Skip to main content

Aramid Fibers and Composites

  • Chapter
Handbook of Composites

Abstract

Aramid fiber is the generic name for aromatic polyamide fibers. As defined by the U. S. Federal Trade Commission, an aramid fiber is “a manufactured fiber in which the fiber-forming substance is a long chain synthetic polyamide in which at least 85% of the amide linkages are attached directly to two aromatic rings.”

This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore Laboratory under contract No. W-7405-Eng-48.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Blades, “Dry-Jet Wet Spinning Process,” U. S. Patent 3,767,756, October 23, 1973.

    Google Scholar 

  2. L. Penn, H. A. Newey, and T. T. Chiao, “Chemical Characterization of a High-Performance Organic Fiber,” J. Mat. Sci. 11, 190 (1976).

    Article  Google Scholar 

  3. L. Penn, Lawrence Livermore Laboratory, private communication (1976).

    Google Scholar 

  4. M. G. Northolt, “X-Ray Diffraction Study of Poly(p-Phenylene Terephthalamide) Fibers,” European Polym. J. 10, 799 (1974).

    Article  Google Scholar 

  5. T. T. Chiao, M. A. Hamstad, M. A. Marcon, and J. E. Hanafee, Filament-Wound Kelvar 49/Epoxy Pressure Vessels, Lawrence Livermore Laboratory Report UCRL-51466 (1973). See also National Aeronautics and Space Administration Report NASACR-134506 (1973).

    Google Scholar 

  6. N. J. Abbott, J. G. Donovan, M. M. Schoppee, and J. Skelton, “Some Mechanical Properties of Kevlar and Other Heat Resistant, Nonflammable Fibers, Yarns, and Fabrics,” Air Force Materials Laboratory, Technical Report AFML-TR-74–65, Part III (1975).

    Google Scholar 

  7. J. H. Greenwood and R. G. Rose, “Compressive Behavior of Kevlar 49 Fibers and Composites,” J. Mat. Sci. 9, 1809 (1974).

    Article  Google Scholar 

  8. Kevlar 49 Data Manual, Du Pont de Nemours Chemical Co., Wilmington, Delaware, 1974.

    Google Scholar 

  9. D. L. G. Sturgeon and T. K. Venkatachalam, “Potential Contribution of High Strength, High Modulus Aramid Fibers to the Commercial Feasibility of Lighter-Than-Air-Craft,” paper presented at Lighter-Than-Air Workshop, sponsored by the Flight Transportation Laboratory of MIT, the U. S. Navy, and the National Aeronautics and Space Administration, Monterey, California, September 9–13, 1974.

    Google Scholar 

  10. P. G. Riewald and T. K. Venkatachalam, “Kevlar Aramid Fiber for Rope and Cable Applications,” paper presented at the Marine Kevlar Cable Workshop, sponsored by the Marine Technology Society Cable and Connector Committee at the Offshore Technology Conference, Houston, Texas, May 6, 1975.

    Google Scholar 

  11. T. T. Chiao and R. L. Moore, “Strength of S-Glass Fiber,” SAMPE Quart. 3 (3), 28 (1972).

    Google Scholar 

  12. T. T. Chiao, J. E. Wells, R. L. Moore, and M. A. Hamstad, “Stress-Rupture Behavior of Strands of an Organic Fiber/Epoxy Matrix,” American Societyfor Testing and Materials, Standard Testing Procedure, ASTM STP-546, 209 (1974).

    Google Scholar 

  13. T. T. Chiao, E. S. Jessop, and M. A. Hamstad, “Performance of Filament-Wound Vessels from an Organic Fiber in Several Epoxy Matricies,” in: Proceedings of the 7th National SAMPE Technical Conference, Albuquerque, New Mexico, October 14–16, 1975, p. 202.

    Google Scholar 

  14. T. T. Chiao and R. L. Moore, “Tensile Properties of PRD-49 Fiber in Epoxy Matrix,” J. Composite Mat. 7, 547 (1972).

    Google Scholar 

  15. C. C. Chiao, R. J. Sherry, and T. T. Chiao, “Strength Retention and Life of Fiber Composite Materials,” Composites 7, 107 (1976).

    Article  Google Scholar 

  16. C. C. Chiao, “Long-Term Performance of Fiber Composites,” in: Proceedings of the 1975 Flywheel Technical Symposium, p. 160, sponsored by the U. S. Energy Resources and Development Administration and the Lawrence Livermore Laboratory, Berkeley, California, November 10–12, 1975.

    Google Scholar 

  17. C. C. Chiao, “An Accelerated Test for Predicting the Lifetime of Organic Fiber Composites,” in: Proceedings of the 3rd Biennial AIME Symposium: Failure Modes in Composites, Las Vegas, Nevada, February 22–26, 1976, p. 157.

    Google Scholar 

  18. C. C. Chiao, R. J. Sherry, and N. W. Hetherington, “Experimental Verification of an Accelerated Test for Predicting the Lifetime of Organic Fiber Composites,” J. Composite Mat. 11, 79 (1977).

    Article  Google Scholar 

  19. A. R. Bunsell, “The Tensile and Fatigue Behavior of Kevlar-49 (PRD-49) Fibre,” J. Mat. Sci. 10, 1300 (1975).

    Article  Google Scholar 

  20. M. A. Hamstad and T. T. Chiao, “Acoustic Emission from Stress-Rupture and Fatigue of an Organic Fiber Composite,” American Society for Testing and Materials, Standard Testing Procedure, ASTM STP-580, 201 (1975).

    Google Scholar 

  21. L. S. Penn and E. S. Jessop, “Fiber-Composite Systems for Energy-Storage Flywheels,” in: Proceedings of the 22 nd National SA M PLE Symposium, San Diego, California, April 26–28, 1977, p. 442.

    Google Scholar 

  22. L. L. Clements and R. L. Moore, “Composite Properties for an Aramid Fiber in a Room-Temperature-Curable Epoxy,” Lawrence Livermore Laboratory Report UCRL-79549 (1977).

    Google Scholar 

  23. L. L. Clements and R. L. Moore, See also SAMPE Quart. 9 (1), 6 (1977).

    Google Scholar 

  24. M. P. Hanson, “Effect of Temperature on the Tensile and Creep Characteristics of PRD-49 Fiber/Epoxy Composites,” National Aeronautics and Space Administration, Technical Memorandum X68053 (1972).

    Google Scholar 

  25. R. H. Ericksen, “Room Temperature Creep of Kevlar 49/Epoxy Composites,” Composites 7 (3), 189 (1976).

    Article  Google Scholar 

  26. C. C. Chiao and R. L. Moore, “Evaluation of Interlaminar Shear Test for Fiber Composites,” Lawrence Livermore Laboratory Report, UCRL-51766 (1975).

    Google Scholar 

  27. C. C. Chiao, R. L. Moore, and T. T. Chiao, “Measurement of Shear Properties of Fiber Composites—I. Evaluation of Test Methods,” Composites, 161 (July 1977).

    Google Scholar 

  28. C. C. Chiao, R. L. Moore, and T. T. Chiao, “Measurement of Shear Properties of Fiber Composites—II. Shear Properties of an Aramid Fiber in Several Epoxy Resins,” Composites, 171 (July 1977).

    Google Scholar 

  29. T. T. Chiao and M. A. Marcon, “Filament-Wound Vessel from an Organic Fiber-Epoxy System,” 28th Annual Conference, Reinforced Plastics/Composites Institute, SPI, Washington, D. C, February 6–9, 1973, Section 9-B, p. 1.

    Google Scholar 

  30. M. A. Hamstad, T. T. Chiao, and R. G. Patterson, “Fatigue Life of Organic Fiber/Epoxy Pressure Vessels,” in: Proceedings of the 7 th National SAM PE Conference, Albuquerque, New Mexico, October 14–16, 1975, p. 217.

    Google Scholar 

  31. R. F. Lark, “Recent Advances in Lightweight Filament-Wound Composite Pressure Vessel Technology,” Composites in Pressure Vessels and Piping, ASME, Publication No. PVP-PB-021, p. 17 (1977).

    Google Scholar 

  32. F. P. Gerstle, Jr. and M. Moss, “Thick-Walled Spherical Composite Pressure Vessels,” Composites in Pressure Vessels and Piping, ASME Publication No. PVP-PB-021, p. 69 (1977).

    Google Scholar 

  33. G. M. Ecord, “Composite Pressure Vessels for Space Shuttle Orbiter,” Composites in Pressure Vessels and Piping, ASME Publication No. PVP-PB-021, p. 129 (1977).

    Google Scholar 

  34. T. T. Chiao, and M. A. Hamstad, “High-Performance Vessels from an Aromatic Polyamide Fiber/Epoxy Composite,” in: Proceedings of the 1975 International Conference on Composite Materials, Geneva, Switzerland and Boston, Massachussetts, April 7–11 and 14–18, 1975, Vol. 2, p. 365.

    Google Scholar 

  35. C. H. Zweben, “Hybrid Fiber Composite Materials,” in: Proceedings of the 1975 International Conference on Composite Materials, Geneva, Switzerland and Boston, Massachussetts, April 7–11 and 14–18, 1975, Vol. 1, p. 345.

    Google Scholar 

  36. C. H. Zweben and J. C. Norman, “Kevlar 49/Thornel 300 Hybrid Fabric Composites for Aerospace Applications,” in: Proceedings of the 21st National SAMPE Symposium Exhibit, Los Angeles, California, April 6–8, 1976.

    Google Scholar 

  37. P. G. Riewald and C. H. Zweben, “Hybrid Composites for Commercial and Aerospace applications,” 30th Annual Conference Reinforced Plastics/Composites Institute, SPI, Washington, D.C., February 6, 1975, Section 14-B, p. 1.

    Google Scholar 

  38. J. C. Norman, “Damage Resistance of High Modulus Aramid Fiber Composites in Aircraft Applications,” paper presented at the Society of Automotive Engineers Business Aircraft Meeting, Wichita, Kansas, April 8–11, 1095.

    Google Scholar 

  39. B. F. Blumentritt, B. T. Vu, and S. L. Cooper, “Fracture in Oriented Short Fiber-Reinforced Thermoplastics,” Composites, 107 (June 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Van Nostrand Reinhold Company Inc.

About this chapter

Cite this chapter

Chiao, C.C., Chiao, T.T. (1982). Aramid Fibers and Composites. In: Lubin, G. (eds) Handbook of Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7139-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7139-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7141-4

  • Online ISBN: 978-1-4615-7139-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics