schäfer, K. P., 1982, Lectin induced changes among polyadenylated and non-polyadenylated mRNA in lymphocytes, Eur. J. Biochem. 126:573–582.

    PubMed  CAS  Google Scholar 

  • Kelly, J. P., and Parker, C. W., 1979, Effects of arachidonic acid and other unsaturated fatty acids on mitogenesis in human lymphocytes, J. Immunol. 122:1556–1562.

    PubMed  CAS  Google Scholar 

  • Kelly, J. P., Johnson, M. C., and Parker, C. W., 1979, Effect of inhibitors of arachidonic acid metabolism on mitogenesis in human lymphocytes: Possible role of thromboxanes and products of the lipoxygenase pathway, J. Immunol. 122:1563–1571.

    PubMed  CAS  Google Scholar 

  • Kemp, R. G., Hsu, P-Y., and Duquesnoy, R. J., 1975, Changes in lymphoid cyclic adenosine 3’:5’- monophosphate metabolism during murine leukemogenesis. Cancer Res. 35:2440–2445.

    PubMed  CAS  Google Scholar 

  • Kennes, B., Hubert, C. L., Brohee, D., and Neve, P., 1981, Early biochemical events associated with lymphocyte activation in aging. Immunology 42:119–126.

    PubMed  CAS  Google Scholar 

  • Kiefer, M., Blume, A. J., and Kaback, H. R., 1980, Membrane potential changes during mitogenic stimulation of mouse spleen lymphocytes, Proc. Natl. Acad. Sci. USA 77:2200–2204.

    PubMed  CAS  Google Scholar 

  • Kimoto, H., Nakao, Y., Kobayashi, N., Baba, Y., Sobue, K., Kabuichi, S., and Fujita, T., 1983, Heterogeneous pathways of Ca2+ metabolism in the triggering of the proliferative process in rat thymocytes, Biochim. Biophys. Acta 762:25–30.

    PubMed  CAS  Google Scholar 

  • Kleinsmith, L., Allfrey, V., and Mirsky, A., 1966, Phosphorylation of nuclear protein early in the course of gene activation in lymphocytes. Science 154:780–781.

    PubMed  CAS  Google Scholar 

  • Klimpel, G. R., Byers, C. V., Russell, D. H., and Lucas, D. O., 1979, Cyclic AMP-dependent protein kinase activation and the induction of ornithine decarboxylase during lymphocyte mitogenesis, J. Immunol. 123:817–824.

    PubMed  CAS  Google Scholar 

  • Knutson, J. C., and Morris, D. R., 1978, Cellular polyamine depletion reduces DNA synthesis in isolated lymphocyte nuclei, Biochim. Biophys. Acta 520:291–301.

    PubMed  CAS  Google Scholar 

  • Koizumi, K., Kano-Tanaka, K., Shimizu, S., Nishida, K., Yamanaka, N., and Ota, K., 1980, Lipids of plasma membranes from rat thymic lymphoid cell: Deficiency of sphingomyelin, Biochim. Biophys. Acta 619:344–352.

    PubMed  CAS  Google Scholar 

  • Krall, J. F., Connelly, M., Tuck, M. L., 1981, Evidence for reversibility of age-related decrease in human lymphocyte adenylate cyclase activity, Biochem. Biophys. Res. Commun. 99:1028–1034.

    PubMed  CAS  Google Scholar 

  • Krall, J. F., Connelly-Fittingoff, M., and Tuck, M. L., 1983, Lymphocyte adenylate cyclase and human aging, Proc. Soc. Exp. Biol. Med. 173:475–480.

    PubMed  CAS  Google Scholar 

  • Kranias, E. G., Schweppe, J. S., and Jungmann, R. A., 1977, Phosphorylative and functional modifications of nucleoplasmic RNA polymerase II by homologous adenosine 3’:5’-monophos- phate-dependent protein kinase from calf thymus and by heterologous phosphate, J. Biol. Chem. 252:6750–6758.

    PubMed  CAS  Google Scholar 

  • Krishnaraj, R., and Talwar, G. P., 1973, Role of cyclic AMP in mitogen induced transformation of human peripheral leukocytes, J. Immunol. 111:1010–1017.

    PubMed  CAS  Google Scholar 

  • Kroczek, R. A., Gunter, K. C., Seligmann, B., and Shevach, E. M., 1986, Induction of T cell activation by monoclonal anti-thy-1 antibodies, J. Immunol. 136:4379–4384.

    PubMed  CAS  Google Scholar 

  • Kronke, M., Leonard, W. J., Depper, J. M., and Greene, W. C., 1985, Sequential expression of genes involved in human T lymphocyte growth and differentiation, J. Exp. Med. 161:1593–1598.

    PubMed  CAS  Google Scholar 

  • Ku, Y., Kishimoto, A., Takai, Y., Ogawa, Y., Kimura, S., and Nishizuka, Y., 1981, A new possible regulatory system for protein phosphorylation in human peripheral lymphocytes. IL Possible relation to phosphatidylinositol turnover induced by mitogens, J. Immunol. 127:1375–1379.

    PubMed  CAS  Google Scholar 

  • Kuo, J. F., Schatzman, R. C., Turner, R. S., and Mazzei, G. J., 1984, Phospholipid sensitive Ca2 + - dependent protein kinase: A major protein phosphorylation system, Mol. Cell. Endocrinol. 35: 65–73.

    PubMed  CAS  Google Scholar 

  • Kyger, E. M., and Franson, R. C., 1984, Nonspecific inhibition of enzymes by p-bro- mophenacylbromide. Inhibition of human platelet phospholipase C and modification of sulfhy- dryl groups, Biochim. Biophys. Acta 794:96–103.

    PubMed  CAS  Google Scholar 

  • Landry, Y., Vincent-Viry, M., and Jodin, C., 1978, Energy requirement for calcium uptake by thymus lymphocytes, FEBS Lett. 88:305–308.

    PubMed  CAS  Google Scholar 

  • Lands, W., 1984, Biological consequences of fatty acid oxygenase reaction mechanisms. Prostaglandins Leukotrienes Med. 13:35–46.

    CAS  Google Scholar 

  • Lapetina, E. G., 1982, Regulation of arachidonic acid production: Role of phospholipase C and A2, Trends Pharmacol. Sci. 3:115–118.

    CAS  Google Scholar 

  • Largen, M. T., and Votta, B., 1983, Immunocytochemical evidence for 3’,5’-cGMP and 3’,5’- cGMP-dependent protein kinase involvement in lymphocyte proliferation, J. Cyclic Nucleotide Prot. Phosphor. Res. 9:231–244.

    CAS  Google Scholar 

  • Larrick, J. W., and Creswell, P., 1979, Modulation of cell surface iron transferrin receptors by cellular density and state of activation, J. Supramol. Struct. 11:579–586.

    PubMed  CAS  Google Scholar 

  • Ledbetter, J. A., June, C. H., Martin, P. J., Spooner, C. E., Hansen, J. A., and Meier, K. E., 1986a, Valency of CD3 binding and internalization of the CD3 cell-surface complex control T cell responses to second signals: Distinction between effects on protein kinase C, cytoplasmic free calcium, and proliferation, J. Immunol. 136:3945–3952.

    PubMed  CAS  Google Scholar 

  • Ledbetter, J. A., Parsons, M., Martin, P. J., Hansen, J. A., Rabinovitch, P. S., and June, C. H., 1986b, Antibody binding to CD5 (Tp67) and Tp44 T cell surface molecules: Effects on cyclic nucleotides, cytoplasmic free calcium, and cAMP mediated suppression, J. Immunol. 137: 3299–3305.

    PubMed  CAS  Google Scholar 

  • LeGrue, S. J., 1987, Interfeukin-2 stimulus-response coupling is calcium independent. Lymph. Res. 6:1–11.

    CAS  Google Scholar 

  • Leu, R. W., Eddleston, A. W., Good, R. W., and Hadden, J. W., 1973, Paradoxical effects of ouabain on the migration of peritoneal and alveolar macrophages, Exp. Cell. Res. 76:458–461.

    PubMed  CAS  Google Scholar 

  • Levy, R., Levy, S., Rosenberg, S. A., and Simpson, R. T., 1973, Selective stimulation of nonhistone chromatin protein synthesis in lymphoid cells by phytohemagglutinin. Biochemistry 12: 224–228.

    PubMed  CAS  Google Scholar 

  • Liangxu, W., Shipeng, H., Sunxi, Z., Yunqin, G., Zhongmin, L., and Chenjiang, L., 1981, Peripheral leukemic cell cAMP level changes in acute leukemic and clinical observations, Chinese Med. J. 94:47–50.

    Google Scholar 

  • Lichtman, M. A., and Weed, R. I., 1969, Monovalent cation content and adenosine triphosphatase activity of human normal and leukemic granulocytes and lymphocytes: Relation to cell volume and morphologic age, Blood 34:645–660.

    PubMed  CAS  Google Scholar 

  • Lichtman, A., Segal, G. B., and Lichtman, M. A., 1979, Total and exchangeable calcium in mitogen-treated lymphocytes, in: The Molecular Basis of Immune Cell Function (J. G. Kaplan, ed.), pp. 417–419, Elsevier North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Lichtman, A. H., Segel, G. B., and Lichtman, M. A., 1981, Calcium transport and calcium-ATPase activity in human lymphocyte plasma membrane vesicles, J. Biol. Chem. 256:6148–6154.

    PubMed  CAS  Google Scholar 

  • Lichtman, A. H., Segel, G. B., and Lichtman, M. A., 1982, Effects of trifluoperazine and mitogenic lectins on calcium ATPase activity and calcium transport by human lymphocyte plasma membrane vesicles, J. Cell. Physiol 111:213–217.

    PubMed  CAS  Google Scholar 

  • Lichtman, A. H., Segel, G. B., and Lichtman, M. A., 1983, The role of calcium in lymphocyte proliferation. Blood 61:413–422.

    PubMed  CAS  Google Scholar 

  • Liebes, L. F., Pelle, F., Zucker-Franklin, D., and Silber, R., 1981, Comparison of lipid composition and 1, 6-dephenyl-l,3,5-Lexatriene fluorescence polarization measurements of hairy cells with monocytes and lymphocytes from normal subjects and patients with chronic lymphocytic leukemia, Cancer Res. 41:4050–4056.

    PubMed  CAS  Google Scholar 

  • Lindahl-Kiessling, K., 1972, Mechanism of phytohemagglutinin (PHA) action. V. PHA compared with concanavalin A (Con A), Exp. Cell. Res. 70:17–26.

    PubMed  CAS  Google Scholar 

  • Lindahl-Kiessling, K. M., 1976, Calcium dependency of the binding and mitogenicity of phy- tohemagglutinin. Differentiation between calcium-dependent and independent events, Exp. Cell Res. 103:151–158.

    PubMed  CAS  Google Scholar 

  • Ling, N. R., 1971, Lymphocyte Stimulation, North-Holland, Amsterdam.

    Google Scholar 

  • Ling, N. R., and Kay, J. E., 1975, Lymphocyte Stimulation, North-Holland, Amsterdam.

    Google Scholar 

  • Loeb, L. A., and Agarwal, S. S., 1971, DNA polymerase, Exp. Cell. Res. 66:299–304.

    PubMed  CAS  Google Scholar 

  • Logan, J. C., and Newland, A. C., 1982, Leukocyte sodium-potassium adenosine triphosphate and leukemia, Clin. Chim. Acta 123:39–43.

    PubMed  CAS  Google Scholar 

  • Lotan, R., Lis, H., Rosenwasser, A., Novogrodsky, A., and Sharon, N., 1973, Enhancement of the biological activities of soybean agglutinin by cross-linking with glutaraldehyde, Biochem. Bio- phys. Res. Commun. 55:1347–1355.

    CAS  Google Scholar 

  • Lucas, D. O., Shohet, S. B., and Merler, E., 1971, Changes in phospholipid metabolism which occur as a consequence of mitogenic stimulation of lymphocytes, J. Immunol. 106:768–772.

    PubMed  CAS  Google Scholar 

  • Lucas, Z. J., 1967, Pryimidine nucleotide synthesis: Regulatory control during transformation of lymphocytes in vitro, Science 156:1237–1240.

    PubMed  CAS  Google Scholar 

  • Luckasen, J. R., White, J. G., and Kersey, J. H., 1974, Mitogenic properties of a calcium ionophore, A23187, Proc. Natl. Acad. Sci. USA 71:5088–5090.

    PubMed  CAS  Google Scholar 

  • Lyle, L. R., and Parker, C. W., 1974, Cyclic adenosine 3’,5’-monophosphate responses to con- canavalin A in human lymphocytes. Evidence that the response involves specific carbohydrate receptors on the cell surface, Biochem. 13:5416–5420.

    Google Scholar 

  • Maino, V. C., Green, N. M., and Crumpton, M. J., 1974, The role of calcium ions in initiating transformation of lymphocytes, Nature (Lond.) 251:324–327.

    CAS  Google Scholar 

  • Maino, V. C., Green, N. M., and Crumpton, M. J., 1974, The role of calcium ions in initiating transformation of lymphocytes, Nature (Lond.) 251:324–327.

    CAS  Google Scholar 

  • Maino, V. C., Hayman, M. J., and Crumpton, M. J., 1975, Relationship between enhanced turnover of phosphatidylinositol and lymphocyte activation by mitogens, Biochem. J. 146:247–252.

    PubMed  CAS  Google Scholar 

  • Makman, M. H., 1971, Properties of adenylate cyclase of lymphoid cells, Proc. Natl Acad. Sci. USA 68:885–889.

    PubMed  CAS  Google Scholar 

  • Malek, T. R., Schmidt, J. A., and Shevack, E. M., 1985, The murine IL-2 receptor, J. Immunol. 134:2405–2412.

    PubMed  CAS  Google Scholar 

  • Manen, C-A., and Russell, D.H., 1977, Ornithine decarboxylase may function as an initiation factor for RNA polymerase I, Science 195:505–506.

    PubMed  CAS  Google Scholar 

  • Manger, B., Weiss, A., Imboden, J., Laing, T., and Stobo, J., 1987, The role of protein kinase C in transmembrane signaling by the T cell antigen receptor complex. J. Immunol. 139:2755–2760.

    PubMed  CAS  Google Scholar 

  • Masuzawa, Y., Osawa, T., Inoue, K., and Nojima, S., 1973, Effects of various mitogens on the phospholipid metabolism of human peripheral lymphocytes, Biochim. Biophys. Acta 326:339–344.

    CAS  Google Scholar 

  • Matteson, D. R., and Deutsch, C., 1984, K Channels in T lymphocytes: A patch clamp study using monoclonal antibody adhesion, Nature (Lond.) 307:468–471.

    CAS  Google Scholar 

  • May, W. S., Jacobs, S., and Cuatrecasas, P., 1984, Association of phorbol ester-induced hyper- phosphorylation and reversible regulation of transferrin membrane receptors in HL60 cells, Proc. Natl. Acad. Sci. USA 81:2016–2020.

    PubMed  CAS  Google Scholar 

  • McClain, D. A., and Edelman, G. M., 1976, Analysis of the stimulation-inhibition paradox exhibited by lymphocytes, J. Exp. Med. 144:1494–1508.

    PubMed  CAS  Google Scholar 

  • McClain, D. A., and Edelman, G. M., 1978, Surface modulation and transmembrane control. Birth Defects 14:1–28.

    PubMed  CAS  Google Scholar 

  • McClain, D. A., D’Eustachio, P., and Edelman, G. M., 1977, Role of surface modulating assemblies in growth control of normal and transformed fibroblasts, Proc. Natl. Acad. Sci. USA 74: 666–670.

    PubMed  CAS  Google Scholar 

  • McPhail, L. C., Clayton, C. C., and Snyderman, R., 1984, A potential second messenger role for unsaturated fatty acids: Activation of Ca2+ dependent protein kinase. Science 224:622–625.

    PubMed  CAS  Google Scholar 

  • Mednieks, M. I., and Jungmann, R. A., 1982, Selective expression of type I and type II cyclic AMP- dependent protein kinases in subcellular fractions of concanavalin A-stimulated rat thymocytes. Arch. Biochem. Biophys. 213:127–138.

    PubMed  CAS  Google Scholar 

  • Medrano, E., Piras, R., and Mordoh, J., 1974, Effect of colchicine, vinblastine, and cytochalasin B on human lymphocyte transformation by phytohemagglutinin, Exp. Cell. Res. 86:295–300.

    PubMed  CAS  Google Scholar 

  • Mendelsohn, J., Skinner, A., and Kornfeld, S., 1971, The rapid induction by phytohemagglutinin of increased alpha-aminoisobutyric acid uptake by lymphocytes, J. Clin. Invest. 50:818–826.

    PubMed  CAS  Google Scholar 

  • Mendelsohn, J., Trowbridge, I., Castagnola, J., 1983, Inhibition of human lymphocyte proliferation by monoclonal antibody to transferrin receptor. Blood 62:821–826.

    PubMed  CAS  Google Scholar 

  • Metcalfe, J. C., Pozzan, T., Smith, G. A., and Hesketh, T. R., 1980, A calcium hypothesis for control of cell growth, Biochem. Soc. Symp. 45:1–26.

    PubMed  CAS  Google Scholar 

  • Meuer, S. C., Hussey, R. E., Cantrell, D. A., Hodgolon, J. C., Schlossman, S. F., Smith, K. A., and Reinherz, E. L., 1984, Triggering of the T3-T: Antigen-receptor complex results in clonal T-cell proliferation through an interleukin 2-dependent autocrine pathway. Proc. Natl. Acad. Sci. USA 81:1509–1513.

    PubMed  CAS  Google Scholar 

  • Meuer, S. C., and Meyer zum Buschenfelde, K-H., 1986, T cell receptor triggering induces responsiveness to interleukin 1 and interleukin 2 but does not lead to T cell proliferation, J. Immunol. 136:4106–4112.

    PubMed  CAS  Google Scholar 

  • Mexmain, S., Gualde, N., Aldigier, J. C., Motta, C., Chable-Rabinovitch, H., and Rigaud, M., 1984, Specific binding of 15 HETE to lymphocytes. Effects on the fluidity of plasmatic membranes, Prostaglandin Leuktrienes Med. 13:93–97.

    CAS  Google Scholar 

  • Mexmain, S., Cook, J., Aldigier, J. C., Gualde, N., and Riguad, M., 1985, Thymocyte cyclic AMP and cyclic GMP response to treatment with metabolites issued from the lipoxygenase pathway, J. Immunol. 135:1361–1365.

    PubMed  CAS  Google Scholar 

  • Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415:81–147.

    PubMed  CAS  Google Scholar 

  • Michell, R. H., 1982, Inositol lipid metabolism in dividing and differentiating cells, Cell Calcium 3: 429–440.

    PubMed  CAS  Google Scholar 

  • Michell, R. H., Kirk, C. J., Jones, L. M., Downes, C. P., and Creba, J. A., 1981, The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: Defined characteristics and unanswered questions, Phil. Trans. R. Soc. Lond. B. 296:123–137.

    CAS  Google Scholar 

  • Mikkelsen, R. B., and Schmidt-Ullrich, R., 1980, Concanavalin A induces the release of intracellular Ca2+ in intact rabbit thymocytes, J. Biol. Chem. 255:5177–5183.

    PubMed  CAS  Google Scholar 

  • Miller, J., 1979, Oncodazole (R 17934) an inhibitor of the turnover of phosphatidyl inositol in concanavalin A induced lymphocytes, Biochem. Pharmacol. 28:2967–2968.

    PubMed  CAS  Google Scholar 

  • Mills, G. B., Cheung, R. K., Grinstein, S., and Gelfand, E. W., 1985a, Increase in cytosolic free calcium concentration is an intracellular messenger for the production of interleukin 2 but not for expression of the interleukin 2 receptor. J. Immunol. 134:1640–1645.

    PubMed  CAS  Google Scholar 

  • Mills, G. B., Cheung, R. K., Grinstein, S., and Gelfand, E. W., 1985b, Interleukin 2-induced lymphocyte proliferation is independent of increases in cytosolic-free calcium concentrations, J. Immunol. 134:2431–2435.

    PubMed  CAS  Google Scholar 

  • Mills, G. B., Stewart, D. J., Mellors, A., and Gelfand, E. W., 1986a, Interleukin 2 does not induce phosphatidylinositol hydrolysis in activated T cells, J. Immunol. 136:3019–3024.

    PubMed  CAS  Google Scholar 

  • Mills, G. B., Cheung, R. K., Cracol, E. J., Jr., Grinstein, S., and Gelfand, E. W., 1986b, Activation of the Na2/H+ antiport is not required for lectin-induced proliferation of human T lymphocytes, J. Immunol. 136:1150–1154.

    PubMed  CAS  Google Scholar 

  • Milner, S., 1977, Activation of mouse spleen cells by a single short pulse of mitogen. Nature (Lond.) 268:441–442.

    CAS  Google Scholar 

  • Mire, A. R., Wickremasinghe, G., and Hoffbrand, A. V., 1986, Phytohemagglutinin treatment of T lymphocytes stimulates rapid increases in activity of both particulate and cytosolic protein kinase C, Biochem. Biophys. Res. Commun. 137:128–134.

    PubMed  CAS  Google Scholar 

  • Mitchell, M., Bard, E., L’Anglais, R., and Kaplan, J. G., 1978, Transport of RNA from nucleus to cytoplasm following mitogenic stimulation of human lymphocytes. Can. J. Biochem. 56:659–666.

    PubMed  CAS  Google Scholar 

  • Mizoguchi, Y., Otani, S., Matsui, I., and Morisawa, S., 1975, Control of ornithine decarboxylase activity by cyclic nucleotides in the phytohemagglutinin induced lymphocyte transformation, Biochem. Biophys. Res. Commun. 66:328–335.

    PubMed  CAS  Google Scholar 

  • Monahan, T. M., Marchand, N. W., Fritz, R. R., and Abell, C. W., 1975, Cyclic adenosine 3’:5’- monophosphate levels and activities of related enzymes in normal and leukemic lymphocytes. Cancer Res. 35:2540–2547.

    PubMed  CAS  Google Scholar 

  • Mookerjee, B. K., and Jung, C. Y., 1982, The effects of cytochalasins on lymphocytes: Mechanism of action of cytochalasin A on responses to phytomitogens, J. Immunol. 128:2153–2159.

    PubMed  CAS  Google Scholar 

  • Mookerjee, B. K., Ferber, E., Ernst, M., Sharon, N., and Fischer, H., 1980, Chemiluminescence and immune cell activation: General features of the thymocyte chemiluminescence responses to plant lectins, Immunol. Commun. 9:653–676.

    PubMed  CAS  Google Scholar 

  • Moore, J. P., Smith, G. A., Hesketh, T. R., and Metcalfe, J. C., 1982, Early increases in phospholipid methylation are not necessary for the mitogenic stimulation of lymphocytes, J. Biol. Chem. 257:8183–8189.

    PubMed  CAS  Google Scholar 

  • Moore, R. N., Oppenheim, J., Farrar, J., Carter, C. G., Waheed, J., and Shadduck, R., 1981, Production of lymphocyte-activating factor (interleukin I) by macrophages activated with colony-stimulating factors, J. Immunol. 125; 1302–1305.

    Google Scholar 

  • Morgan, J. I., Hall, A. K., and Perris, A. D., 1975, Requirements for divalent cations by hormonal mitogens and their interactions with sex steroids, Biochem. Biophys. Res. Commun. 66:188–194.

    CAS  Google Scholar 

  • Morris, D. R., Jorstad, C. M., Seyfried, C. E., 1977, Inhibition of the synthesis of polyamines and DNA in activated lymphocytes by a combination of alpha-methylomithine and methylglyoxal bis (guanylhydrazone). Cancer Res. 37:3169–3172.

    PubMed  CAS  Google Scholar 

  • Munck, A., 1971, Glucocorticoid inhibition of glucose uptake by peripheral tissues: Old and new evidence, molecular mechanisms, and physiological significance, Perspect. Biol. Med. 14:265–289.

    CAS  Google Scholar 

  • Nakanishi, M., and Ulsunomiya, N., 1986, Early transmembrane events in cytotoxic T lymphocyte activation as revealed by stopped-flow fluorometry, in Sixth International Congress of Immunology, Toronto, Canada, p. 231 (abst.).

    Google Scholar 

  • Namiuchi, S., Kumagai, S., Imura, H., Suginoshita, T., Hattori, T., and Hirata, F., 1984, Quinacrine inhibits the primary but not secondary proliferative response of human cytotoxic T cells to allogeneic non-T cell antigens, J. Immunol. 132:1456–1461.

    PubMed  CAS  Google Scholar 

  • Nathaniel, D., and Mellors, A., 1983, Mitogen effects on lipid metabolism during lymphocyte activation, Mol. Immunol. 20:1259–1266.

    PubMed  CAS  Google Scholar 

  • Neckers, L. M., and Crossman, J., 1983, Transferrin receptor induction in mitogen-stimulated human T lymphocytes is required for DNA synthesis and cell division and is regulated by interleukin 2, Proc. Natl. Acad. Sci. USA 80:3494–3498.

    PubMed  CAS  Google Scholar 

  • Neely, A., Sitzmann, J. V., and Kersey, J. H., 1976, EGTA and proteinase reversal of cellular aggregation of activated lymphocytes, Nature (bond.) 264:770–771.

    CAS  Google Scholar 

  • Negendank, W. G., and Collier, C. R., 1976, Ion contents of human lymphocytes, Exp. Cell. Res. 101:31–40.

    PubMed  CAS  Google Scholar 

  • Negendank, W., and Shaller, C., 1979, Potassium-sodium distribution in human lymphocytes: Description by the association-induction hypothesis, J. Cell. Physiol. 98:95–105.

    PubMed  CAS  Google Scholar 

  • Nel, A. E., Bouic, P., Lattanze, G. R., Stevenson, H. C., Miller, P., Dirienzo, W., Stefanini, F., and Galbraith, R. M., 1987, Reaction of T lymphocytes with anti-T3 induces translocation of C- kinase activity to the membrane and specific substrate phosphorylation, J. Immunol. 138:3519–3524.

    PubMed  CAS  Google Scholar 

  • Newman, W., Fanning, V. A., Rao, P. E., Westberg, E. F., and Patten, E., 1986, Early events in lymphocyte activation as defined by three new monoclonal antibodies, J. Immunol. 137:3702–3708.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1984, The role of protein kinase C in cell surface transduction and tumor promotion, Nature (Lond.) 308:693–698.

    CAS  Google Scholar 

  • Nordenberg, J., Stenzel, K. H., and Novogrodsky, A., 1983, 12–0-tetradecanoyl-phorbol-13-acetate and concanavalin A enhanced glucose uptake in thymocytes by different mechanisms, J. Cell Physiol 117:183–188.

    PubMed  CAS  Google Scholar 

  • Northoff, H., Dorken, B., and Resch, K., 1978, Ligand-dependent modulation of membrane phospholipid metabolism in Con A-stimulated lymphocytes, Exp. Cell. Res. 113:189–196.

    PubMed  CAS  Google Scholar 

  • Novogrodsky, A., 1972, Concanavalin A stimulation of rat lymphocyte ATPase, Biochim. Biophys. Acta 266:343–349.

    CAS  Google Scholar 

  • Novogrodsky, A., and Katchalski, E., 1970, Effect of phytohemagglutinin and prostaglandins on cyclic AMP synthesis on rat lymphnode lymphocytes, Biochim. Biophys. Acta 215:291–296.

    PubMed  CAS  Google Scholar 

  • Novogrodsky, A., and Katchalski, E., 1971, Lymphocyte transformation induced by concanavalin A and its reversion by methyl-alpha-o-mannopyranoside, Biochim. Biophys. Acta 228:579–583.

    PubMed  CAS  Google Scholar 

  • Novogrodsky, A., Quittner, S., Rubin, A. L., and Stenzel, K., 1978, Transglutaminase activation in human lymphocytes: Early activation by phytomitogens, Proc. Natl. Acad. Sci. USA 75:1157–1161.

    PubMed  CAS  Google Scholar 

  • Novogrodsky, A., Rubin, A., and Stenzel, K., 1979, Selective suppression by adherent cells, prostaglandin and cyclic AMP analogues of blastogenesis induced by different mitogens, J. Immunol. 122:1–7.

    PubMed  CAS  Google Scholar 

  • Novogrodsky, A., Ravid, A., Rubin, A. L., and Stenzel, K. H., 1982, Hydroxyl radical scavengers inhibit lymphocyte mitogenesis, Proc. Natl. Acad. Sci. USA 79:1171–1174.

    PubMed  CAS  Google Scholar 

  • O’Brien, R. L., Parker, J. W., and Dixon, J. F. P., 1978, Mechanisms of lymphocyte transformation, Prog. Mol. Subcell. Biol. 6:201–270.

    Google Scholar 

  • Oettgen, H. C., and Terhorst, C., 1987, The T-cell receptor-T3 complex and T-lymphocyte activation, Hum. Immunol. 18:187–204.

    PubMed  CAS  Google Scholar 

  • Oettgen, H. C., Terhorst, C., Cantley, L. C., andRosoff, P. M., 1985, Stimulation of the T3-T cell receptor complex induces a membrane-potential-sensitive calcium influx. Cell 40:583–590.

    PubMed  CAS  Google Scholar 

  • O’Flynn, K., Linch, D. C., and Tatham, P. E. R., 1984, The effect of mitogenic lectins and monoclonal antibodies on intracellular free calcium concentration in human T-lymphocytes, Biochem. J. 219:661–666.

    PubMed  Google Scholar 

  • Ogawa, Y., Takai, Y., Kawahara, Y., Kimura, S., and Nishizuka, Y., 1981, A new possible regulatory system for protein phosphorylation in human peripheral lymphocytes. I. Characterization of a calcium-activated, phospholipid-dependent protein kinase, J. Immunol. 127: 1369–1374.

    PubMed  CAS  Google Scholar 

  • Ohara, J., and Watanabe, T., 1982, Microinjection of macromolecules into normal murine lymphocytes by cell fusion technique. I. Quantitative microinjection of antibodies into normal splenic lymphocytes, J. Immunol. 128:1090–1096.

    PubMed  CAS  Google Scholar 

  • Ohara, J., Kishimoto, T., and Yamomura, Y., 1978, In vitro immune response of human peripheral lymphocytes, J. Immunol. 121:2088–2096.

    PubMed  CAS  Google Scholar 

  • Oliver, J. M., Gelfand, E. W., Pearson, C. B., Pfeiffer, J. R., and Dosch, H-M., 1980, Microtubule assembly and concanavalin A capping in lymphocytes: Reappraisal using normal and abnormal human peripheral blood cells, Proc. Natl. Acad. Sci. USA 77:3499–3503.

    PubMed  CAS  Google Scholar 

  • Orme, L M., and Shand, F. L., 1981, Inhibitors of prostaglandin synthetase block the generation of suppressor T cells induced by concanavalin A, Int. J. Immunopharmacol. 3:15–19.

    PubMed  CAS  Google Scholar 

  • Otani, S., Matsui, L, and Morisawa, S., 1977, Suppression of phytohemagglutinin-induction of thymidine uptake in guinea pig lymphocytes by methylglyoxal bis(guanylhydrazone) treatment, Biochim. Biophys. Acta 478:417–427.

    PubMed  CAS  Google Scholar 

  • Otani, S., Matsui, L, and Morisawa, S., Masutani, M., Mizoguchi, Y., and Morisawa, S., 1980, Induction of ornithine decarboxylase in guinea pig lymphocytes by the divalent cation ionophore A23187 and phytohemagglutinin, J. Biochem. 88:77–85.

    PubMed  CAS  Google Scholar 

  • Otani, S, Kuramoto, A., Matsui, I., and Morisawa, S., 1982, Induction of ornithine decarboxylase in guinea pig lymphocytes by the divalent cation ionophore A23187, Eur. J. Biochem. 125:35–40.

    PubMed  CAS  Google Scholar 

  • Otteskog, P., Wanger, L., and Sundquist, K. G., 1983, Cytochalasins distinguish by their action resting human T lymphocytes from activated T cell blast, Eur. Cell Res. 144:443–454.

    CAS  Google Scholar 

  • Owen, M. J., Auzer, J., Barber, B. H., Edwards, A. J., Walsh, F. S., and Crumpton, M. J., 1978, Actin may be present on the lymphocyte surface, Proc. Natl. Acad. Sci. USA 75:4484–4488.

    PubMed  CAS  Google Scholar 

  • Owens, T., and Kaplan, J. G., 1980, Increased cationic fluxes in stimulated lymphocytes of the mouse: Response of enriched B- and T-cell subpopulations to B- and T-cell mitogens. Can. J. Biochem. 58:831–839.

    PubMed  CAS  Google Scholar 

  • Ozato, K., Huang, L., and Ebert, J. D., 1977, Accelerated calcium ion uptake in murine thymocytes induced by concanavalin-A, J. Cell. Physiol. 93:153–160.

    PubMed  CAS  Google Scholar 

  • Parker, C. W., 1974, Correlations between mitogenicity and stimulation of calcium uptake in human lymphocytes, Biochem. Biophys. Res. Commun. 61:1180–1186.

    PubMed  CAS  Google Scholar 

  • Parker, C. W., 1982, Pharmacologic modulation of release of arachidonic acid from human mononuclear cells and lymphocytes by mitogenic lectins, J. Immunol. 128:393–397.

    PubMed  CAS  Google Scholar 

  • Parker, C. W., 1984, Intracellular activation in mast cells and lymphocytes. Prog. Immunol. 5:327–337.

    Google Scholar 

  • Parker, C. W., Smith, J. W., and Steiner, A. L., 1971, Early effects of phytohemagglutinin (PHA) on lymphocyte cyclic AMP levels. Int. Arch. Allergy Appl. Immunol. 41:40–46.

    PubMed  CAS  Google Scholar 

  • Parker, C. W., Sullivan, T. J., and Wedner, H. J., 1974, Cyclic AMP and the immune response, Adv. Cyclic Nucleotide Res. 4:1–80.

    PubMed  CAS  Google Scholar 

  • Parker, C. W., Kelly, J. P., Falkinhein, S. F., and Ruber, M. G., 1979a, Release of arachidonic acid from human lymphocytes in response to mitogenic lectins, J. Exp. Med. 149:1487–1503.

    PubMed  CAS  Google Scholar 

  • Parker, C. W., Stenson, W. F., Huber, M. G., and Kelly, J. P., 1979b, Formation of thromboxane B2 and hydroxy arachidonic acids in purified human lymphocytes in the presence and absence of PHA, J. Immunol. 122:1572–1577.

    PubMed  CAS  Google Scholar 

  • Patrick, J. C., Rengachary, S., and Melnykovych, G., 1975, Elevation of adenosine 3’,5’-cyclic monophosphate in established mammalian cell strains by hypaque (sodium diatrizoate). In Vitro 11:404–408.

    PubMed  CAS  Google Scholar 

  • Patt, L., Barrantes, D. M., and Houck, J., 1982, Inhibition of lymphocyte DNA-synthetic responses by spermine-derived polycations, Biochem. Pharmacol. 31:2353–2360.

    PubMed  CAS  Google Scholar 

  • Payan, D. G., and Goetzl, E. J., 1981, The dependence of human T-lymphocyte migration on the 5- lipoxygenation of endogenous arachidonic acid, J. Clin. Immunol. 1:266–270.

    CAS  Google Scholar 

  • Payan, D. G., and Goetzl, E., 1983, Specific suppression of human T lymphocyte function by leukotriene B4, J. Immunol. 131:551–553.

    PubMed  CAS  Google Scholar 

  • Payan, D. G., Missirian-Bastian, A., and Goetzl, E. J., 1984, Human T-lymphocyte subset specificity of the regulatory effects of leukotriene B4, Immunology 81:3501–3505.

    CAS  Google Scholar 

  • Pelosi, E., Testa, U., Louache, F., Thomopoulos, P., Salvo, G., Samoggia, P., and Peschle, C., 1986, Expression of transferrin receptors in phytohemagglutinin-stimulated human T-lympho- cytes, J. Immunol. 261:3036–3042.

    CAS  Google Scholar 

  • Pena, J. M., Itarte, E., Domingo, A., and Cusso, R., 1983, Cyclic adenosine 3’:5’-monophosphate- dependent and -independent protein kinases in human leukemic cells. Cancer Res. 43:1172–1175.

    PubMed  CAS  Google Scholar 

  • Peracchi, M., Maiolo, A., Lombardi, L., Catena, F., and Polli, E., 1980, Patterns of cyclic nucleotides in normal and leukaemic human leucocytes, Br. J. Cancer 41:360–371.

    PubMed  CAS  Google Scholar 

  • Peracchi, M., Lombardi, A. T., Maiolo, F., Bamonti-Catena, V., Toschi, O., Chiorboli, O., Mozzana, R., and Polli, E. E., 1983, Plasma and urine cyclic nucleotide levels in patients with acute and chronic leukemia, Blood 61:429–434.

    PubMed  CAS  Google Scholar 

  • Peracchi, M., Lombardi, L., Bareggi, B., Maiolo, A. T., Bamonti-Catena, F., Toschi, V., Cortelezzi. A., and Polli E. E., 1985, Plasma cyclic nucleotide levels in monitoring acute leukemia patients. Cancer Detect. Prev. 8:291–295.

    PubMed  CAS  Google Scholar 

  • Peters, J. H., and Hausen, P., 1971a, Effect of PHA on lymphocyte membrane transport, 1. Stimulation of uridine uptake, Eur. J. Biochem. 19:502–508.

    PubMed  CAS  Google Scholar 

  • Peters, J. H., and Hausen, P., 1971b, Effect of PHA on lymphocyte membrane transport. IL “Stimulation of facilitated diffusion” of 3-O-methyl-glucose, Eur. J. Biochem. 19:509–513.

    PubMed  CAS  Google Scholar 

  • Peterson, O. H., and Maruiyama, Y., 1984, Calcium-activated potassium channels and their role in secretion. Nature (Lond.) 307:693–696.

    Google Scholar 

  • Phillips, C. A., Girit, E. Z., and Kay, J. E., 1978, Changes in intracellular prostaglandin content during activation of lymphocytes by phytohemagglutinin, FEBS Lett. 94:115–119.

    PubMed  CAS  Google Scholar 

  • Phillips, J. L., 1976, Specific binding of zinc transferrin to human lymphocytes, Biochem. Biophys. Res. Commun. 72:634–639.

    CAS  Google Scholar 

  • Phillips, J. L., and Azair, P., 1974, Zinc transferrin enhancement of nucleic acid synthesis in phytohemagglutinin-stimulated human lymphocytes. Cell Immunol. 10:31–37.

    PubMed  CAS  Google Scholar 

  • Pike, M. C., and Snyderman, R., 1981, Requirement of transmethylation reactions for immune effector function, Lymphokines 3:432–444.

    Google Scholar 

  • Pogo, B. G. T., 1972, Early events in lymphocyte transformation by phytohemagglutinin, J. Cell. Biol. 53:635–641.

    PubMed  CAS  Google Scholar 

  • Pogo, B. G. T., Allfrey, V. G., and Mirsky, A. E., 1966, RNA synthesis and histone acetylation during the course of gene activation in lymphocytes, Proc. Natl. Acad. Sci. USA 55:805–812.

    PubMed  CAS  Google Scholar 

  • Polgar, P., Vera, J., Kelley, P., and Rutenburg, A,. 1973, Adenylate cyclase activity in normal and leukemic human leukocytes as determined by a radioimmunoassay for cyclic AMP, Biochim. Biophys. Acta 197:378–383.

    Google Scholar 

  • Polgar, P., Vera, J., and Rutenburg, A., 1977, An altered response to cyclic AMP stimulating hormones in intact human leukemic lymphocytes (39701), Proc. Soc. Exp. Biol. Med. 154: 493–495.

    PubMed  CAS  Google Scholar 

  • Pommier, G., Ripert, G., Azoulay, E., and Depieds, R., 1975, Effects of concanavalin A on membrane-bound enzymes from mouse lymphocytes, Biochim. Biophys. Acta 389:483–494.

    PubMed  CAS  Google Scholar 

  • Pompidou, A., Mace, B., Esnous, D., Michel, P., and Cochin, C. H. U., 1980, The nuclear refringence test: A new method for the evaluation of blood lymphocytes nuclei response in vitro to lectins and immunomodulators in man, in: International Symposium on New Trends in Human Immunology and Cancer Immunotherapy (B. Serrou and C. Rosenfold, eds.), pp. 696–703, Doin Editeurs, Paris.

    Google Scholar 

  • Pompidou, A., Rousset, S., Mace, B., Michel, P., Esnous, D., and Renard, N., 1984, Chromatin structure and nucleic acid synthesis in human lymphocyte activation by phytohemagglutinin, Exp. Cell. Res. 150:213–225.

    PubMed  CAS  Google Scholar 

  • Pompidou, A., Michel, P., Esnous, D., Rouquet, P., and Coral, M., 1986, Early nuclear events during human T lymphocytes activation, in: Sixth International Congress of Immunology Abstracts, #43.

    Google Scholar 

  • Purtell, M. J., and Anthony, D. D., 1975, Changes in ribosomal RNA processing paths in resting and phytohemagglutinin-stimulated guinea pig lymphocytes, Proc. Natl. Acad. Sci. USA 72: 3315–3319.

    PubMed  CAS  Google Scholar 

  • Quastel, M. R., and Kaplan, J. G., 1968, Inhibition by ouabain of human lymphocyte transformation induced by phytohemagglutinin in vitro. Nature (Lond.) 219:198–200.

    CAS  Google Scholar 

  • Quastel, M. R., and Kaplan, J. G., 1970, Early stimulation of potassium uptake in lymphocytes treated with PHA, Exp. Cell. Res. 63:230–233.

    PubMed  CAS  Google Scholar 

  • Quastel, M. R., and Kaplan, J. G., 1975, Ouabain binding to intact lymphocytes: Enhancement by phytohemagglutinin and leucoagglutinin, Exp. Cell. Res. 94:351–362.

    PubMed  CAS  Google Scholar 

  • Quastel, M. R., Milthorpe, P., Kaplan, J. G., and Vogelfanger, I. J., 1974, Further studies on M- ATPase in lymphocytes and plaque-forming cells: Possible species and functional differences between lymphocyte subclasses, in: Lymphocyte Recognition and Effector Mechanisms (K. Lindahl-Kiessling and D. Osoba, eds.), pp. 493–500, Acadenüc, New York.

    Google Scholar 

  • Rabinovitch, P. S., June, C. H., Grossman, A., and Ledbetter, J. A., 1986, Heterogeneity among T cells in intracellular free calcium responses after mitogen stimulation with PHA or anti-CD3, J. Immunol. 137:952–961.

    PubMed  CAS  Google Scholar 

  • Rasmussen, S. A., and Davis, R. P., 1977, Effect of microtubular antagonists on lymphocyte mitogenesis. Nature (Lond.) 269:249–251.

    CAS  Google Scholar 

  • Reed, J. C., Alpers, J. D., Nowell, P. C., and Hoover, R. G., 1987, Sequential expression of proto- oncogenes during normal human lymphocyte mitogenesis, Proc. Natl. Acad. Sci. USA 83: 3982–3986.

    Google Scholar 

  • Reeves, J. P., 1975, Calcium-dependent stimulation of 3-O-methyglucose uptake in rat thymocytes by the divalent cation ionophore A23187, J. Biol. Chem. 250:9428–9430.

    PubMed  CAS  Google Scholar 

  • Reilly, C. E., and Ferber, E., 1976, Concanavalin A induced changes of membrane-bound lysolecithin acyltransferase of thymocytes, in: Surface Membrane Receptors (R. A. Bradshaw, W. A. Frazier, R. C. Merrell, D. I. Gottlieb, and R. A. Hogue-Angeletti, eds.), pp. 199–213, Plenum, New York.

    Google Scholar 

  • Resch, K., 1976, Membrane associated events in lymphocyte activation, in: Receptors and Recognition. 1. Series A (P. Cuatrecasas and M. F. Greaves, eds.), pp. 61–117, Chapman and Hall, Ltd., London.

    Google Scholar 

  • Resch, K., and Ferber, E., 1972, Phospholipid metabolism of stimulated lymphocytes. Effects of phytohemagglutinin, concanavalin A and antiimmunoglobulin serum, Eur. J. Biochem. 27: 153–161.

    PubMed  CAS  Google Scholar 

  • Resch, K., Ferber, E., Odenthal, J., and Fischer, H., 1971, Early changes in the phospholipid metabolism of lymphocytes following stimulation with phytohemagglutinin and with lysolecithin, Eur. J. Immunol. 1:162–165.

    PubMed  CAS  Google Scholar 

  • Resch, K., Gelfand, E. W., Hansen, K., and Ferber, E., 1972, Lymphocyte activation: Rapid changes in the phospholipid metabolism of plasma membranes during stimulation, Eur. J. Immunol. 2:598–601.

    PubMed  CAS  Google Scholar 

  • Resch, K., Prester, M., Ferber, E., and Gelfand, E. W., 1976, The inhibition of initial steps of lymphocyte transformation by cytochalasin B, J. Immunol. 117:1705–1710.

    PubMed  CAS  Google Scholar 

  • Resch, K., Bovillon, D., Gemsa, D., and Averdunk, R., 1977, Drugs which disrupt microtubules do not inhibit the initiation of lymphocyte activation, Nature (Lond.) 265:349–351.

    CAS  Google Scholar 

  • Resch, K., Bovillon, D., and Gemsa, D., 1978, The activation of lymphocytes by the ionophore A23187, J. Immunol. 120:1514–1520.

    PubMed  CAS  Google Scholar 

  • Resch, K., Wood, T., Northoff, H., and Cooper, H. L., 1981, Microtubules: Are they involved in the initiation of lymphocyte activation?, Eur. J. Biochem. 115:659–664.

    PubMed  CAS  Google Scholar 

  • Resch, K., Schneider, S., and Szamel, M., 1983, Characterization of functional domains of the lymphocyte plasma membrane, Biochim. Biophys. Acta 733:142–153.

    PubMed  CAS  Google Scholar 

  • Resch, K., Brennecke, M., Goppelt, M., Kaever, V., Szamel, M., 1984, The role of phospholipids in the signal transmission of activated lymphocytes-T, Prog. Immunol. 5:349–360.

    Google Scholar 

  • Rink, T. J., and Deutsch, C., 1983, Calcium-activated potassium channels in lymphocytes. Cell Calcium 4:463–474.

    PubMed  CAS  Google Scholar 

  • Riordan, J. R., Slavik, M., and Kartner, N., 1977, Nature of the lectin-induced activation of plasma membrane Mg2+ ATPase, J. Biol. Chem. 252:5449–5455.

    PubMed  CAS  Google Scholar 

  • Rittenhouse-Sinmions, S., 1980, Indomethacin-induced accumulation of diglyceride in activated human platelets, J. Biol. Chem. 255:2259–2262.

    Google Scholar 

  • Robins, R. K., 1982, Purine nucleoside 3,5-cyclic monophosphates as hormonal modulators of cellular proliferation, metastases and lymphocyte response. Nucleosides and Nucleotides 1: 205–231.

    CAS  Google Scholar 

  • Rochette-Egly, C., and Kempf, J., 1981, Cyclic nucleotides and calcium in human lymphocytes induced to divide, J. Physiol. Paris 77:721–725.

    PubMed  CAS  Google Scholar 

  • Rocklin, R. E., 1976, Modulation of cellular immune responses in vivo and in vitro by histamine receptor-bearing lymphocytes, J. Clin. Invest. 57:1051–1058.

    PubMed  CAS  Google Scholar 

  • Rode, H. N., Szamel, M., Schneider, S., and Resch, K., 1982, Phospholipid metabolism of stimulated lymphocytes. Preferential incorporation of polyunsaturated fatty acids into plasma membrane phospholipid upon stimulation with concanavalin A, Biochim. Biophys. Acta 688: 66–74.

    Google Scholar 

  • Rogers, J., Hesketh, T. R., Smith, G. A., Beaven, M. A., Melcalfe, J. C., Johnson, P., and

    Google Scholar 

  • Garland, P. B., 1983a, Intracellular pH and free calcium changes in single cells using Quin 1 and Quin 2 probes and fluorescence microscopy, FEBS Lett. 161:21–27.

    PubMed  Google Scholar 

  • Rogers, J., Hesketh, T. R., Smith, G. A., and Melcalfe, J. C., 1983b, Intracellular pH of stimulated thymocytes measured with a new fluorescent indicator, J. Biol. Chem. 258:5994–5997.

    Google Scholar 

  • Rola-Pleszczynski, M., 1985, Differential effects of leukotriene B4 on T4+ and Tg8 + lymphocyte phenotype and immunoregulation functions, J. Immunol 135:1357–1360.

    PubMed  CAS  Google Scholar 

  • Rola-Pleszczynski, M. P., Borgeat, P., and Sirois, P., 1982, Leukotriene B4 induces human suppressor lymphocytes, Biochem, Biophys. Res. Commun. 198:1531–1536.

    Google Scholar 

  • Roos, D., Loos, J. A., Bloom, A. J., and Schölte, B. M., 1970, Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. I. Stimulation by phy- tohemagglutinin, Biochim. Biophys. Acta 222:565–582.

    PubMed  CAS  Google Scholar 

  • Roos, D., DeRoer, J., Huismans, L., and Boom, A., 1972, Dose-response of lymphocyte carbohydrate metabolism to phytohaemagglutinin, Exp. Cell. Res. 75:185–190.

    PubMed  CAS  Google Scholar 

  • Rosenberg, S. A., and Levy, R., 1972, Communications: Synthesis of nuclear-associated proteins by lymphocytes within minutes after contact with phytohemagglutinin, J. Immunol. 108:1105–1109.

    PubMed  CAS  Google Scholar 

  • Rosenberg, E. M., Conway, J. G., Tucci, M., and Doucet, E. W., 1980, Immunohistochemical studies of cyclic guanosine monophosphate and nuclear function, J. Clin. Invest. 66:832–842.

    PubMed  CAS  Google Scholar 

  • Rosenfeld, M. G., Abrass, I. B., Mendelsohn, J., Roos, B. A., Boone, R. F., and Garren, L. D., 1972, Control of transcription of RNA rich in polyadenylic acid in human lymphocytes, Proc. Natl. Acad. Sci. USA 69:2306–2311.

    PubMed  CAS  Google Scholar 

  • Rudd, C. E., Rogers, K. A., Brown, D. L., and Kaplan, J. G., 1979, Microtubules, colchicine, and lymphocyte blastogenesis. Can. J. Biochem. 57:673–683.

    PubMed  CAS  Google Scholar 

  • Ruhl, H., and Kirchner, H., 1978, Monocyte-dependent stimulation of human T cells by zinc, Clin. Exp. Immunol. 32:484–488.

    PubMed  CAS  Google Scholar 

  • Russell, D. H., 1973, Poly amines in Normal and Neoplastic Growth, Raven, New York.

    Google Scholar 

  • Salari, H., Braquet, P., and Borgeat, P., 1984, Comparative effects of indomethacin, acetylenic acids, 15-HETE, nordihydroguaiaretic acid and BW-755 on the metabolism of arachidonic acid in human leukocytes and platelets. Prostaglandins Leukotrienes Med. 13:53–60.

    CAS  Google Scholar 

  • Samuelsson, B., 1982, The leukotrienes: An introduction, in: Leukotrienes and Other Lipoxygenase Products. Advances in Prostaglandin, Thromboxane, and Leukotriene Research, Vol. 9 (B. Samuelsson and R. Pauletti, eds.), pp. 1–18, Raven, New York.

    Google Scholar 

  • Samuelsson, B., Goldyne, M., Granstrom, E., Hamberg, M., Hanmiarstrom, S., and Malmsten, C., 1978, Prostaglandins and thromboxanes, Annu. Rev. Biochem. 47:997–1029.

    PubMed  CAS  Google Scholar 

  • Sasaki, T., and Hasagewa-Sasaki, H., 1981, Effects of anchorage-modulating doses of concanavalin A, microtubule-disrupting drugs and microfilament perturbants, cytochalasins, in the phos- phatidylinositol response of rat lymph node cells, Biochim. Biophys. Acta 649:449–454.

    CAS  Google Scholar 

  • Sawyer, W. H., Hammarstrom, S., Moller, G., and Goldstein, I. J., 1975, Precipitin and mitogenic behavior of dimeric and tetrameric concanavalin A, Eur. J. Immunol. 5:507–510.

    CAS  Google Scholar 

  • Scavennec, J., Carcassonne, Y., Gastaut, J-A., Blanc, A., and Cailla, H., 1981, Relationship between the levels of cyclic cytidine 3’:5’-monophosphate and cyclic guanosine 3’:5’-mono- phosphate in urines and leukocytes and the type of human leukemias. Cancer Res. 41:3222–3227.

    PubMed  CAS  Google Scholar 

  • Schellenberg, R. R., and Gillespie, E., 1977, Colchicine inhibits phosphatidylinositol turnover induced in lymphocytes by concanavalin A, Nature (Lond.) 265:741–742.

    CAS  Google Scholar 

  • Schellenberg, R. R., and Gillespie, E., 1980, Effects of colchicine, vinblastine, griseofulvin and deuterium oxide upon phospholipid metabolism in concanavalin A-stimulated lymphocytes, Biochim. Biophys. Acta 619:522–532.

    PubMed  CAS  Google Scholar 

  • Scher, N. S., Quagliata, F., Malathi, V., Faig, D., Melton, R. A., and Silber, R., 1976, Cyclic adenosine 3’:5’-monophosphate phosphodiesterase activity in normal and chronic lymphocytic leukemia lymphocytes. Cancer Res. 36:3958–3962.

    PubMed  CAS  Google Scholar 

  • Schreiner, G. P., and Unanue, E. R., 1975, The modulation of spontaneous and anti-Ig-stimulated motility of lymphocytes by cyclic nucleotides and adrenergic and cholinergic agents, J. Immunol 114:802–809.

    PubMed  CAS  Google Scholar 

  • Schunmi, D. E., and Webb, T. E., 1978, Effect of adenosine 3’:5’-monophosphate and guanosine 3’:5’-monophosphate on RNA release from isolated nuclei, J. Biol. Chem. 253:8513–8517.

    Google Scholar 

  • Schümm, D. E., Morris, H. P., and Webb, T. E., 1974, Early biochemical changes in PHA- stimulated peripheral blood lymphocytes from normal and tumor bearing rats, Eur. J. Cancer 10:107–113.

    PubMed  Google Scholar 

  • Segel, G. B., and Lichtman, M. A., 1976, Potassium transport in human blood lymphocytes treated with phytohemagglutinin, J. Clin. Invest. 58:1358–1369.

    PubMed  CAS  Google Scholar 

  • Segel, G. B., and Lichtman, M. A., 1981, Amino acid transport in human lymphocytes: Distinctions in the enhanced uptake with PHA treatment or amino acid deprivation, J. Cell. Physiol. 106: 303–308.

    PubMed  CAS  Google Scholar 

  • Segel, G. B., Hollander, M. M., Gordon, B. R., Klemperer, M. R., and Lichtman, M. A., 1975, A rapid phytohemagglutinin induced alteration in lymphocyte potassium permeability, J. Cell. Physiol. 86:327–335.

    PubMed  CAS  Google Scholar 

  • Segel, G. B., Lichtman, M. A., Hollander, M. M., Gordon, B. R., and Klemperer, M. R., 1976, Human lymphocyte potassium content during the initiation of phytohemagglutinin induced mitogenesis, J. Cell. Physiol. 88:43–48.

    PubMed  CAS  Google Scholar 

  • Segel, G. B., Simon, W., and Lichtman, M. A., 1979a, Regulation of sodium and potassium transport in phytohemagglutinin-stimulated human blood lymphocytes, J. Clin. Invest. 64:834–841.

    PubMed  CAS  Google Scholar 

  • Segel, G. B., Kovach, G., and Lichtman, M. A., 1979b, Sodium-potassium adenosine triphosphatase activity of human lymphocyte membrane vesicles: Kinetic parameters, substrate specificity, and effects of phytohemagglutinin, J. Cell. Physiol. 100:109–118.

    PubMed  CAS  Google Scholar 

  • Segel, G. B., Simon, W., Lichtman, A. H., and Lichtman, M. A., 1981, The activation of lymphocyte plasma membrane (Na,K)-ATPase by EGTA is explained better by zinc than by calcium chelation, J. Biol. Chem. 256:6629–6632.

    PubMed  CAS  Google Scholar 

  • Sell, S., and Linthicum, D. S., 1975, Distribution of surface Ig during lymphocyte transformation, in: Lymphocytes and Their Interaction: Recent Observations (R. C. Williams, ed.), Kroc Foundation Symposia Series, Vol. 4, pp. 57–75. Raven, New York.

    Google Scholar 

  • Serhan, C. N., Fridovich, J., Goetzl, E. J., Dunham, P. B., and Weissmann, G., 1982, Leukotriene B4 and phosphatidic acid are calcium ionophores, J. Biol. Chem. 257:4746–4752.

    PubMed  CAS  Google Scholar 

  • Shapiro, H. M., Natale, P. J., and Kamentsky, L. A., 1979, Estimation of membrane potentials of individual lymphocytes by flow cytometry, Proc. Natl. Acad. Sci. USA 76:5728–5730.

    PubMed  CAS  Google Scholar 

  • Sherline, P., and Mundy, G. R., 1977, Role of the tubulin-microtubular system in lymphocyte activation, J. Cell. Biol. 74:371–376.

    PubMed  CAS  Google Scholar 

  • Shipp, M. A., and Reinherz, E. L., 1987, Differential expression of nuclear proto-oncogenes in T cells triggered with mitogenic and nonmitogenic T3 and Til activation signals, J. Immunol. 139:2143–2148.

    PubMed  CAS  Google Scholar 

  • Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes. Science 175:720–731.

    PubMed  CAS  Google Scholar 

  • Smit, J. W., Bloom, N. R., VanLuyn, M. J. A., and Halie, M. R., 1983, Lymphocytes with parallel tubular structures: Morphologically a distinctive subpopulation. Blut 46:311–320.

    PubMed  CAS  Google Scholar 

  • Smith, J. W., Steiner, A. L., Newberry, W. M., and Parker, C. W., 1971, Cyclic adenosine 3’,5’- monophosphate in human lymphocytes. Alterations after phytohemagglutinin stimulation, J. Clin. Invest. 50:432–441.

    PubMed  CAS  Google Scholar 

  • Smith, K. A., 1982, Interleukin-2, Immunobiology 161:157–173.

    CAS  Google Scholar 

  • Soren, L., 1973, Variability of the time at which PHA-stimulated lymphocytes initiate DNA synthesis, Exp. Cell 78:201–208.

    CAS  Google Scholar 

  • Spach, C., and Aschkenasy, A., 1979, Effects of a protein-free diet on the changes in cyclic AMP and cyclic GMP levels induced by immunization in splenic T and B lymphocytes in rat, J. Nutr. 109:1265–1273.

    PubMed  CAS  Google Scholar 

  • Spiegel, R. J., Magrath, I. T., and Shutta, J. A., 1981, Role of cytoplasmic lipids in altering diphenylhexatriene fluorescence polarization in malignant cells. Cancer Res. 41:452–458.

    PubMed  CAS  Google Scholar 

  • Stark, R., Liebes, L. P., Nevria, D., and Silber, R., 1982, The quantitation of actin in human lymphocytes by isoelectric focusing, Biochem. Med. 27:200–206.

    Google Scholar 

  • Stenzel, K. M., Schwartz, R., Rubin, A. L., and Novogrodsky, A., 1978, Potentiation of lymphocyte activation by colchicine, J. Immunol. 121:863–871.

    PubMed  CAS  Google Scholar 

  • Sternholm, R. L., and Falor, W. H., 1970, Early biochemical changes in phytohemagglutinin- stimulated human lymphocytes of blood and lymphocytes, J. Reticuloendothel. Soc. 7:471–483.

    Google Scholar 

  • Stoeck, M., Northoff, H., and Resch, K., 1983, Inhibition of mitogen-induced lymphocyte proliferation by ouabain, J. Immunol. 131:1433–1437.

    PubMed  CAS  Google Scholar 

  • Stole, V., 1980, Stimulatory effect of ionophores on adenosine 3’,5’-monophosphate content in human mononuclear leukocytes, Biochem. Pharmacol. 29:1991–1994.

    Google Scholar 

  • Strom, T. B., Lundin, A. P., and Carpenter, C. B., 1977, The role of cyclic nucleotides in lymphocyte activation and function. Prog. Clin. Immunol. 3:115–153.

    PubMed  CAS  Google Scholar 

  • Sugiura, T., and Waku, K., 1984, Enhanced turnover of arachidonic acid-containing species of phosphatidylinositol and phosphatidic acid of concanavalin A-stimulated lymphocytes, Bio- chim. Biophys. Acta 796:190–198.

    CAS  Google Scholar 

  • Sundquist, K. G., Otteskog, P., Wanger, L. Thorstensson, R., and Utter, G., 1980, The morphology and microfilament organization in human blood lymphocytes: Effects of substratum and mitogen exposure, Exp. Cell. Res. 130:327–337.

    Google Scholar 

  • Suzuki T., Sadasivan, R., Saito-Taki, T., Stechschulte, D. J., and Balentine, L., 1980, Studies of Fc gamma-receptors of human B lymphocytes: Phospholipase A2 activation of Fc gamma-receptors, Biochemistry 19:6037–6043.

    PubMed  CAS  Google Scholar 

  • Szamel, M., and Resch, K., 1981a, Modulation of enzyme activities is isolated lymphocyte plasma membranes by enzymatic modification of phospholipid fatty acids, J. Biol Chem. 256:11618–11623.

    PubMed  CAS  Google Scholar 

  • Szamel, M., and Resch, K., 1981b, Inhibition of lymphocyte activation by ouabain. Interference with the early activation of membrane phospholipid metabolism, Biochim. Biophys. Acta 647: 297–301.

    PubMed  CAS  Google Scholar 

  • Szamel, M., Schneider, S., and Resch, K., 1981, Functional interrelationship between (Na+ and K +)-ATPase and lysolecithin acyltransferase in plasma membranes of mitogen-stimulated rabbit thymocytes, J. Biol. Chem. 256:9198–9204.

    PubMed  CAS  Google Scholar 

  • Takemoto, D. J., Kaplan, S. A., and Appleman, M. M., 1979, Cyclic guanosine 3’,5’-monophosphate and phosphodiesterase activity in mitogen-stimulated human lymphocyte, Biochem. Bio- physica Res. Commun. 90:491–497.

    CAS  Google Scholar 

  • Takemoto, D. J., Dunford, C., Vaughn, D., Kramer, K. J., Smith, A., and Powell, R. G., 1982, Guanylate cyclase activity in human leukemic and normal lymphocytes. Enzyme 27:179–188.

    PubMed  CAS  Google Scholar 

  • Takigawa, M., and Waksman, B., 1980, Mechanisms of lymphocyte “deletion” by high concentrations of ligand. 1. Cyclic AMP levels and cell death in T-lymphocytes exposed to high concentration of concanavalin A, Cell. Immunol. 58:29–38.

    Google Scholar 

  • Tam, C. F., and Walford, R. L., 1978, Cyclic nucleotide levels in resting and mitogen-stimulated spleen cell suspensions from young and old mice, Mech. Aging Dev. 7:309–320.

    PubMed  CAS  Google Scholar 

  • Tam, C. F., and Walford, R. L., 1980, Alterations in cyclic nucleotides and cyclase-specific activities in T lymphocytes of aging normal humans and patients with Down’s Syndrome, J. Immunol. 125:1665–1670.

    PubMed  CAS  Google Scholar 

  • Tam, C., Smith, G., and Walford, R., 1979, Resting and concanavalin-A stimulated levels of cyclic nucleotides in splenic cells of aging mice with spontaneous cancers. Life Sci. 24:311–322.

    PubMed  CAS  Google Scholar 

  • Tandon, N. N., Davidson, L. A., and Titus, E. O., 1983, Changes in (Na+ and K+) ATPase activity associated with stimulation of thymocytes by concanavalin A, J. Biol. Chem. 258: 9850–9855.

    PubMed  CAS  Google Scholar 

  • Tatham, P. E. R., and Delves, P. J., 1984, Flow cytometric detection of membrane potential changes in murine lymphocytes induced by concanavalin A, Biochem. J. 221:137–146.

    PubMed  CAS  Google Scholar 

  • Taylor, M. J., Metcalfe, J. C., Hesketh, T. R., Smith, G. A., and Moore, J. P., 1984, Mitogens increase phosphorylation of phosphoinositides in thymocytes, Nature (Lond.) 312:462–463.

    CAS  Google Scholar 

  • Toh, B. H., and Hard, G. C., 1977, Actin co-caps with concanavalin A receptors, Nature (Lond.) 269:695–697.

    CAS  Google Scholar 

  • Tomar, R. H., Darrow, T. L., and John, P. A., 1981, Response to and production of prostaglandins by murine thymus, spleen, bone marrow and lymph node cells, Cell. Immunol. 60:335–346.

    PubMed  CAS  Google Scholar 

  • Touraine, J. L., Hadden, J. W., Touraine, F., Hadden, E. M., Estensen, R., and Good, R. A., 1977, Phorbol myristate acetate: A mitogen selective for a T-lymphocyte subpopulation, J. Exp. Med. 145:460–465.

    PubMed  CAS  Google Scholar 

  • Toyoshima, S., and Osawa, T., 1975, Lectins from Wistaria floribunda seeds and their effect on membrane fluidity of human peripheral lymphocytes, J. Biol. Chem. 250:1655–1660.

    PubMed  CAS  Google Scholar 

  • Toyoshima, S., Iwata, M., and Osawa, T., 1976, Kinetics of lymphocyte stimulation by concanavalin A, Nature (Lond.) 264:447–449.

    CAS  Google Scholar 

  • Toyoshima, S., Hirata, F., Axelrod, J., Beppu, M., Osawa, T., and Waxdal, M. J., 1982a, The relationship between phospholipid methylation and calcium influx in murine lymphocytes stimulated with native and modified Con A, Mol. Immunol. 19:229–234.

    PubMed  CAS  Google Scholar 

  • Toyoshima, S., Hirata, F., Iwata, M., Axelrod, J., Osawa, T., and Waxdal, M. J., 1982b, Lectin- induced mitosis and phospholipid methylation, Mol. Immunol. 19:467–476.

    PubMed  CAS  Google Scholar 

  • Trotter, J., and Ferber, E., 1981, CoA-dependent cleavage of arachidonic acid from phosphatidylcholine and transfer to phosphatidylethanolamine in homogenates of murine thy- mocytQS, FEBS Lett. 128:237–241.

    PubMed  CAS  Google Scholar 

  • Trotter, J., Fleisch, L, Schmidt, B., and Ferber, E., 1982, Acyltransferase-catalyzed cleavage of arachidonic acid from phospholipids and transfer to lysophosphatides in lymphocytes and macrophages, J. Biol. Chem. 257:1816–1823.

    PubMed  CAS  Google Scholar 

  • Tsien, R. Y., Pozzan, T., and Rink, T. J., 1982, T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature (Lond.) 295:68–70.

    CAS  Google Scholar 

  • Tsuda, H., Maeda, H., and Kishimoto, S., 1981, Fluorescence polarization with FDA in leukemic cells: A clear difference between myelogenous and lymphocytic organs, Br. J. Cancer 43:793–803.

    PubMed  CAS  Google Scholar 

  • Udey, M. C., and Parker, C. W., 1982, Effects of inhibitors of arachidonic acid metabolism on alpha-aminoisobutyric acid transport in human lymphocytes, Biochem. Pharmacol. 31:337–345.

    CAS  Google Scholar 

  • Udey, M. C., Chaplin, D. D., Wedner, M. J., and Parker, C. W., 1980, Early activation events in lectin-stimulated human lymphocytes, J. Immunol. 125:1544–1550.

    PubMed  CAS  Google Scholar 

  • Van Blitterswijk, W. J., De Veer, G., Krol, J. H., and Emmelot, P., 1982, Comparative lipid analysis of purified plasma membranes and shed extracellular membrane vesicles from normal murine thymocytes and leukemic GRSL cells, Biochim. Biophys. Acta 688:495–504.

    PubMed  Google Scholar 

  • Van den Berg, K. J., and Betel, I., 1971, Early increase of amino acid transport in stimulated lymphocytes, Exp. Cell. Res. 66:257–259.

    PubMed  Google Scholar 

  • Van den Berg, K. J., and Betel, I., 1973a, Increased transport of 2-aminoisobutyric acid in rat lymphocytes stimulated with concanavalin A, Exp. Cell. Res. 76:63–72.

    PubMed  Google Scholar 

  • Van den Berg, K. J., and Betel, I., 1973b, Selective early activation of a sodium dependent amino acid transport system in stimulated rat lymphocyte, FEBS Lett. 29:149–152.

    PubMed  Google Scholar 

  • Van den Berg, K. J., and Betel, I., 1974a, Correlation of early changes in amino acid transport and DNA synthesis in stimulated lymphocytes. Cell. Immunol. 10:319–323.

    PubMed  Google Scholar 

  • Van den Berg, K. J., and Betel, I., 1974b, Regulation of amino acid uptake in lymphocytes stimulated by mitogens, Exp. Cell. Res. 84:412–418.

    PubMed  Google Scholar 

  • Varesio, L., and Holden, J. T., 1980, Mechanisms of lymphocyte activation: Linkage between early protein synthesis and late lymphocyte proliferation, J. Immunol. 124:2288–2294.

    PubMed  CAS  Google Scholar 

  • Varesio, L., Holden, H. T., Taramelli, D., 1980, Mechanism of lymphocyte activation, J. Immunol. 125:2810–2816.

    PubMed  CAS  Google Scholar 

  • Wagshal, A., and Waksman, B., 1978, Regulatory substances produced by lymphocytes. VIIL Cell cycle specificity of inhibitory of DNA synthesis (IDS) action in lymphocytes, J. Immunol. 121: 966–972.

    PubMed  CAS  Google Scholar 

  • Wagshal, A., Jegasothy, B., and Waksman, B., 1978, Regulatory substances produced by lymphocytes. VL Cell cycle specificity of inhibitor of DNA synthesis action in L cells, J. Exp. Med. 147:171–181.

    PubMed  CAS  Google Scholar 

  • Waksman, B. H., Dessaint, J-P., and Katz, S. P., 1980, Proteolysis, calcium and cyclic nucleotides in macrophage T-lymphocyte interaction, in: Biochemical Characterization of Lymphokines (A. L. deWeck, F. Kristensen, and M. Landz, eds.), pp. 435–443, Academic, New York.

    Google Scholar 

  • Walls, E. v., Borghetti, A. F., Benzie, C. R., and Kay, J. E., 1984, Early events during the activation of human lymphocytes by the mitogenic monoclonal antibody OKT3. Cell. Immunol. 89:30–38.

    PubMed  CAS  Google Scholar 

  • Walsh, J. v., and Singer, J. J., 1983, Ca2+ activated K+ channels in vertebrate smooth muscle cells, Cell. Calcium 4:321–330.

    PubMed  CAS  Google Scholar 

  • Wands, J. R., Podolsky, D. K., and Isselbacher, K. J., 1976, Mechanism of human lymphocyte stimulation by concanavalin A: Role of valence and surface binding sites, Proc. Natl. Acad. Sci. USA 73:2118–2122.

    PubMed  CAS  Google Scholar 

  • Wang, J. L., McClain, D. A., and Edelman, G. M., 1975a, Modulation of lymphocyte mitogenesis, Proc. Natl. Acad. Sci. USA 72:1917–1921.

    PubMed  CAS  Google Scholar 

  • Wang, J. L., Gunther, G. R., and Edelman, G. M., 1975b, Inhibition by colchicine of the mitogenic stimulation of lymphocytes prior to the S phase, J. Cell Biol. 66:128–144.

    PubMed  CAS  Google Scholar 

  • Wang, T., Sheppard, J. R., and Foker, J. E., 1978, Rise and fall of cyclic AMP required for onset of lymphocyte DNA synthesis, Science 201:155–157.

    PubMed  CAS  Google Scholar 

  • Wang, T., Foker, J. E., and Malkinson, A. M., 1981, Protein phosphorylation in intact lymphocytes stimulated by concanavalin A, in Exp. Cell. Res. 134:409–416.

    PubMed  CAS  Google Scholar 

  • Waterhouse, P. D., Anderson, P. L., and Brown, D. L., 1983, Increases in microtubule assembly and in tubulin content on mitogenically stimulated mouse splenic T lymphocytes, Exp. Cell. Res. 144:367–376.

    PubMed  CAS  Google Scholar 

  • Watson, J., 1976, The involvement of cyclic nucleotide metabolism in the initiation of lymphocyte proliferation induced by mitogens, J. Immunol. 117:1656–1663.

    PubMed  CAS  Google Scholar 

  • Watson, J., Epstein, R., and Cohn, M., 1973, Cyclic nucleotides as intracellular mediators of the expression of antigen-sensitive cells. Nature (Lond.) 246:405–409.

    CAS  Google Scholar 

  • Waxdal, M. J., 1980, Discussions, Fourth International Congress on Immunology, Paris.

    Google Scholar 

  • Webb, D. R., and Jamieson, A. T., 1976, Control of mitogen-induced transformation: Characterization of a splenic suppressor cell and its mode of action. Cell. Immunol. 24:45–57.

    PubMed  Google Scholar 

  • Webb, D. R., and Nowowiejski, I., 1981, Control of suppressor cell activation via endogenous prostaglandin synthesis: The role of T cells and macrophages. Cell. Immunol. 63:321–328.

    PubMed  CAS  Google Scholar 

  • Webb, D. R., Stites, D. P., Perlman, J. D., Luong, D., and Fudenberg, H. H., 1973, Lymphocyte activation: The dualistic effect of CAMP, Biochem. Biophys. Res. Commun. 53:1002–1008.

    PubMed  CAS  Google Scholar 

  • Webb, D. R., Belobradsky, B., Hanes, D., Stites, D. P., Perlman, J. D., and Fudenberg, H. H., 1975, Control of mitogen-induced lymphocyte activation, Clin. Immunol. Immunopathol. 4: 226–240.

    PubMed  CAS  Google Scholar 

  • Weber, W. T., 1977, T-cell activation induced by cross-linking of anti-T cell directed antibodies with anti-immunoglobulin, in: Regulatory Mechanisms in Lymphocyte Activation (D. E. Lucas, ed.), p. 31, Academic, New York.

    Google Scholar 

  • Weber, T. H., and Goldberg, M. L., 1975, Effects of leukoagglutinating phytohemagglutinin on cAMP and CGMP levels in lymphocytes, Exp. Cell Res. 97:432–435.

    Google Scholar 

  • Weber, W., Schwock, G., Wielckens, K., Gartemann, A., and Hilz, H., 1981, CAMP receptor proteins and protein kinases in human lymphocytes: Fundamental alterations in chronic lymphocytic leukemaic cells, Eur. J. Biochem. 120:585–592.

    PubMed  CAS  Google Scholar 

  • Wedner, H. J., and Parker, C. W., 1975, Protein phosphorylation in human peripheral lymphocytes- stimulation by phytohemagglutinin and A2+-monobutyryl cyclic AMP, Biochem. Biophys. Res. Commun. 62:808–815.

    PubMed  CAS  Google Scholar 

  • Wedner, H. J., and Parker, C. W., 1976, Lymphocyte Activation, Prog. Allergy 20:195–300.

    PubMed  CAS  Google Scholar 

  • Wedner, H. J., Dankner, R., and Parker, C. W., 1975, Cyclic GMP and lectin-induced lymphocyte activation, J. Immunol. 115:1682–1687.

    PubMed  CAS  Google Scholar 

  • Weidemann, M. J., and Kolbuck-Braddon, M. E., 1982, The effect of trifluoperazine on con- canavalin A-induced chemiluminescence, respiration and glycolysis in rat thymocytes, Biochem. Internatl. 4:575–583.

    CAS  Google Scholar 

  • Weiel, J. E., and Hamilton, T. A., 1984, Quiescent lymphocytes express intracellular transferrin receptors, Biochem. Biophys. Res. Commun. 119:598–602.

    CAS  Google Scholar 

  • Weinstein, Y., Chambers, D. A., Bourne, H. R., and Melmon, K. L., 1974, Cyclic GMP stimulates lymphocyte nucleic acid synthesis. Nature (Lond.) 251:352–353.

    CAS  Google Scholar 

  • Weinstein, Y., Segal, S., and Melmon, K. L., 1975, Specific mitogenic activity of 8-Br-guanosine 3’,5’-monophosphate (Br-cyclic GMP) on B lymphocytes, J. Immunol. 115:112–117.

    PubMed  CAS  Google Scholar 

  • Weiss, A., Imboden, J., Hardy, K., Manger, B., Terhorst, C., and Stobi, J., 1986, The role of the T3/antigen receptor complex in T-cell activation, Annu. Rev. Immunol. 4:593–619.

    PubMed  CAS  Google Scholar 

  • Weiss, B., and Winchurch, R. A., 1978, Analyses of cyclic nucleotide phosphodiesterases in lymphocytes from normal and aged leukemic mice. Cancer Res. 38:1274–1280.

    PubMed  CAS  Google Scholar 

  • Wertz, P. W., and Mueller, G. C., 1978, Rapid stimulation of phospholipid metabolism in bovine lymphocytes by tumor-promoting phorbolesters. Cancer Res. 38:2900–2904.

    PubMed  CAS  Google Scholar 

  • Wertz, P. W., and Mueller, G. C., 1980, Inhibition of 12-O-tetradecanoylphorbol-13-acetate accelerated phospholipid metabolism by 5,8,11,14-eicosatetraynoic acid. Cancer Res. 40:776–781.

    PubMed  CAS  Google Scholar 

  • Wess, J. A., and Archer, D. L., 1981, Restoration by cyclic guanosine monophosphate and extracellular calcium of butylated hydroxyanisole-suppressed primary murine thymus-dependent antibody response, Immunopharmacology 3:361–366.

    PubMed  CAS  Google Scholar 

  • Wess, J. A., and Archer, D. L., 1982, Evidence from in vitro murine immunologic assays that some phenolic food additives may function as antipromoters by lowering intracellular cyclic GMP levels, Proc. Soc. Exp. Biol. Med. 170:427–430.

    PubMed  CAS  Google Scholar 

  • Whitesell, R. R., Johnson, R. A., Tarpley, H. L., and Regen, D. M., 1977, Mitogen-stimulated glucose transport in thymocytes. Possible role of Ca2+ and antagonism by adenosine 3’:5’- monophosphate, J. Cell. Biol. 72:456–469.

    PubMed  CAS  Google Scholar 

  • Whitfield, J. F., and MacManus, J. P., 1972, Calcium-mediated effects of cyclic GMP on the stimulation of thymocyte proliferation by prostaglandin Ei, Proc. Exp. Biol. Med. 193:818–824.

    Google Scholar 

  • Whitfield, J. F., Rixon, R. H., Perris, A. D., and Youdale, T., 1969, Stimulation by calcium of the entry of thymic lymphocytes into the deoxyribonucleic acid-synthetic(S) phase of the cell cycle, Exp. Cell. Res. 57:8–12.

    PubMed  CAS  Google Scholar 

  • Whitfield, J. F., MacManus, J. P., Boynton, A. L., Gillan, D. J., and Isaacs, R. J., 1974, Concanavalin A and the initiation of thymic lymphoblast DNA synthesis and proliferation by a calcium-dependent increase in cyclic GMP level, J. Cell. Physiol. 84:445–458.

    PubMed  CAS  Google Scholar 

  • Whitfield, J. F., MacManus, J. P., Rixon, A. H., Boynton, A. L., Youdale, T., and Swierenga, S., 1976, The positive control of cell proliferation by the interplay of calcium and cyclic nucleotides: A review. In Vitro 12:1–18.

    CAS  Google Scholar 

  • Whitney, R. B., and Sutheriand, R. M., 1972a, The influence of calcium, magnesium and cyclic adenosine 3’,5’-monophosphate on the mixed lymphocyte reaction, J. Immunol. 108:1179–1183.

    PubMed  CAS  Google Scholar 

  • Whitney, R. B., and Sutherland, R. M., 1972b, Requirement for calcium ions in lymphocyte transformation stimulated by phytohemagglutinin, J. Cell. Physiol. 80:329–338.

    PubMed  CAS  Google Scholar 

  • Whitney, R. B., and Sutherland, R. M., 1972c, Enhanced uptake of calcium by transforming lymphocytes. Cell. Immunol. 5:137–147.

    PubMed  CAS  Google Scholar 

  • Whitney, R. B., and Sutherland, R. M., 1973a, Effects of chelating agents on the initial interaction of phytohemagglutinin with lymphocytes and the subsequent stimulation of amino acid uptake, Biochim. Biophys. Acta 298:790–797.

    PubMed  CAS  Google Scholar 

  • Whitney, R. B., and Sutherland, R. M., 1973b, Characteristics of calcium accumulation by lymphocytes and alteration in the process induced by phytohemagglutinin, J. Cell. Physiol. 82:9–20.

    PubMed  CAS  Google Scholar 

  • Williams, D. B., Perera, M. A., Facca, L. A., Heng, Y. M., Simon, G. T., Dorrington, K. J., and Klein, M. H., 1986, Role of calcium remobilization in antigen specific T-cell activation, in: Sixth International Congress of Immunology Toronto, Canada (abst. #26), p. 234.

    Google Scholar 

  • Williams, J. M., Ransil, B. J., Shapiro, H. M., and Strom, T. B., 1984, Accessory cell requirement for activation antigen expression and cell cycle progression by human T-lymphocytes, J. Immunol. 133:2986–2994.

    PubMed  CAS  Google Scholar 

  • Williams, R. O., and Loeb, L. A., 1973, Zinc requirement for DNA replication in stimulated human lymphocytes, J. Cell. Biol. 58:594–601.

    PubMed  CAS  Google Scholar 

  • Wood, P. J., Pao, G., and Cooper, A., 1984, Changes in guinea pig plasma cyclic nucleotide levels during the development of transplantable leukemia. Cancer 53:79–82.

    PubMed  CAS  Google Scholar 

  • Wright, P., Quastel, M. R., and Kaplan, J. G., 1973, Differential sensitivity of antigen- and mitogen-stimulated human leukocytes to prolonged inhibition of potassium transport, Exp. Cell. Res. 79:87–94.

    PubMed  CAS  Google Scholar 

  • Yahara, I., and Edelman, G. M., 1972, Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A, Proc. Natl. Acad. Sci. USA 69:608–612.

    PubMed  CAS  Google Scholar 

  • Yahara, I., and Edelman, G. M., 1973, The effects of concanavalin A on the mobility of lymphocyte surface receptors, Exp. Cell. Res. 81:143–155.

    PubMed  CAS  Google Scholar 

  • Yahara, I., and Edelman, G. M., 1975, Modulation of lymphocyte receptor mobility by locally bound concanavalin A, Proc. Nat. Acad. Sci. 72:1579–1583.

    PubMed  CAS  Google Scholar 

  • Yang, S. v., Chouaib, S., and Dupont, B., 1986, A common pathway for T lymphocyte activation involving both the CD3-Ti complex and CD2 sheep erythrocyte receptor determinants, J. Immunol. 137:1097–1100.

    PubMed  CAS  Google Scholar 

  • Yasmeen, D., Laird, A. J., Hume, D. A., and Weidemann, M. J., 1977, Activation of 3-O-methyl- glucose transport in rat thymus lymphocytes by concanavalin A, Biochim. Biophys. Acta 500: 89–102.

    PubMed  CAS  Google Scholar 

  • Yoshinaga, M., Waksman, B., and Malawista, S. E., 1972, Inhibition of lymphocyte triggering by cytochalasin B, Transplant. Proc. 4:325–327.

    PubMed  CAS  Google Scholar 

  • Yunis, A. A., Arimura, G. K., and Kipnis, D. M., 1963, Amino acid transport in blood cells. L Effect of cations and amino acid transport in human leukocytes, J. Lab. Clin. Med. 62:465–476.

    PubMed  CAS  Google Scholar 

  • Zachowski, A., Lelievre, L., Aubry, J., Charlemagne, D., and Paraf, A., 1977, Roles of proteins from inner face of plasma membranes in susceptibility of adenosinetriphosphatase to ouabain, Proc. Natl. Acad. Sci. USA 74:633–637.

    PubMed  CAS  Google Scholar 

  • Zinmierman, T. P., Schmitges, C. J., Wolberg, G., Deeprose, R. D., Duncan, G. S., Cuatrecasass, P., and Elion, G. B., 1980, Modulation of cyclic AMP metabolism by S-adenosylhomocysteine and S-3-deazadenosylhomocysteine in mouse lymphocytes, Proc. Nad. Acad. Sci. USA 11: 5639–5643.

    Google Scholar 

  • Zwiller, J., Revel, M.-O., and Malviya, A. N., 1985, Protein kinase C catalyzes phosphorylation of guanylate cyclase in vitro, J. Biol. Chem. 260:1350–1356.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Hadden, J.W., Coffey, R.G. (1990). Early Biochemical Events in T-Lymphocyte Activation by Mitogens. In: Hadden, J.W., Szentivanyi, A. (eds) Immunopharmacology Reviews. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7252-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7252-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7254-1

  • Online ISBN: 978-1-4615-7252-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics