Skip to main content

Constructed Mutants Using Synthetic Oligodeoxyribonucleotides as Site-Specific Mutagens

  • Chapter
Genetic Engineering

Part of the book series: Genetic Engineering ((GEPM))

Abstract

Classical genetics provides a bridge between biology and the chemical structure of the gene. In the past, isolation of spontaneous or induced mutants by screening or selection for a changed phenotype was followed by genetic mapping and, more recently, by determination of the structure of the gene of interest. The advent of rapid methods for DNA sequence determination (1,2) has created a new situation whereby whole genomes, or parts of genomes, can have their sequences determined in advance of detailed genetic analysis. On occasion it is possible to assign genetic function to a DNA sequence by inspection. For example, in the case of genes J and K of the small coliphage øX174 and G4, knowledge of the protein sequences allowed assignment of gene function to DNA in the absence of mutants (3,4). Assignment of tRNA genes to particular tracts of mitochondrial DNA sequence was achieved by using computer analysis of possible secondary structure (5). However, such parallel information is not usually available. This has led to the development of methods for constructing mutants in vitro by modifying DNA of known sequence. Examination of the in vivo properties of the modified DNA allows assignment of particular functions to specific DNA sequences. An early example of this approach is the construction of specific deletions in simian virus 40 (6). Allied methodologies include strategies for introducing deletions of variable length at specific or random sites (7,8) and specific or random insertion of short segments of duplex DNA (9,10). These all are powerful techniques for demonstrating the location of genetic functions and establishing their approximate boundaries. However, full understanding of genetic functions requires mutations that modulate gene activity, e.g., mutations that increase or decrease the efficiency of origins of replication, of transcription or of translation and mutations that establish the reading frame for the triplet code which determines the sequence of a protein. In general, this requires point mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sanger, F., Nicklen, S. and Coulson, A.R. (1977) Proc. Nat.Acad. Sci. U.S.A. 74, 5463–5467.

    Article  CAS  Google Scholar 

  2. Maxam, A. and Gilbert, W. (1977) Proc. Nat. Acad. Sci. U.S.A. 74, 560–564.

    Article  CAS  Google Scholar 

  3. Barrell, B.G., Air, G.M. and Hutchison, C.A. III (1976)Nature 264, 34–41.

    Google Scholar 

  4. Shaw, D.C., Walker, J.E., Northrop, F.D., Barrell, B.G.,Godson, G.N. and Fiddes, J.C. (1978) Nature 272, 510–515.

    Article  CAS  Google Scholar 

  5. Barrell, B.G., Bankier, A.T. and Drouin, J. (1979) Nature 282, 189–194.

    Article  CAS  Google Scholar 

  6. Lai, C.-J. and Nathans, D. (1974) J. Mol. Biol. 89, 179–193.

    Article  CAS  Google Scholar 

  7. Mertz, J.E., Carbon, J., Herzberg, M., Davis, R.W. and Berg,P. (1975) Cold Spring Harbor Symp. Quant. Biol. 39, 69–84.

    Article  Google Scholar 

  8. Carbon, J., Shenk, T. and Berg, P. (1975) Proc. Nat. Acad. Sci. U.S.A. 72, 1392–1396.

    Article  CAS  Google Scholar 

  9. Boyer, H.B., Bettlatch, M., Bolivar, F., Rodriguez, R.L.,Heyneker, H.L., Shire, J. and Goodman, H.M. (1977) in Recombinant Molecules: Impact on Science and Society (Beers, R.F. Jr. and Bassett, E.G.,eds.) pp. 9–20, Raven Press, New York, NY.

    Google Scholar 

  10. Heffron, F., So, M. and McCarthy, B.J. (1978) Proc. Nat.Acad. Sci. U.S.A. 75, 6012–6016.

    Google Scholar 

  11. Borrias, W.E., Wilschut, I.J.C., Vereijken, J.M., Weisbeek,P.J. and van Arkel, G.A. (1976) Virology 70, 195–197.

    Article  CAS  Google Scholar 

  12. Salganik, R.I., Dianov, G.L., Ovchinnikova, L.P., Vorinina, E.N., Kokoza, E.B. and Mazin, A.V. (1980) Proc. Nat. Acad. Sci. U.S.A. 77, 2796–2800.

    Article  CAS  Google Scholar 

  13. Shortle, D., Pipas, J., Lazarowitz, S., DiMaio, D. and Nathans, D. (1979) in Genetic Engineering: Principles and Methods (Setlow, J.K. and Hollaender, A., eds.) Vol. I, pp. 73–92, Plenum Press, New York, NY.

    Google Scholar 

  14. Weissmann, C., Nagata, S., Taniguchi, T., Weber, H. and Meyer, F. (1979) in Genetic Engineering: Principles and Methods (Setlow, J.K. and Hollaender, A., eds.) Vol. I, pp. 133–150, Plenum Press, New York, NY.

    Google Scholar 

  15. Hutchison, C.A. III, Phillips, S., Edgell, M., Gillam, S.,Jahnke, P. and Smith, M. (1978) J. Biol. Chem. 253, 6551–6560.

    CAS  Google Scholar 

  16. Gillam, S., Jahnke, P., Astell, C., Phillips, S., Hutchison,C.A. III and Smith, M. (1979) Nucl. Acids Res. 6, 2973–2985.

    Article  CAS  Google Scholar 

  17. Gillam, S. and Smith, M. (1979) Gene 8, 81–97.

    Article  CAS  Google Scholar 

  18. Gillam, S. and Smith, M. (1979) Gene 8, 99–106.

    Article  CAS  Google Scholar 

  19. Lederberg, J. (1960) Science 131, 269–276.

    Article  CAS  Google Scholar 

  20. Wu, R., Bahl, C.P. and Narang, S.A. (1978) Progr. Nucl.Acid Res. Mol. Biol. 21, 102–141.

    Google Scholar 

  21. Itakura, K. (1980) TIBS 5, 114–116.

    CAS  Google Scholar 

  22. Chang, L.M.S. and Bollum, F.J. (1971) Biochemistry 11, 536–542.

    Article  Google Scholar 

  23. Hsieh, W.T. (1971) J. Biol. Chem. 246, 1780–1784.

    Google Scholar 

  24. Gillam, S. and Smith, M. (1972) Nature New Biology 238, 233–234.

    Article  Google Scholar 

  25. Gillam, S. and Smith, M. (1974) Nucl. Acids Res. 1, 1631–1647.

    Article  CAS  Google Scholar 

  26. Gillam, S., Waterman, K., Doel, M. and Smith, M. (1974)Nucl. Acids Res. 1, 1649–1664.

    Google Scholar 

  27. Gillam, S., Waterman, K. and Smith, M. (1975) Nucl. Acids Res. 2, 613–624.

    Article  CAS  Google Scholar 

  28. Gillam, S., Rottman, F., Jahnke, P. and Smith, M. (1977)Proc. Nat. Acad. Sci. U.S.A. 74, 96–100.

    Google Scholar 

  29. Gillam, S., Jahnke, P. and Smith, M. (1978) J. Biol. Chem. 253, 2532–2539.

    Google Scholar 

  30. Trip, E.M. and Smith, M. (1978) Nucl. Acids Res. 5, 1529–1538.

    Article  CAS  Google Scholar 

  31. Trip, E.M. and Smith, M. (1978) Nucl. Acids Res. 5, 1539–1549.

    Article  CAS  Google Scholar 

  32. Gillam, S. and Smith, M. (1980) Methods Enzymol. 65, 687–701.

    Article  CAS  Google Scholar 

  33. Astell, C. and Smith, M. (1971) J. Biol. Chem. 246, 1944–1946.

    Google Scholar 

  34. Astell, C.R. and Smith, M. (1972) Biochemistry 11, 4114–4120.

    Article  CAS  Google Scholar 

  35. Astell, C.R., Doel, M.T., Jahnke, P.A. and Smith, M. (1973)Biochemistry 12, 5068–5074.

    Google Scholar 

  36. Gillam, S., Waterman, K. and Smith, M. (1975) Nucl. Acids Res. 2, 625–634.

    Article  CAS  Google Scholar 

  37. Thomas, C.A. Jr. (1966) Progr. Nucl. Acid Res. Mol. Biol. 5, 315–337.

    Google Scholar 

  38. Weisbeek, P.J. and van de Pol, J.H. (1970) Biochim. Biophys. Acta 224, 328–338.

    Google Scholar 

  39. Hutchison, C.A. III and Edgell, M.H. (1971) J. Virol. 8, 181–189.

    CAS  Google Scholar 

  40. Sanger, F., Coulson, A.R., Friedmann, T., Air, G.M.,Barrell, B.G., Brown, N.L., Fiddes, J.C., Hutchison, C.A. III, Slocombe, P.M. and Smith, M. (1978) J. Mol. Biol. 125, 225–246.

    Google Scholar 

  41. Tessman, E.S. and Tessman, I. (1978) in The Single-Stranded DNA Phages (Denhardt, D.T., Dressler, D. and Ray, D.S., eds.), pp. 9–29, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  42. Goulian, M. (1968) Proc. Nat. Acad. Sci. U.S.A. 61, 284–291.

    Article  CAS  Google Scholar 

  43. Goulian, M. (1968) Cold Spring Harbor Symp. Quant. Biol. 33, 11–20.

    Article  Google Scholar 

  44. Goulian, M., Goulian, S.H., Codd, E.E. and Blumenfield,A.Z. (1973) Biochemistry 12, 2893–2901.

    Article  CAS  Google Scholar 

  45. Goulian, M., Kornberg, A. and Sinsheimer, R.L. (1967) Proc.Nat. Acad. Sci. U.S.A. 58, 2321–2328.

    Article  CAS  Google Scholar 

  46. Sherman, L.A. and Gefter, M.L. (1976) J. Mol. Biol. 103, 61–76.

    Article  CAS  Google Scholar 

  47. Klenow, H., Overgaard-Hanson, K. and Patkar, S.A. (1971)Eur. J. Biochem. 22, 371–381.

    Google Scholar 

  48. Razin, A., Hirose, T., Itakura, K. and Riggs, A.D. (1978)Proc. Nat. Acad. Sci U.S.A. 75, 4268–4270.

    Google Scholar 

  49. Dressler, D., Hourcade, D., Koths, K. and Sims, J. (1978) in The Single-Stranded DNA Phages (Denhardt, D.T., Dressler, D. and Ray, D.S., eds.), pp. 187–214, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  50. Hanawalt, P.C., Cooper, P.K., Ganesan, A.K. and Smith, C.A. (1979) Ann. Rev. Biochem. 48, 783–836.

    Google Scholar 

  51. Baas, P.D. and Jansz, H.S. (1978) in The Single-Stranded DNA Phages (Denhardt, D.T., Dressler, D. and Ray, D.S., eds.), pp. 215–244, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  52. Bhanot, O.S., Khan, S.A. and Chambers, R.W. (1979) J. Biol.Chem. 254, 12684–12693.

    CAS  Google Scholar 

  53. McCallum, D. and Smith, M. (1977) J. Mol. Biol. 116, 29–30.

    Article  CAS  Google Scholar 

  54. Staden, R. (1977) Nucl. Acids Res. 4, 4037–4051.

    Article  CAS  Google Scholar 

  55. Staden, R. (1978) Nucl. Acids Res. 5, 1013–1015.

    Article  CAS  Google Scholar 

  56. Staden, R. (1979) Nucl. Acids Res. 6, 2601–2610.

    Article  CAS  Google Scholar 

  57. Korn, L.J., Queen, C.L. and Wegman, M.N. (1977) Proc. Nat.Acad. Sci. U.S.A. 74, 4401–4404.

    Google Scholar 

  58. Queen, C.L. and Korn, L.J. (1980) Methods Enzymol. 56, 595–609.

    Article  Google Scholar 

  59. Lomant, A.J. and Fresco, J.R. (1975) Progr. Nucl. Acid Res.Mol. Biol. 15, 185–218.

    Google Scholar 

  60. Gillam, S., Astell, C.R. and Smith, M. (1980) Gene (in press).

    Google Scholar 

  61. Kornberg, A. (1980) DNA Replication, pp. 101–166, W.H.Freeman and Co., San Francisco, CA.

    Google Scholar 

  62. Petes, T. (1980) Annu. Rev. Biochem. 49, 845–876.

    Google Scholar 

  63. Gillam, S., Astell, C.R., Jahnke, P.,Hutchison, C.A. III and Smith, M. (1980) (unpublished data).

    Google Scholar 

  64. Steitz, J.A. (1979) in Biological Regulation and Development (Goldberger, R.F. ed.), Vol. I, pp. 349–399, Plenum Press, New York, NY.

    Google Scholar 

  65. Szostak, J.W., Stiles, J.I., Tye, B.-K., Chiu, P., Sherman,F. and Wu, R. (1979) Methods Enzymol. 68, 419–428.

    Article  CAS  Google Scholar 

  66. Dodgson, J.B. and Wells, R.D. (1977) Biochemistry 16, 2367–2374.

    Article  CAS  Google Scholar 

  67. Wallace, R.B., Johnson, P.F., Tanaka, S., Schold, M.,Itakura, K. and Abelson, J. (1980) Science 209, 1396–1400.

    Article  CAS  Google Scholar 

  68. Smith, M., Leung, D.W., Gillam, S., Astell, C.R., Montgomery, D.L. and Hall, B.D. (1979) Cell 16, 753–761.

    Article  CAS  Google Scholar 

  69. Kurjan, J., Hall, B.D., Gillam, S. and Smith, M. (1980) Cell 20, 701–709.

    Article  CAS  Google Scholar 

  70. Wasylyk, B., Derbyshire, R., Guy, A., Molko, D., Roget, A.,Teoule, R. and Chambon, P. (1980) Proc. Nat. Acad. Sci. U.S.A. 77 (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, M., Gillam, S. (1981). Constructed Mutants Using Synthetic Oligodeoxyribonucleotides as Site-Specific Mutagens. In: Setlow, J.K., Hollaender, A. (eds) Genetic Engineering. Genetic Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7075-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7075-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7077-6

  • Online ISBN: 978-1-4615-7075-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics