Skip to main content

Evolutionary Implications of Phenotypic Plasticity in Plants

  • Chapter
Evolutionary Biology

Abstract

This chapter considers the nature, role, and evolutionary implications of phenotypic plasticity as an adaptive property in plants. Plasticity is here defined as variation in phenotypic expression of a genotype that occurs in response to particular environmental conditions and which enhances the capacity of the individual to survive and reproduce under those conditions. A distinction is made [following Dobzhansky (1969) and Harper (1982)] between adaptive, defined as conferring a benefit on the organism with regard to its present relationship with its environment, and adapted, which describes a character that is thought to be the product of natural selection over previous generations—i.e., which was adaptive in the past and was therefore fixed by natural selection. “Adapted” refers to the causal origin of the character in evolutionary history; “adaptive” says nothing about the origin of the trait, but merely describes its present value in a given environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, R. J., 1976, Variation within the common groundsel, Senecio vulgaris L. I. Genetic response to spatial variations of the environment, New Phytol. 76: 153–164.

    Google Scholar 

  • Alexander, H. M., and Wulff, R. D., 1985, Experimental ecological genetics in Plantago. X. The effects of maternal temperature on seed and seedling characters in P. lanceolata, J. Ecol. 73: 271–282.

    Google Scholar 

  • Allard, R. W., and Bradshaw, A. D., 1964, The implications of genotype—environment interactions in applied plant breeding, Crop Sci. 4: 503–508.

    Google Scholar 

  • Anderson, W. A., 1983, Achieving synthesis in population biology, in: Population Biology: Retrospect and Prospect ( C. E. King and P. S. Dawson, eds.), pp. 189–204, Columbia University Press, New York.

    Google Scholar 

  • Antonovics, J., 1971, The effects of a heterogeneous environment on the genetics of natural populations, Am. Sci. 59: 592–599.

    Google Scholar 

  • Antonovics, J., 1976, The nature of limits to natural selection, Ann. Miss. Bot. Gard. 63: 224247.

    Google Scholar 

  • Antonovics, J., 1984, Genetic variation within populations, in: Perspectives on Plant Population Ecology ( R. Dirzo and J. Sarukhan, eds.), pp. 229–241, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Antonovics, J., and Schmitt, J., 1986, Paternal and maternal effects on propagule size in Anthoxanthum odoratum, Oecologia 69: 277–282.

    Google Scholar 

  • Antonovics, J., Bradshaw, A. D., and Turner, R. G., 1971, Heavy metal tolerance in plants, Adv. Ecol. Res. 7: 1–85.

    Google Scholar 

  • Bateson, G., 1963, The role of somatic change in evolution, Evolution 17:529–539. Bazzaz, F. A., 1979, The physiological ecology of plant succession, Annu. Rev. Ecol. Syst. 10: 351–371.

    Google Scholar 

  • Bazzaz, F. A., 1984a, Demographic consequences of plant physiological traits: Some case studies, in: Perspectives on Plant Population Ecology ( R. Dirzo and J. Sarukhan, eds.), pp. 324–346, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Bazzaz, F. A., 1984b, Response breadth and between-individual variation in plants of an early-successional community, NSF grant proposal BSR-84–14555.

    Google Scholar 

  • Bazzaz, F. A., and Carlson, R. W., 1982, Photosynthetic acclimation to variability in the light environment of early and late successional plants, Oecologia 54: 313–316.

    Google Scholar 

  • Birch, L. C., Dobzhansky, Th., Elliott, P. 0., and Lewontin, R. C., 1963, Relative fitness of geographic races of Drosophila serrata, Evolution 17: 72–83.

    Google Scholar 

  • Bradshaw, A. D., 1965, Evolutionary significance of phenotypic plasticity in plants, Adv. Genet. 13: 115–155.

    Google Scholar 

  • Bradshaw, A. D., 1972, Some evolutionary consequences of being a plant, Evol. Biol. 5: 2547.

    Google Scholar 

  • Bradshaw, A. D., 1974, Environment and phenotypic plasticity, Brookhaven Symp. Biol. 25: 75–94.

    Google Scholar 

  • Bradshaw, A. D., 1984, Ecological significance of genetic variation between populations, in: Perspectives on Plant Population Ecology ( R. Dirzo and J. Sarukhan, eds.), pp. 213–229, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Cahn, M. A., and Harper, J. L., 1976a, The biology of the leaf mark polymorphism in Trifolium repens. I. Distribution of phenotypes at a local scale, Heredity 37: 309–325.

    Google Scholar 

  • Cahn, M. A., and Harper, J. L., 1976b, II. Evidence for selection of leaf marks by rumen

    Google Scholar 

  • fistulated sheep, Heredity 37:327–333.

    Google Scholar 

  • Carey, K., 1983, Breeding system, genetic variability, and response to selection in Plectritis, Evolution 37: 947–956.

    Google Scholar 

  • Chabot, B. F., 1978, Environmental influences on photosynthesis and growth in Fragaria vesca, New Phytol. 80: 87–98.

    Google Scholar 

  • Clausen, J., 1951, Stages in the Evolution of Plant Species, Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Clausen, J., Keck, D., and Hiesey, W. M., 1940, Experimental Studies on the Nature of Species. 1. Effect of Varied Environment on Western North American Plants, Carnegie Institute of Washington Publ. No. 520, Washington, D. C.

    Google Scholar 

  • Clausen, J., Keck, D., and Hiesey, W. M., 1948, Experimental Studies on the Nature of Species. III. Environmental Responses of Climatic Races of Achillea, Carnegie Institute of Washington Publ. No. 581, Washington, D. C.

    Google Scholar 

  • Clough, J. M., Teeri, J. A., and Alberte, R. S., 1979a, Photosynthetic adaptation of Solanum dulcamara L. to sun and shade environments. I. A comparison of sun and shade populations, Oecologia 38: 13–22.

    Google Scholar 

  • Clough, J. M., Teeri, J. A., and Alberte, R. S., 1979b, II. Physiological characterization of phenotypic response to environment, Plant Physiol. 64: 25–30.

    PubMed  CAS  Google Scholar 

  • Clough, J. M., Teeri, J. A., and Alberte, R. S., 1980, III. Characterization of genotypes with differing photosynthetic performance, Oecologia 44: 221–225.

    Google Scholar 

  • Cook, R. E., 1979, Patterns of juvenile mortality and recruitment in plants, in: Topics in Plant Population Biology (O. Solbrig, S. Jain et al.,eds.), Columbia University Press, New York.

    Google Scholar 

  • Cook, S. A., and Johnson, M. P., 1968, Adaptation of heterogeneous environments. I. Variation in heterophylly in Ranunculus flammula, Evolution 22: 496–516.

    Google Scholar 

  • Crawley, M. J., 1983, Herbivory: The Dynamics of Plant—Animal Interactions, University of California Press, Berkeley.

    Google Scholar 

  • Daubenmire, R. F., 1974, Plants and Environment: A Textbook of Autecology, Wiley, New York.

    Google Scholar 

  • Dawson, P. S., and Riddle, R. A., 1983, Genetic variation, environmental heterogeneity, and evolutionary stability, in: Population Biology: Retrospect and Prospect ( C. E. King and P. S. Dawson, eds.), pp. 147–170, Columbia University Press, New York.

    Google Scholar 

  • Dobzhansky, Th., 1941, Genetics and the Origin of Species, 2nd ed., Columbia University Press, New York.

    Google Scholar 

  • Dobzhansky, Th., 1969, On Cartesian and Darwinian aspects of biology, in: Philosophy, Science, and Method ( S. Morgenbesser, P. Suppes, and M. White, eds.), pp. 165–178, St. Martins Press, New York.

    Google Scholar 

  • Dobzhansky, Th., and Pavlovsky, 0., 1957, An experimental study of interaction between genetic drift and natural selection, Evolution 11: 311–319.

    Google Scholar 

  • Dobzhansky, Th., and Spassky, B., 1954, A comparison of the concealed variability in Drosophila prosaltans with that in other species, Genetics 39: 472–487.

    PubMed  CAS  Google Scholar 

  • Dobzhansky, Th., Lewontin, R. C., and Pavlovsky, 0., 1964, The capacity for increase in chromosomally polymorphic and monomorphic populations of Drosophila pseudoobscura, Heredity 19: 597–614.

    PubMed  CAS  Google Scholar 

  • Feldman, M. W., and Lewontin, R. C., 1976, The heritability hangup, Science 190: 1163 1168.

    Google Scholar 

  • Garbutt, K., and Zangerl, A. R., 1983, Application of genotype—environment interaction analysis to niche quantification, Ecology 64: 1292–1296.

    Google Scholar 

  • Garbutt, K., Bazzaz, F A, and Levin, D., 1985, Population and genotype niche width in clonal Phlox paniculata, Am. J. Bot. 72: 640–648.

    Google Scholar 

  • Gill, D. E., Berven, K. A., and Mock, B. A., 1983, The environmental component of evolutionary biology, in: Population Biology: Retrospect and Prospect ( C. E. King and P. S. Dawson, eds.), pp. 1–36, Columbia University Press, New York.

    Google Scholar 

  • Goloff, A. A., 1973, A germination model for natural seed populations, Ph.D. thesis, University of Illinois, Urbana, Illinois.

    Google Scholar 

  • Gottlieb, L. D., 1979, The origin of phenotype in a recently evolved species, in: Topics in Plant Population Biology (O. Solbrig, S. Jain et al.,eds.), pp. 264–286, Columbia University Press, New York.

    Google Scholar 

  • Gupta, A. P., and Lewontin, R. C., 1982, A study of reaction norms in natural populations of Drosophila pseudoobscura, Evolution 36: 934–948.

    Google Scholar 

  • Hamrick, J. L., Linhart, Y. B., and Mitton, J. B., 1979, Relationships between life history characteristics and electrophoretically detectable genetic variation in plants, Annu. Rev. Ecol. Syst. 10: 173–200.

    Google Scholar 

  • Harberd, D. J., 1957, The within population variance in genealogical trials, New Phytol. 56: 269–280.

    Google Scholar 

  • Harborne, J. B., 1977, Introduction to Ecological Biochemistry, Academic Press, London. Harper, J. L., 1967, A Darwinian approach to plant ecology, J. Ecol. 55:247–270. Harper, J. L., 1977, Population Biology of Plants, Academic Press, London.

    Google Scholar 

  • Harper, J. L., 1982, After description, in: The Plant Community as a Working Mechanism ( E. I. Newman, ed.), pp. 11–25, Blackwell, Oxford.

    Google Scholar 

  • Harper, J. L., 1983, A Darwinian plant ecology, in: Evolution from Molecules to Men ( D. S. Bendall, ed.), pp. 323–345, Cambridge University Press, Cambridge.

    Google Scholar 

  • Hartgerink, A. P., and Bazzaz, F. A., 1984, Seedling-scale environmental heterogeneity influences individual fitness and population structure, Ecology 65: 198–206.

    Google Scholar 

  • Hickman, J. C., 1975, Environmental unpredictability and plastic energy allocation strategies in the annual Polygonum cascadense, J. Ecol. 63: 689–701.

    Google Scholar 

  • Hickman, J. C., 1979, The basic biology of plant numbers, in: Topics in Plant Population Biology (O. Solbrig, S. K. Jain et al.,eds.), pp. 232–263, Columbia University Press, New York.

    Google Scholar 

  • Hirsch, J., 1968, Behavior-genetic analysis and the study of man, in: Science and the Concept of Race (M. Mead, Th. Dobzhansky et al.,eds.), pp. 37–48, Columbia University Press, New York.

    Google Scholar 

  • Ho, M. W., and Saunders, P. T., 1979, Beyond neo-Darwinism-An epigenetic approach to evolution, J. Theor. Biol. 78: 573–591.

    PubMed  CAS  Google Scholar 

  • Horn, H. S., et al.,1982, Adaptive aspects of development (group report), in: Evolution and Development (J. T. Bonner, ed.), pp. 215–235, Springer, Berlin.

    Google Scholar 

  • Hutchinson, G. E., 1953, The concept of pattern in ecology, Proc. Acad. Nat. Sci. 105: 112.

    Google Scholar 

  • Istock, C., 1983, The extent and consequences of heritable variation for fitness characters, in: Population biology: Retrospect and Prospect ( C. E. King and P. S. Dawson, eds.), pp. 61–96, Columbia University Press, New York.

    Google Scholar 

  • Jain, S. K., 1976, Patterns of survival and microevolution in plant populations, in: Population Genetics and Ecology ( S. Karlin and E. Nevo, eds.), pp. 49–89, Academic Press, New York.

    Google Scholar 

  • Jain, S. K., 1979, Adaptive strategies: Polymorphism, plasticity, and homeostasis, in: Topics in Plant Population Biology (O. Solbrig, S. K. Jain et al.,eds.), pp. 160–187, Academic Press, New York.

    Google Scholar 

  • Jain, S. K., and Marshall, D. R., 1967, Population studies in predominantly self-pollinating species. X. Variation in natural populations of Avena fatua and A. barbata, Am. Nat. 101: 19–33.

    Google Scholar 

  • Jain, S. K., Marshall, D. R., and Wu, K., 1970, Genetic variability in natural populations of Softchess (Bromus mollis L.), Evolution 24: 649–659.

    Google Scholar 

  • Janzen, D. H., 1979, New horizons in the biology of plant defenses, in: Herbivores: Their Interaction with Secondary Plant Metabolites ( G. A. Rosenthal and D. H. Janzen, eds.), pp. 331–350, Academic Press, New York.

    Google Scholar 

  • Jefferies, R. L., 1984, The phenotype: Its development, physiological constraints, and environmental signals, in: Perspectives on Plant Population Ecology ( R. Dirzo and J. Sarukhan, eds.), pp. 347–358, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Johannsen, W., 1911, The genotype concept of heredity, Am. Nat. 45: 129–159.

    Google Scholar 

  • Kalisz, S., 1986, Variable selection on the timing of germination in Collinsia verna (Scrophulariaceae), Evolution 40: 479–491.

    Google Scholar 

  • Kerner von Marilaun, A., and Oliver, F. W., 1895, The Natural History of Plants, Vol. 2, Blackie, London.

    Google Scholar 

  • Kluge, M., and Ting, I. P., 1978, Crassulacean Acid Metabolism, Springer-Verlag, Berlin. Langridge, J., 1963, The genetic basis of climatic response, in: Environmental Control of Plant Growth (L. T. Evans, ed.), pp. 381–403, Academic Press, New York.

    Google Scholar 

  • Lechowicz, M. J., 1984, The effects of individual variation in physiological and morpho-logical traits on the reproductive capacity of the common Cocklebur Xanthium stru-marium L., Evolution 38: 833–844.

    Google Scholar 

  • Levin, D., 1970, Developmental instability in species and hybrids of Liatris, Evolution 24: 613–624.

    Google Scholar 

  • Levin, D., 1984, Immigration in plants: An exercise in the subjunctive, in: Perspectives on Plant Population Ecology ( R. Dirzo and J. Sarukhan, eds.), pp. 242–260, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Levins, R., 1963, Theory of fitness in a heterogeneous environment. II. Developmental flexibility and niche selection, Am. Nat. 97: 75–90.

    Google Scholar 

  • Levins, R., 1968, Evolution in a Changing Environment, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Lewis, D., 1965, Gene—environment interaction: A relationship between dominance, heterosis, phenotypic stability, and variability, Heredity 8: 333–356.

    Google Scholar 

  • Lewontin, R. C., 1957, The adaptation of populations to varying environments, Cold Spring Harbor Symp. Quant. Biol. 22: 395–408.

    PubMed  CAS  Google Scholar 

  • Lewontin, R. C., 1974, The analysis of variance and the analysis of causes, Am. J. Hum. Genet. 26: 400–411.

    PubMed  CAS  Google Scholar 

  • Lewontin, R. C., 1977, Fitness, survival, and optimality, in: Analysis of Ecological Systems ( D. J. Horn, G. R. Stairs, and R. D. Mitchell, eds.), pp. 3–21, Ohio State University Press, Columbus, Ohio.

    Google Scholar 

  • Lewontin, R. C., 1982, Organism and environment, in: Learning, Development, and Culture ( H. C. Plotkin, ed.), pp. 151–170, Wiley, New York.

    Google Scholar 

  • Lewontin, R. C., and Levins, R., 1978, Evolution, in: Encyclopedia Einaudi, pp. 995–1051, Editore Einaudi, Milan.

    Google Scholar 

  • Linhart, Y. B., 1974, Intrapopulation differentiation in annual plants. I. Veronica peregrina raised under non-competitive conditions, Evolution 28: 232–243.

    Google Scholar 

  • Loveless, M. D., and Hamrick, J. L., 1984, Ecological determinants of genetic structure in plant populations, Annu. Rev. Ecol. Syst. 15: 65–95.

    Google Scholar 

  • Marshall, D. R., and Jain, S. K., 1968, Phenotypic plasticity of Avena fatua and A. barbata, Am. Nat. 102: 457–467.

    Google Scholar 

  • McClintock, B., 1984, The significance of responses of the genome to challenge, Science 226: 792–801.

    PubMed  CAS  Google Scholar 

  • McGee, A. B., Schmierbach, M. R., and Bazzaz, F. A., 1981, Photosynthesis and growth in populations of Populus deltoides from contrasting habitats, Am. Mid. Nat. 105: 305311.

    Google Scholar 

  • McKey, D., 1979, The distribution of secondary compounds within plants, in: Herbivores: Their Interaction with Secondary Plant Metabolites ( G. A. Rosenthal and D. H. Janzen, eds.), pp. 56–133, Academic Press, New York.

    Google Scholar 

  • McNeilly, T., 1968, Evolution in closely adjacent plant populations. III. Agrostis tenuis on a small copper mine, Heredity 23: 99–108.

    Google Scholar 

  • McNeill, T., and Bradshaw, A. D., 1968, Evolutionary processes in populations of copper tolerant Agrostis tenius, Evolution 22: 108–118.

    Google Scholar 

  • Mills, S., and Beatty, J., 1979, The propensity interpretation of fitness, Phil. Sci. 46: 263286.

    Google Scholar 

  • Mooney, H. A., 1976, Some contributions of physiological ecology to plant population biology, Syst. Bot. 1: 269–283.

    Google Scholar 

  • Mooney, H. A., and Gulmon, S. L., 1979, Environmental and evolutionary constraints on the photosynthetic characteristics of higher plants, in: Topics in Plant Populations Biology (O. Solbrig, S. K. Jain et al.,eds.), pp. 316–337, Columbia University Press, New York.

    Google Scholar 

  • Moran, G. F., Marshall, D. R., and Muller, W. J., 1981, Phenotype variation and plasticity in the colonizing species Xanthium strumarium L., Aust. J. Biol. Sci. 34: 639–648.

    Google Scholar 

  • Muzik, T. J., 1970, Weed Biology and Control, McGraw-Hill, New York.

    Google Scholar 

  • Parrish, J. A. D., and Bazzaz, F. A., 1985, Nutrient content of Abutilon theophrasti seeds and the competitive ability of the resulting plants, Oecologia 65: 247–251.

    Google Scholar 

  • Piíiero, D., and Sarukhân, J., 1982, Reproductive behavior and its individual variability in a tropical palm, Astrocaryum mexicanum, J. Ecol. 70: 461–472.

    Google Scholar 

  • Primack, R. B., and Antonovics, J., 1981, Experimental ecological genetics in Plantago. V. Components of seed yield in the ribwort plantain P. lanceolata L., Evolution 35: 1069–1079.

    Google Scholar 

  • Rhoades, D. F., 1983, Herbivore population dynamics and Plant chemistry, in: Variable Plants and Herbivores in Natural and Managed Systems ( R. F. Denno and M. S. McClure, eds.), Academic Press, New York.

    Google Scholar 

  • Rice, S., 1983, Acclimation of fully-expanded leaves and changes in allocation patterns of an annual plant in response to changes in light and moisture conditions, Bull. Ecol. Soc. 64: 58.

    Google Scholar 

  • Rice, S., 1985, Plasticity of photosynthetic light response, growth, and allocation patterns in old field, prairie, and forest species of Aster, Bull. Ecol. Soc. 65 :255.

    Google Scholar 

  • Roy, J., and Mooney, H. A., 1982, Physiological adaptation and plasticity to water stress of coastal and desert populations of Heliotropum curassavicum, Oecologia 52: 370–375.

    Google Scholar 

  • Russell, W. A., 1974, Comparative performance for maize hybrids representing different eras of maize breeding, in: 29th Annual Corn and Sorghum Research Conference, pp. 81–101, Ames, Iowa.

    Google Scholar 

  • Ryan, C. A., 1979, Proteinase inhibitors, in: Herbivores: Their Interaction with Secondary Plant Metabolites ( G. A. Rosenthal and D. H. Janzen, eds.), pp. 599–618, Academic Press, New York.

    Google Scholar 

  • Ryan, C. A., 1983, Insect-induced chemical signals regulating natural plant protection responses, in: Variable Plants and Herbivores in Natural and Managed Systems ( R. F. Denno and M. S. McClure, eds.), Academic Press, New York.

    Google Scholar 

  • Sakai, K.-I., 1961, Competitive ability in plants: Its inheritance and some related problems, Symp. Soc. Exp. Biol. 15: 245–263.

    Google Scholar 

  • Salisbury, E. J., 1940, Ecological aspects of plant taxonomy, in: The New Systematics ( J. Huxley, ed.), Clarendon Press, Oxford, pp. 329–340.

    Google Scholar 

  • Sarukhân, J., Martinez-Ramos, M., and Piffero, D., 1984, The analysis of demographic variability at the individual level and its populational consequences, in: Perspectives on Plant Population Ecology ( R. Dirzo and J. Sarukhân, eds.), pp. 83–106, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Schaal, B. A., 1984, Life-history variation, natural selection, and maternal effects in plant populations, in: Perspectives on Plant Population Ecology ( R. Dirzo and J. Sarukhan, eds.), pp. 188–206, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Schlichting, C. D., 1986, The evolution of phenotypic plasticity in plants, Annu. Rev. Ecol. Syst, 17: 667–693.

    Google Scholar 

  • Schlichting, C. D., and Levin, D. A., 1984, Phenotypic plasticity of annual Phlox: Tests of some hypotheses, Am. J. Bot. 71: 252–260.

    Google Scholar 

  • Schmalhausen, I. I., 1949, Factors of Evolution, Blakiston Press, New York. Schwaegerle, K. E., 1984, Relationships between genetic and ecological variables in nine populations of Phlox drummondii Hook., Ph.D. thesis, University of Illinois.

    Google Scholar 

  • Schwaegerle, K., Garbutt, K., and Bazzaz, F. A., 1986, Differentiation among nine pop-ulations of Phlox, I. Electrophoretic and quantitative variation, Evolution 40: 506–517.

    Google Scholar 

  • Sharma, G., and Dunn, D., 1969, Environmental modifications of leaf surface traits in Datura stramonium, Can. J. Bot. 47: 1211–1216.

    Google Scholar 

  • Slobodkin, L. B., 1968, Toward a predictive theory of evolution, in: Population Biology and Evolution ( R. C. Lewontin, ed.), pp. 187–205, Syracuse University Press, Syracuse, New York.

    Google Scholar 

  • Solbrig, O. T., 1981, Studies on the population biology of the genus Viola. II. The effect of plant size on fitness in Viola sororia, Evolution 35: 1080–1093.

    Google Scholar 

  • S¢rensen, T., 1954, Adaptation of small plants to deficient nutrition and a short growing season, Botan. Tidsskr. 51: 339–361.

    Google Scholar 

  • Stearns, S. C., 1982, The role of development in the evolution of life histories, in: Evolution and Development (J. T. Bonner, ed.), pp. 237–258, Springer-Verlag, Berlin. Stebbins, G. L., 1950, Variation and Evolution in Plants, Columbia University Press, New York.

    Google Scholar 

  • Teed, J. A., 1978, Environmental and genetic control of phenotypic adaptation to drought in Potentilla glandulosa Lindl, Oecologia 37: 29–39.

    Google Scholar 

  • Thoday, J. M., 1953, Components of fitness, Symp. Soc. Exp. Biol. 7: 96–112.

    Google Scholar 

  • Thoday, J. M., 1975, Non-Darwinian `evolution’ and biological progress, Nature 255: 675677.

    Google Scholar 

  • Turesson, G., 1922, The genotypical response of the plant species to habitat and climate, Hereditas 3: 211–350.

    Google Scholar 

  • Turkington, R., and Aarssen, L. W., 1984, Local-scale differentiation as a result of competitive interactions, in: Perspectives on Plant Population Ecology ( R. Dirzo and J. Sarukhan, eds.), pp. 107–127, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Turkington, R., and Harper, J. L., 1979, The growth, distribution, and neighbour relationships of Trifolium repens in a permanent pasture. IV. Fine-scale biotic differentiation, J. Ecol. 67: 245–254.

    Google Scholar 

  • Van Valen, L., 1965, Morphological variation and width of ecological niche, Am. Nat. 99: 377–390.

    Google Scholar 

  • Via, S., and Lande, R., 1985, Genotype—environment interaction and the evolution of phenotypic plasticity, Evolution 39: 505–522.

    Google Scholar 

  • Waddington, C. H., 1957, The Strategy of the Genes, George Allen and Unwin, London. Wright, S., 1931, Evolution in Mendelian populations, Genetics 16: 97–159.

    Google Scholar 

  • Wright, S., 1980, Genic and organismic selection, Evolution 34: 825–841.

    Google Scholar 

  • Wyatt, R., and Antonovics, J., 1981, Spatial and temporal patterns of leaf shape variation in Asclepias tuberosa, Evolution 35: 529–542.

    Google Scholar 

  • Zangerl, A. R., and Bazzaz, F. A., 1983, Plasticity and genotypic variation in photosynthetic behavior of an early and late successional species of Polygonum, Oecologia 57: 270–273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Sultan, S.E. (1987). Evolutionary Implications of Phenotypic Plasticity in Plants. In: Hecht, M.K., Wallace, B., Prance, G.T. (eds) Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6986-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6986-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6988-6

  • Online ISBN: 978-1-4615-6986-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics