Skip to main content

The Application of Antisense RNA Technology to Plants

  • Chapter
Genetic Engineering

Part of the book series: Genetic Engineering ((GEPM,volume 11))

Abstract

Antisense RNA consists of sequences complementary to a target RNA and can act as a regulatory molecule by binding to the target species via base pairing. Gene expression can be inhibited in this manner; such regulation occurs naturally in bacteria and has been demonstrated experimentally in eukaryotes (for reviews see 1–6). Until recently, work in eukaryotes has utilized organisms such as Drosophila (7), Dictyostelium (8), Xenopus (9), and mammals, including cell lines of various species (10 and transgenic mice (11). Despite this diversity in experimental organisms and approaches, few generalizations can be made regarding the mechanisms of inhibition. However, in studies which involve the inhibition of an endogenous gene by the introduction of a stably integrated antisense construct, a substantial reduction in the amount of target mRNA has been frequently observed. Examples include hsp26 mRNA in Drosophila cells (12), discoidin 1 (13) and myosin mRNA (8) in Dictyostelium, MYC mRNA in mammalian cells (10), and myelin basic protein mRNA in mice (11). Although the mechanism(s) by which antisense RNA reduces mRNA is unclear, multiple steps in mRNA biogenesis have been implicated including transcription (10) and transport from the nucleus (13, 14). RNA:RNA duplex formation in the nucleus has been proposed to reduce the stability of mRNA (13). A substantial excess of antisense RNA has often been required for an effective reduction of target mRNA levels (12–15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lichtenstein, C. (1988) Nature 333, 801–802.

    Article  Google Scholar 

  2. Sanders, P.G. (1987) Enzyme Microb. Technol. 9, 250–251.

    Article  CAS  Google Scholar 

  3. Green, P.J., Pines, 0. and Inouye, M. (1986) Annu. Rev. Biochem. 55, 569–597.

    Google Scholar 

  4. Cesarini, G. and Banner, D.W. (1985) Trends Biochem. Sci. 10, 303–306.

    Article  Google Scholar 

  5. Weintraub, H., Izant, J.G. and Hartland, R.M. (1985) Trends Genet. 1, 22–25.

    Article  CAS  Google Scholar 

  6. Antisense RNA and DNA (1988) Curr. Commun. in Molecular Biology ( Melton, D.A., ed.) pp. 1–149, Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  7. Cabrera, C.V., Alonso, M.C., Johnston, P., Phillips, R.G. and Lawrence, P.A. (1987) Cell 50, 659–663.

    Article  PubMed  CAS  Google Scholar 

  8. Knecht, D.A. and Loomis, W.F. (1987) Science 236, 1081–1086.

    Article  PubMed  CAS  Google Scholar 

  9. Bass, B.L. and Weintraub, H. (1987) Cell 48, 607–613.

    Article  PubMed  CAS  Google Scholar 

  10. Yokoyama, K. and Imamoto, F. (1987) Proc. Nat. Acad. Sci. U.S.A. 84, 7363–7367.

    Google Scholar 

  11. Katsuki, M., Sato, M., Kimura, M., Yokohana, M., Kobayashi, K. and Nomura, T. (1988) Science 241, 593–595.

    Article  PubMed  CAS  Google Scholar 

  12. McGarry, T.L. and Lindquist, S. (1986) Proc. Nat. Acad. Sci. U.S.A 83, 399–402.

    Google Scholar 

  13. Crowley, T.E., Nellen, W., Gourer, R.H. and Firtel, R.A. (1985) Cell 43, 633–641.

    Article  PubMed  CAS  Google Scholar 

  14. Kim, S.K. and Wold, B.J. (1985) Cell 42, 129–138.

    Article  PubMed  CAS  Google Scholar 

  15. Izant, J.G. and Weintraub, H. (1985) Science 229, 345–352.

    Article  PubMed  CAS  Google Scholar 

  16. Ecker, J.R. and Davis, R.W. (1986) Proc. Nat. Acad. Sci. U.S.A. 83, 5372–5376.

    Google Scholar 

  17. Cuozzo, M., O’Connell, K.M., Kaniewski, W., Fang, R.V., Chua, N. and Turner, N.E. (1988) Bio/Technology 6, 549–555.

    Article  CAS  Google Scholar 

  18. Rothstein, S.J., DiMaio, J., Strand, M. and Rice, D. (1987). Proc. Nat. Acad. Sci. U.S.A. 84, 8439–8443.

    Google Scholar 

  19. van der Krol, A.R., Lenting, P.E., Veenstra, J., van der Meer, I.M., Koes, R.E., Gerats, A.G.M., Mol, J.N.M. and Stuitje, A.R. (1988) Nature 333, 866–869.

    Article  Google Scholar 

  20. DellaPenna, D., Kates, D.S. and Bennett, A.B. (1987) Plant Physiol. 85, 502–507.

    Article  PubMed  CAS  Google Scholar 

  21. Brady, C.J., MacAlpine, G., McGlasson, W.B. and Cleda, Y. (1982) Aust. J. Plant Physiol. 9, 171–178.

    Article  CAS  Google Scholar 

  22. Sheehy, R.E., Pearson, J., Brady, C.J. and Hiatt, W.R. (1987) Mol. Gen. Genet. 208, 30–36.

    Google Scholar 

  23. Houck, C.M., Shintani, D.K. and Knauf, V.C. (1988) in Frontiers in Applied Microbiology (Mukerji, K.G. and Singh, V.P., edg.) Print House (in press).

    Google Scholar 

  24. Fillatti, J.J., Kiser, J., Rose, R. and Cornai, L. (1987) Bio/Technology 5, 726–730.

    Article  CAS  Google Scholar 

  25. Radke, S.E., Andrews, B.M., Moloney, M.M., Crouch, M.C., Kridl, J.C. and Knauf, V.C. (1988) Theor. Appl. Genet. 75, 685–694.

    Google Scholar 

  26. Smith, C.J.S., Watson, C.F., Ray, J., Bird, C.R., Morris, P.C., Schuch, W. and Grierson, D. (1988) Nature 334, 724–726.

    Article  CAS  Google Scholar 

  27. Sheehy, R.E., Kramer, M. and Hiatt, W.R. (1988) Proc. Nat. Acad. Sci. U.S.A. (in press)

    Google Scholar 

  28. Cornai, L., Larson-Kelly, N., Kiser, J., Man, G.J.D., Pokalsky, A.R., Shewmaker, C.K., McBride, K., Jones, A. and Stalker, D.M. (1988) J. Biol. Chem. 263, 15104–15109.

    Google Scholar 

  29. Grierson, D., Purton, M.E., Knapp, J.E. and Bathgate, B. (1987) in Developmental Mutants in Higher Plants (Thomas, H. and Grierson, D., eds.) pp. 73–94, Cambridge University Press, London, England.

    Google Scholar 

  30. Luthe, D.S. and Quatrano, R.S. (1980) Plant Physiol. 65, 305–3 08.

    Google Scholar 

  31. Gallagher, T.F. and Ellis, R.J. (1982) EMBO J. 1, 1493–1498.

    PubMed  CAS  Google Scholar 

  32. Pokalsky, A.R., Hiatt, W.R., Ridge, N., Rasmussen, R., Houck, C.M. and Shewmaker, C.K. (unpublished data).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Hiatt, W.R., Kramer, M., Sheehy, R.E. (1989). The Application of Antisense RNA Technology to Plants. In: Setlow, J.K. (eds) Genetic Engineering. Genetic Engineering, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7084-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7084-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7086-8

  • Online ISBN: 978-1-4615-7084-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics