Skip to main content

Integrating the Microbial Loop and the Classic Food Chain Into a Realistic Planktonic Food Web

  • Chapter
Food Webs

Abstract

The objectives of this paper are (1) to summarize recent findings about feeding relationships among the microbial components of the freshwater planktonic food web; (2) to make the microbial components easily understood through simplified, yet valid, trophic groupings and the application of standard food web terminology; and (3) to show that the microbial components are not part of a distinct microbial loop but are inextricably integrated, by omnivory and mixotrophy, with the classical algal-based food chain. New concepts presented are that (1) bacteria and their consumer can exert both direct and indirect effects as supplemental food resources, competitors, and predators, at all levels of the classic planktonic food chain; therefore (2) consumers of bacterial production can exert top-down and lateral as well as bottom-up control; and (3) seasonal shifts in the dominance of autotrophic and heterotrophic production determine the relative strength of the microbial dominance of the planktonic food web. Microbial components of the planktonic food web will be enhanced in (1) later stages of seasonal succession following intense algal blooms that go ungrazed; (2) in pulsed systems with frequent algal blooms, and (3) in systems where input of allochthonous organic matter from the watershed, littoral zone, and benthos enhances heterotrophy.

“Things don’t have to happen just because you think they do.”

L.B. Slobodkin, in lecture at the Marine Ecology Course.

1968, MBL, Woods Hole, MA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arndt, H. 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates): A review. Hydrobiologia 255 /256: 231–246.

    Article  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil, and F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257263.

    Google Scholar 

  • Benndorf, J. and U. Miersch, 1991. Phosphorus loading and efficiency of biomanipulation. Verhandulungen International Vereingen Limnologische 24: 2482–2488.

    CAS  Google Scholar 

  • Bennett, S. J., R. W. Sanders, and K. G. Porter. 1990. Heterotrophic, autotrophic, and mixotrophic nanoflagellates: Seasonal abundances and bacterivory in a eutrophic lake. Limnology and Oceanography 35: 1821–1832.

    Article  Google Scholar 

  • Bird, D. F. and J. Kalff. 1986. Bacterial grazing by planktonic algae. Science 231: 493–495.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, J. L. and S. I. Dodson. 1965. Predation, body size, and composition of the plankton. Science 150: 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Brylinsky, M. and K. H. Mann. 1973. An analysis of factors governing productivity in lakes and reservoirs. Limnology and Oceanography 18: 114.

    Article  Google Scholar 

  • Carpenter, S. R. 1988. Complex Interactions in Lake Communities. Springer-Verlag, New York.

    Book  Google Scholar 

  • Carpenter, S. R. and J. F. Kitchell, eds. 1993. The Trophic Cascade in Lakes. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Cole, J. J. and N. F. Caraco. 1993. The pelagic microbial food web of oligotrophic lakes. Aquatic Microbiology: An Ecological Approach. Blackwell Scientific Publications, Boston, MA.

    Google Scholar 

  • Darnell, R. M. 1964. Organic detrius in relation to secondary production in aquatic communities. Verhandulungen International Vereingen Limnologishe 15: 462–470.

    Google Scholar 

  • DeVries, D. R. and R. A. Stein. 1992. Complex interactions between fish and zooplankton: Quantifying the role of an ocean water planktiyore. Canadian Journal of Fisheries and Aquatic Sciences 49: 1216–1227.

    Article  Google Scholar 

  • Downing, J. A. and F. H. Rigler, eds. 1984. A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell Scientific Publications, Oxford, U.K.

    Google Scholar 

  • Ducklow, H. 1983. Production and fate of bacteria in the oceans. BioScience 33: 494–501.

    Article  Google Scholar 

  • Ducklow, H. W., D. A. Purdie, P. J. Williams, and J. M. Davies, 1986. Bacterio-plankton: A sink for carbon in a coastal marine plankton community. Science 232: 865–867.

    Article  PubMed  CAS  Google Scholar 

  • Ducklow, H. W., D. A. Purdie, P. J. Williams, and J. M. Davies. 1987. Response to Sherr, Sherr, and Albright. Science 235: 88–89.

    Article  Google Scholar 

  • Edmondson, W. T. 1960. Reproductive rates of rotifers in natural populations. Memoirs of the Italian Institute of Hydrobiology 12: 21–77.

    Google Scholar 

  • Gilbert, J. J. and J. D. Jack. 1993. Rotifers as predators on small ciliates. Hydrobiologia 255/ 256: 247–253.

    Article  Google Scholar 

  • Glide, H. 1986. Loss processes influencing growth of planktonic bacterial populations in Lake Constance. Journal of Planktonic Research 8: 795810.

    Google Scholar 

  • Hairston, N. Jr. and N., Hairston Sr. 1993. Cause-effect relationships in energy flow, trophic structure and interspecific interactions. American Naturalist 142: 379–411.

    Article  Google Scholar 

  • Havens, K. E. and T. Hanazato. 1993. Zooplankton community responses to chemical stressors: A comparison of results from acidification and pesticide contamination research. Environmental Pollution 82: 277–288.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, G. E. 1978. An Introduction to Population Ecology. Yale University Press, New Haven, CT.

    Google Scholar 

  • King, H. C., R. W. Sanders, E. B. Shotts, and K. G. Porter. 1991. Differential survival of bacteria ingested by zooplankton from a stratified eutrophic lake. Limnology and Oceanography 36: 829–845.

    Article  Google Scholar 

  • Lewis, W. M. 1990. Comparisons of phytoplankton biomass in temperate and tropical lakes. Limnology and Oceanography 35: 1838–1845.

    Article  Google Scholar 

  • Lindeman, R. L. 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–418.

    Article  Google Scholar 

  • Martinez, N. D. 1991. Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecological Monographs 61: 367–392.

    Article  Google Scholar 

  • Mazumder, A., W. D. Taylor, D. J. McQueen, and D. R. S. Lean. 1990. Effects of fish and plankton on lake temperature and mixing depth. Science 247: 312–314.

    Article  PubMed  CAS  Google Scholar 

  • McDonough, R. J., R. W. Sanders, K. G. Porter, and D. L. Kirchman. 1986. Depth distribution of bacterial production in a stratified lake with an anoxic hypolimnion Applied Environmental Microbiology 52: 992–1000.

    CAS  Google Scholar 

  • Orcutt, J. D. Jr. and M. L. Pace. 1984. Seasonal dynamics of rotifer and crustacean zooplankton populations in a eutrophic monomictic lake with a note on rotifer sampling techniques. Hydrobiologia 119: 73–80.

    Article  Google Scholar 

  • Pace, M. L. 1982. Planktonic ciliates: Their distribution, abundance, and relationship to microbial resources in a monomictic lake. Canadian Journal of Fisheries and Aquatic Sciences 39: 1106–1116.

    Article  Google Scholar 

  • Pace, M. L. 1993. Heterotrophic microbial processes. In The Trophic Cascade in Lakes, eds. S. R. Carpenter and J. F. Kitchell, pp. 252277. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Pace, M. L. and E. Funke. 1991. Regulation of planktonic microbial communities by nutrients and herbivores. Ecology 72: 904–914.

    Article  Google Scholar 

  • Pace, M. L. and J. J. D. Orcutt. 1981. The relative importance of protozoans, rotifers, and crusta-Integrating the Microbial Loop and the Classic Food Chain Into a Planktonic Food Web/59ceans in a freshwater zooplankton community. Limnology and Oceanography 26: 822–830.

    Article  Google Scholar 

  • Pace, M. L., K. G. Porter, and Y. S. Feig. 1983. Species-and age-specific differences in bacterial resource utilization by two co-occurring cladocerans. Ecology 64: 1145–1156.

    Article  Google Scholar 

  • Pomeroy, L. R. 1974. The ocean’s food web, a changing paradigm. Bioscience 24: 499–504.

    Article  Google Scholar 

  • Porter, K. G. 1984. Natural bacteria as food resources for zooplankton. In Current Perspectives in Microbial Ecology, ed. E. M. Reddy, pp. 340–345. American Society of Microbiology, Washington, DC.

    Google Scholar 

  • Porter, K. G. and Y. S. Feig. 1980. The use of DAPI for identifying and counting bacteria and blue-green algae. Limnology and Oceanography 25: 943–948.

    Article  Google Scholar 

  • Porter, K. G., Y. S. Feig, and E. F. Vetter. 1983. Morphology, flow regimes, and filtering rates of Daphnia, Ceriodaphnia, and Bosmina fed natural bacteria. Oecologia 58: 156–163.

    Article  Google Scholar 

  • Porter, K. G., M. L. Pace, and J. F. Battey. 1979. Ciliate protozoans as links in freshwater planktonic food chains. Nature 277: 563–565.

    Article  Google Scholar 

  • Porter, K. G., H. Paerl, R. Hodson, M. Pace, J. Priscu, B. Riemann, D. Scavia, and J. Stockner. 1988. Microbial interactions in lake food webs. In Complex Interactions in Lake Communities, ed. S. R. Carpenter. Springer-Verlag, New York.

    Google Scholar 

  • Porter, K. G., E. B. Sherr, B. F. Sherr, M. L. Pace, and R. W. Sanders. 1985. Protozoa in planktonic food webs. Journal of Protozoology 32: 409–415.

    Google Scholar 

  • Raschke, R. L. 1994. Phytoplankton bloom frequencies in a population of small southeastern impoundments. Lake and Reservoir Management 8: 205–210.

    Article  Google Scholar 

  • Riemann, B. 1985. Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Applied Environmental Microbiology 50: 187–193.

    CAS  Google Scholar 

  • Sanders, R. W., D. A. Caron, and U.-G. Berninger. 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and freshwaters: An inter-ecosystem comparison. Marine Ecology Progress Series 86: 1–14.

    Article  Google Scholar 

  • Sanders, R. W., D. A. Leeper, C. H. King, and K. G. Porter. 1994. Grazing by rotifers and crustacean zooplankton on nanoplanktonic protists. Hydrobiologia 288: 167–181.

    Article  Google Scholar 

  • Sanders, R. W., K. G. Porter, S. J. Bennett, and A. DeBiase. 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and crustaceans in a freshwater planktonic community. Limnology and Oceanography 34: 673687.

    Google Scholar 

  • Saunders, G. W. Jr. 1969. Some aspects of feeding in zooplankton. In Eutrophication: Causes, Consequences, Correctives, pp. 556–573. National Academy of Sciences, Washington, DC.

    Google Scholar 

  • Scavia, D. 1988. On the role of bacteria in secondary production. Limnology and Oceanography 33: 1220–1224.

    Article  Google Scholar 

  • Schindler, D. W. 1978. Factors regulating phytoplankton production and standing crop in the world’s freshwaters. Limnology and Oceanography 23: 478–486.

    Article  Google Scholar 

  • Shapiro, J. 1990. Biomanipulation: The next phase-Making it stable. Hydrobiologia 200/ 201: 13–27.

    Google Scholar 

  • Sherr, E. B., B. F. Shen, and L. J. Albright. 1987. Bacteria: Link or sink? Science 235: 88.

    Article  Google Scholar 

  • Stockner, J. and K. G. Porter. 1988. Microbial food webs in freshwater planktonic ecosystems. In Complex Interactions in Lake Communities, ed. S. R. Carpenter, pp. 69–83. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Strayer, D. 1988. On the limits to secondary production. Limnology and Oceanography 33: 1217–1219.

    Article  Google Scholar 

  • Vaque, D. and M. L. Pace. 1992. Grazing on bacteria by flagellates and cladocerans in lakes of contrasting food-web structure. Journal of Planktonic Research 14: 307–321.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Porter, K.G. (1996). Integrating the Microbial Loop and the Classic Food Chain Into a Realistic Planktonic Food Web. In: Polis, G.A., Winemiller, K.O. (eds) Food Webs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7007-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7007-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7009-7

  • Online ISBN: 978-1-4615-7007-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics