Skip to main content

The Hippocampal Formation of the Primate Brain

A Review of Some Comparative Aspects of Cytoarchitecture and Connections

  • Chapter
Cerebral Cortex

Part of the book series: Cerebral Cortex ((CECO,volume 6))

Abstract

The long-standing interest of neuroscientists in the hippocampal formation has occurred from the perspective of two rather different points of view. On the one hand, the comparatively simple cytoarchitecture of the hippocampal formation and the laminar segregation of its extrinsic and intrinsic afferents make it an interesting and relatively simple model system for experimental manipulation and investigation. Chapter 8 in this volume, by Schwartzkroin and Mueller, is a thoughtful review of how effective the hippocampus has been as a model system for neurophysiological studies using the in vitro slice preparation. Other investigations have utilized the hippocampal formation to study the effects of genetic defects in neuronal development (e.g., Nowakowski and Davis, 1985), collateral sprouting induced by deafferentation (e.g., Lynch et al. 1972; Cotman and Nadler, 1978), or intracerebral transplantation (e.g., Frotscher and Zimmer, 1986). While most of the studies that use the hippocampal formation as a model system have focused on the rodent, the other major interest in the hippocampal formation has grown out of a variety of clinical and experimental data derived from humans and nonhuman primates. These latter investigations have focused on the disruption of certain aspects of the memory process produced by hippocampal lesions as first described in human neurosurgical patients (Scoville and Milner, 1957; Penfield and Milner, 1958) and subsequently investigated in nonhuman primates (e.g., Moss et al. 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggleton, J. P., Desimone, R., and Mishkin, M., 1986, The origin, course and termination of the hippocampothalamic projections in the macaque, J. Comp. Neurol. 243:409–421.

    PubMed  CAS  Google Scholar 

  • Alonso, A., and Kohler, C., 1982, Evidence for separate projections of hippocampal pyramidal and non-pyramidal neurons to different parts of the septum in the rat brain, Neurosci. Lett. 31:209–214.

    PubMed  CAS  Google Scholar 

  • Amaral, D. G., 1978, A Golgi study of cell types in the hilar region of the hippocampus in the rat, J. Comp. Neurol. 182:851–914.

    PubMed  CAS  Google Scholar 

  • Amaral, D. G., and Cowan, W. M., 1980, Subcortical afferents to the hippocampal formation in the monkey, J. Comp. Neurol. 189:573–591.

    PubMed  CAS  Google Scholar 

  • Amaral, D. G., and Dent, J. A., 1981, Development of the mossy fibers of the dentate gyrus. I. A light and electron microscopic study of the mossy fibers and their expansions, J. Comp. Neurol. 195:51–86.

    PubMed  CAS  Google Scholar 

  • Amaral, D. G., and Kurz, J., 1985, An analysis of the origins in the cholinergic and noncholinergic septal projections to the hippocampal formation in the rat, J. Comp. Neurol. 240:37–59.

    PubMed  CAS  Google Scholar 

  • Amaral, D. G., Insauati, R., and Cowan, W. M., 1984, The commissural connections of the monkey hippocampal formation, J. Comp. Neurol. 224:307–336.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Bliss, T. V. P., and Skrede, K. K., 1971, Lamellar organization of hippocampal excitatory pathways, Exp. Brain Res. 13:222–238.

    Google Scholar 

  • Azmitia, E. C., and Segal, M., 1978, An autoradiographic analysis of the differential ascending projections of the dorsal median raphe nuclei in the rat, J. Comp. Neurol. 179:641–668.

    PubMed  CAS  Google Scholar 

  • Bakst, I., and Amaral, D. G., 1984, The distribution of acetylcholinesterase in the hippocampal formation of the monkey, J. Comp. Neurol. 225:344–371.

    PubMed  CAS  Google Scholar 

  • Bakst, I., Morrison, J. H., and Amaral, D. G., 1985, The distribution of somatostatin-like immunoreactivity in the monkey hippocampal formation, J. Comp. Neurol. 236:423–442.

    PubMed  CAS  Google Scholar 

  • Berger, T. W., Swanson, G. W., Milner, T. A., Lynch, G. S., and Thompson, R. F., 1980, Reciprocal anatomical connections between hippocampus and subiculum in the rabbit: Evidence for subicular innervation of regio superior, Brain Res. 183:265–276.

    PubMed  CAS  Google Scholar 

  • Berger, T. W., Semple-Rowland, S., and Basset, J. L., 1981, Hippocampal polymorph neurons are the cells of origin for ipsilateral association and commissural afferents to the dentate gyrus, Brain Res. 215:329–336.

    PubMed  CAS  Google Scholar 

  • Blackstad, T. W., 1956, Commissural connections of the hippocampal region in the cat, with special reference to their mode of termination, J. Comp. Neurol. 105:417–537.

    PubMed  CAS  Google Scholar 

  • Blackstad, T. W., Brink, K., Hem, J., and Jeune, B., 1970, Distribution of hippocampal mossy fibers in the rat: An experimental study with silver impregnation methods, J. Comp. Neurol. 138:433–450

    PubMed  CAS  Google Scholar 

  • Blumberg, B., 1984, Allometry and evolution of tertiary hominoids, J. Hum. Evol. 13:613–676.

    Google Scholar 

  • Brodal, A., 1947, The hippocampus and sense of smell: A review, Brain 70:179–222.

    PubMed  CAS  Google Scholar 

  • Campbell, C. B. G., 1982, Some questions and problems related to homology, in: Primate Brain Evolution (E. Armstrong and D. Falk, eds.), Plenum Press, New York, pp. 1–11

    Google Scholar 

  • Carpenter, M. B., 1976, Human Neuro anatomy, 7th ed., Williams & Wilkins, Baltimore

    Google Scholar 

  • Carpenter, M. B., and Sutin, J., 1983, Human Neuroanatomy, 8th ed., Williams & Wilkins, Baltimore

    Google Scholar 

  • Cassell, M. D., and Brown, M. W., 1984, The distribution of Timm’s stain in the nonsulphide-perfused human hippocampal formation, J. Comp. Neurol. 222:461–471.

    PubMed  CAS  Google Scholar 

  • Chronister, R. B., and DeFrance, J. F., 1979, Organization of projection neurons of the hippocampus, Exp. Neurol. 66:509–523.

    PubMed  CAS  Google Scholar 

  • Claiborne, B. J., Amaral, D. G., and Cowan, W. M., 1986, A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus, J. Comp. Neurol. 246:435–458.

    PubMed  CAS  Google Scholar 

  • Cotman, C. W., and Nadler, J. V., 1978, Reactive synaptogenesis in the hippocampus, in: Neuronal Plasticity (C. W. Cotman, ed.), Raven Press, New York, pp. 227–271

    Google Scholar 

  • Crutcher, K. A., Madison, R., and Davis, J. N., 1981, A study of the rat septohippocampal pathway using anterograde transport of horseradish peroxidase, Neuroscience 6:1961–1973.

    PubMed  CAS  Google Scholar 

  • Demeter, S., Rosene, D. L., and Van Hoesen, G. W., 1985, Interhemispheric pathways of the hippocampal formation, presubiculum, entorhinal and posterior hippocampal cortices in the rhesus monkey: The structure and function of the hippocampal commissures, J. Comp. Neurol. 233:30–47.

    PubMed  CAS  Google Scholar 

  • DeVito, J., 1980, Subcortical projections to the hippocampal formation in squirrel monkey (Saimiri sciureus), Brain Res. Bull. Bull. 5:285–289.

    PubMed  CAS  Google Scholar 

  • Divac, I., 1975, Magnocellular nuclei of the basal forebrain project to neocortex, Brain stem, and olfactory bulb: Review of some functional correlates, Brain Res. 93:385–398.

    PubMed  CAS  Google Scholar 

  • Edinger, H. M., Kramer, S. Z., Weiner, S., and Krayniak, P. F., 1979, The subicular cortex of the cat: An anatomical and electrophysiological study, Exp. Neurol. 63:504–526.

    PubMed  CAS  Google Scholar 

  • Ekstein, J., and Rosene, D. L., 1987, Topography of the fornix trajectory and mammillary body termination of efferents from the subiculum, the supracallosal subiculum, and the hippocampal— amygdaloid transition area in the rhesus monkey, J. Comp. Neurol. submitted for publication.

    Google Scholar 

  • Filimonoff, I. N., 1947, A rational subdivision of the cerebral cortex, Arch. Neurol. Psychiatry 58:296–311.

    PubMed  CAS  Google Scholar 

  • Finch, D. M., Nowlin, N. L., and Babb, T. L., 1983, Demonstration of axonal projections of neurons in the rat hippocampus and subiculum by intracellular injection of HRP, Brain Res.271:201–216.

    PubMed  CAS  Google Scholar 

  • Finlay, B. L., and Slattery, M., 1983, Local differences in the amount of early cell deaths in neocortex predict adult specializations, Science 219:1349–1351.

    PubMed  CAS  Google Scholar 

  • Fitzpatrick, D., and Johnson, R. P., 1981, Enkephalin-like immunoreactivity in the mossy fiber pathway of the hippocampal formation of the tree shrew (Tupaia glis), Neuroscience 6:2485–2494.

    PubMed  CAS  Google Scholar 

  • Fricke, R., and Cowan, W. M., 1978, An autoradiographic study of the commissural and ipsilateral hippocampo-dentate projections in the adult rat, J. Comp. Neurol. 181:253–270.

    PubMed  CAS  Google Scholar 

  • Frotscher, M., and Leranth, C., 1985, Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: A combined light and electron microscopic study, J. Comp. Neurol. 239:237–246.

    PubMed  CAS  Google Scholar 

  • Frotscher, M., and Leranth, C., 1986, The cholinergic innervation of the rat fascia dentata: Identification of target structures on granule cells by combining choline acetyltransferase immunocytochemistry and Golgi impregnation, J. Comp. Neurol. 243:58–70.

    PubMed  CAS  Google Scholar 

  • Frotscher, M., and Zimmer, J., 1986, Intracerebral transplants of the rat fascia dentata: A Golgi/ electron microscope study of dentate granule cells, J. Comp.Neurol. 246:181–190.

    PubMed  CAS  Google Scholar 

  • Gall, C., Brecha, N., Karten, H. J., and Chang, K. -J., 1981, Localization of enkephalin-like immunoreactivity to identified axonal and neuronal populations of the rat hippocampus, J. Comp. Neurol. 198:335–350.

    PubMed  CAS  Google Scholar 

  • Geneser-Jensen, F. A., 1972, Distribution of acetylcholinesterase in the hippocampal region of the guinea pig. II. Subiculum and hippocampus, Z. Zellforsch. Mikrosk. Anat. 124:546–560.

    PubMed  CAS  Google Scholar 

  • Gertz, S. D., Lindenberg, R., and Pavis, G. W., 1972, Structural variations in the rostral hippocampus, Johns Hopkins Med. J. 130:367–376.

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic, P. S., Selemon, L. D., and Schwartz, M. L., 1984, Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey, Neuroscience 12:719–743.

    PubMed  CAS  Google Scholar 

  • Gottlieb, D. I., and Cowan, W. M., 1973, Autoradiographic studies of the commissural and ipsilateral association connections of the hippocampus and dentate gyrus of the rat. I. The commissural connections, J. Comp. Neurol. 149:393–421.

    PubMed  CAS  Google Scholar 

  • Greenfield, S., 1984, Acetylcholinesterase may have novel functions in the brain, Trends in Neuroscience 7:364–368.

    CAS  Google Scholar 

  • Greenwood, R. S., Godar, S. E., Reaves, T.A., Jr., and Hayward, J. N., 1981, Cholecystokinin in hippocampal pathways, J. Comp. Neurol. 203:335–350.

    PubMed  CAS  Google Scholar 

  • Gudden, A., 1881, Beitzrag zur kenntniss des corpus mammillare und der Sogenannten Schekel des fornix, Arch. Psychiatr. Nervenkr. 11:428–452.

    Google Scholar 

  • Haglund, L., Swanson, L. W., and Kohler, C., 1984, The projection of the supramammillary nucleus to the hippocampal formation: An immunohistochemical and anterograde transport study with the lectin PHA-L in the rat, J. Comp. Neurol. 229:171–185.

    PubMed  CAS  Google Scholar 

  • Hamilton, C. R., 1983, Lateralization for orientation in split brain monkeys, Behav. Brain Res. 10:399–403.

    PubMed  CAS  Google Scholar 

  • Handelmann, G. E., Meyer, D, K., Beinfeld, M. C., and Oertel, W. H., 1981, CCK-containing terminals in the hippocampus are derived from intrinsic neurons: An immunohistochemical and radioimmunological study, Brain Res. 224:180–184.

    PubMed  CAS  Google Scholar 

  • Harris, K. M., Marshall, P. E., and Landis, D. M. D., 1985, Ultrastructural study of cholecystokinin-immunoreactive cells and processes in area CA1 of the rat hippocampus, J. Comp. Neurol. 233:147–158.

    PubMed  CAS  Google Scholar 

  • Haug, F.-M. S., 1967, Electron microscopical localization of the zinc in the hippocampal mossy fibre synapses by a modified sulfide silver procedure, Histochemie 8:355–368.

    PubMed  CAS  Google Scholar 

  • Haug, F.-M. S., 1973, Heavy metals in the brain. A light microscope study of the rat with Timm’s sulphide silver method. Methodological considerations and cytological and regional staining pattern, Adv. Anat. Embryol. Cell Biol. 47:7–71.

    Google Scholar 

  • Haug, F.-M. S., Blackstad, T. W., Simonsen, A. H., and Zimmer, A. J., 1971, Timm’s sulphide silver reaction for zinc during experimental anterograde degeneration of hippocampal mossy fibers, Comp. Neurol. 142:23–31.

    CAS  Google Scholar 

  • Herkenham, M., 1978, The connections of the nucleus reuiens thalami: Evidence for a direct thalamo-hippocampal pathway in the rat, J. Comp. Neurol. 177:589–610.

    PubMed  CAS  Google Scholar 

  • Hjorth-Simonsen, A., 1971, Hippocampal efferents to the ipsilateral entorhinal area: An experimental study in the rat, J. Comp. Neurol. 142:417–438.

    PubMed  CAS  Google Scholar 

  • Hjorth-Simonsen, A., 1972, Projections of the lateral part of the entorhinal area to the hippocampus and fascia dentata, J. Comp. Neurol. 146:219–232.

    PubMed  CAS  Google Scholar 

  • Hjorth-Simonsen, A., 1973, Some intrinsic connections of the hippocampus in the rat: An experimental analysis, J. Comp. Neurol. 147:145–161.

    PubMed  CAS  Google Scholar 

  • Hjorth-Simonsen, A., and Jeune, B., 1972, Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation, J. Comp. Neurol. 144:215–232.

    PubMed  CAS  Google Scholar 

  • Hjorth-Simonsen, A., and Laurberg, S., 1977, Commissural connections of the dentate area in the rat, J. Comp. Neurol. 174:591–606.

    PubMed  CAS  Google Scholar 

  • Hyman, B. J., Van Hoesen, G. W., Damasio, A. R., and Barnes, C. L., 1984, Alzheimer’s disease: Cell specific pathology isolates in the hippocampal formation, Science 225:121–122.

    Google Scholar 

  • Kohler, C., 1985, Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex, J. Comp. Neurol. 236:504–522.

    PubMed  CAS  Google Scholar 

  • Kohler, C., Erisson, L., Davies, L., and Chan-Palay, V., 1986, Neuropeptide Y innervation of the hippocampal region in the rat and monkey brain, J. Comp. Neurol. 244:384–400.

    PubMed  CAS  Google Scholar 

  • Kosel, K. C., Van Hoesen, G. W., and Rosene, D. L., 1983, A direct projection from the perirhinal cortex to the subiculum in the rat, Brain Res. 269:347–351.

    PubMed  CAS  Google Scholar 

  • Krayniak, P. F., Siegel, A., Meibach, R. C., and Fruchtman, D., 1979, Origin of the fornix system in the squirrel monkey, Brain Res. 160:401–411.

    PubMed  CAS  Google Scholar 

  • Krettek, J. E., and Price, J. L., 1977, Projections from the amygdaloid complex and adjacent olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat, J. Comp. Neurol. 172:723–752.

    PubMed  CAS  Google Scholar 

  • Laatsch, R. H., and Cowan, W. M., 1966, Electron microscopic studies of the dentate gyrus in the rat. I. Normal structure with special reference to synaptic organization, J. Comp. Neurol. 128:359–396.

    PubMed  CAS  Google Scholar 

  • Laurberg, S., 1979, Commissural and intrinsic connections of the rat hippocampus, J. Comp. Neurol. 184:685–708.

    PubMed  CAS  Google Scholar 

  • Leichnetz, G. R., and Astruc, J., 1975, Preliminary evidence for a direct projection of the prefrontal cortex to the hippocampus in the squirrel monkey, Brain Behav. Evol. 355:355–364.

    Google Scholar 

  • Leranth, C., and Frotscher, M., 1983, Commissural afferents to the rat hippocampus terminate on vasoactive intestinal polypeptide-like immunoreactive non-pyramidal neurons: An EM immunocytochemical degeneration study, Brain Res. 276:357–361.

    PubMed  CAS  Google Scholar 

  • Lewis, F. T., 1923, The significance of the term hippocampus, J. Comp. Neurol. 35:213–230.

    Google Scholar 

  • Lewis, P. R., and Shute, C. C. D., 1967, The cholinergic limbic system: Projections to the hippocampal formation medial cortex, nuclei of the ascending cholinergic reticular system and subfornical organ and supra-optic crest, Brain 90:521–542.

    PubMed  CAS  Google Scholar 

  • Lorente de Nó, R., 1934, Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system, J. Psychol. Neurol. 46:113–177.

    Google Scholar 

  • Loy, R., Koziell, D. A., Lindsey, J. D., and Moore, R. Y., 1980, Noradrenergic innervation of the adult rat hippocampal formation, J. Comp. Neurol. 189:699–710.

    PubMed  CAS  Google Scholar 

  • Lynch, G., Matthews, D. A., Mosko, S., Parks, T., and Cotman, C. W., 1972, Induced acetylcholinesterase-rich layer in the rat dentate gyrus following entorhinal lesions, Brain Res. 42:311–318.

    PubMed  CAS  Google Scholar 

  • Lynch, G., Rose, G., and Gall, C., 1978, Anatomical and functional aspects of the septo-hippocampal projections, Ciba Found. Symp. 58:5–24.

    Google Scholar 

  • McLardy, T., 1955, Observations in the fornix of the monkey. II. Fiber studies, J. Comp. Neurol. 103:327–343.

    PubMed  CAS  Google Scholar 

  • McLardy, T., 1963, Some cell and fiber peculiarities of the uncal hippocampus, Prog. Brain Res. 3:71–88.

    Google Scholar 

  • McLardy, T., 1970, Memory function in hippocampal gyri but not in hippocampi, Int. J. Neurosci. 1:113–118.

    PubMed  CAS  Google Scholar 

  • McLardy, T., 1974, Hippocampal presubicular temporo-ammonic non-perforant path: Histological studies in man and macaques, International Research Communications System. 2:1421.

    Google Scholar 

  • Mahut, H., Zola-Morgan, S., and Moss, M., 1982, Hippocampal resections impair associative learning and recognition memory in the monkey, J. Neurosci. 2:1214–1229.

    PubMed  CAS  Google Scholar 

  • Martin, R. D., 1982, Allometric approaches to the evolution of the primate nervous system, in: Primate Brain Evolution (E. Armstrong and D. Falk, eds.), Plenum Press, New York, pp. 39–56

    Google Scholar 

  • Meibach, R. C., and Siegel, A., 1975, The origin of fornix fibres which project to the mammillary bodies in the rat: A horseradish peroxidase study, Brain Res. 88:508–512.

    PubMed  CAS  Google Scholar 

  • Meibach, R. C., and Siegel, A., 1977a, Efferent connections of the hippocampal formation in the rat, Brain Res. 124:197–224.

    PubMed  CAS  Google Scholar 

  • Meibach, R. C., and Siegel, A., 1977b, Subicular projections to the posterior cingulate cortex in rats, Exp. Neurol. 57:264–274.

    PubMed  CAS  Google Scholar 

  • Mellgren, S. I., and Srebro, B., 1973, Changes in acetylcholinesterase and distribution of degenerating fibres in the hippocampal region after septal lesions in the rat, Brain Res. 52:19–36.

    PubMed  CAS  Google Scholar 

  • Mesulam, M.-M., Mufson, E. J., Levey, A. I., and Wainer, B. H., 1983, Cholinergic innervation of cortex by the vasal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey, J. Comb. Neurol. 214:170–197.

    CAS  Google Scholar 

  • Milner, B., 1970, Biology of Memory, Academic Press, New York, pp. 29–50

    Google Scholar 

  • Milner, T. A., Loy, R., and Amaral, D. G., 1983, An anatomical study of the development of the septo-hippocampal projection in the rat, Dev. Brain Res. 8:343–371.

    Google Scholar 

  • Mishkin, M., 1978, Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus, Nature 273:297–298.

    PubMed  CAS  Google Scholar 

  • Mishkin, M., 1982, A memory system in the monkey, Philos. Trans. R. Soc. London B Ser. 298:85–95.

    Google Scholar 

  • Mosko, S., Lynch, G., Cotman, and C. W., 1973, The distribution of septal projections to the hippocampus of the rat, J. Comp. Neurol. 152:163–174.

    PubMed  CAS  Google Scholar 

  • Moss, M., and Rosene, D. L., 1984, A perfusion-fixation procedure for the concurrent demonstration of Timm’s, horseradish peroxidase (HRP) and acetylcholinesterase (AChE) histochemistry, J. Histochem. Cytochem. 32:113–116.

    Google Scholar 

  • Moss, M. B., and Rosene, D. L., 1987, Acetylcholinesterase in the hippocampal formation of the rhesus monkey: A quantitative histochemical study, J. Comp. Neurol. submitted for publication.

    Google Scholar 

  • Moss, M., Mahut, H., and Zola-Morgan, S., 1981, Concurrent discrimination learning of monkeys after hippocampal, entorhinal, or fornix lesions, J. Neurosci. 1:227–240.

    PubMed  CAS  Google Scholar 

  • Moss, M., Albert, M. S., Butters, N., and Payne, M., 1986, Differential patterns of memory loss among patients with Alzheimer’s disease, Huntington’s disease, an alcoholic Korsakoff’s syndrome, Arch. Neurol. 43:239–246.

    PubMed  CAS  Google Scholar 

  • Moss, M. B., Rosene, D. L., and Mahut, H., 1987, Developmentally related changes in acetylcholinesterase in the hippocampal formation of the rhesus monkey following transections of the fornix. J. Comp. Neurol. submitted for publication.

    Google Scholar 

  • Nomina Anatomica1983, 5th ed., Williams & Wilkinsm, Baltimore

    Google Scholar 

  • Nowakowski, R. S., and Davis, T. L., 1985, Dendritic arbors and dendritic excrescences of abnormally positioned neurons in area CA3c of mice carrying the mutation “hippocampal lamination deficit,” J. Comp.Neurol. 239:267–275

    PubMed  CAS  Google Scholar 

  • Otsuka, N., Kishimoto, T., and Nagita, T., 1976, Histochemical studies on zinc of the hippocampal formation in the monkey, Acta Histochem. Cytochem. 9:107–110.

    Google Scholar 

  • Ottersen, O., 1982, Connections of the amygdala of the rat. IV. Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase, J. Comp. Neurol. 205:30–48.

    PubMed  CAS  Google Scholar 

  • Pandya, D. N., Van Hoesen, G. W., and Mesulam, M.-M., 1981, Efferent connections of the cingulate gyrus in the rhesus monkey, Exp. Brain Res. 42:319–330.

    PubMed  CAS  Google Scholar 

  • Penfield, W., and Milner, B., 1958, Memory deficit produced by bilateral lesions in the hippocampal zone, Arch. Neurol. Psychiatry 79:475–497.

    CAS  Google Scholar 

  • Poletti, C. E., and Creswell, G., 1977, Fornix system efferent projections in the squirrel monkey: An experimental degeneration study, J. Comp. Neurol. 175:101–128.

    PubMed  CAS  Google Scholar 

  • Pribram K. H., 1961, Limbic system, in: Electrical Stimulation of the Brain (D. E. Sheer, ed.), University of Texas Press, Austin, pp. 311–320

    Google Scholar 

  • Pribram, K. H., and Kruger, L., 1954, Functions of the olfactory brain, Ann. N. Y. Acad. Sci. 58:109–138.

    PubMed  CAS  Google Scholar 

  • Price, J. L., 1981, The Amygdaloid Complex, Elsevier, Amsterdam, pp. 121–132

    Google Scholar 

  • Radinsky, L. B., 1969, Outlines of canine and felid brain evolution, Ann. N.Y. Acad. Sci. 167:277–287.

    Google Scholar 

  • Radinsky, L., 1982, Some cautionary notes on making inferences about relative brain size, in: Primate Brain Evolution (E. Armstrong and D. Falk, eds.), Plenum Press, New York, pp. 29–37

    Google Scholar 

  • Raisman, G., Cowan, W. M., and Powell, T. P. S., 1966, An experimental analysis of the efferent projection of the hippocampus, Brain 80:83–108.

    Google Scholar 

  • Ramón y Cajal, S., 1968, The Structure of Ammon’s Horn (L. M. Kraft, transl.), Thomas, Springfield, III

    Google Scholar 

  • Rawlins, J. N. P., and Green, K. F., 1977, Lamellar organization in the rat hippocampus, Exp. Brain Res. 28:335–344.

    PubMed  CAS  Google Scholar 

  • Reh, T., and Kalil, K., 1982, Development of the pyramidal tract in the hamster. II. An electron microscopic study, J. Comp. Neurol. 205:77–88.

    PubMed  CAS  Google Scholar 

  • Riss, W., Halpern, M., and Scalia, F., 1969, Anatomical aspects of the evolution of the limbic and olfactory systems and their potential significance for behavior, Ann. N.Y. Acad. Sci. 159:1096–1111.

    PubMed  CAS  Google Scholar 

  • Roberts, G. W., Allen, Y., Crow, T. J., and Polak, J. M., 1983, Immunocytochemical localization of neuropeptides in the fornix of the rat, monkey and man, Brain Res. 263:151–155

    PubMed  CAS  Google Scholar 

  • Roberts, G. W., Woodhams, P. L., Polak, J. M., and Crow, T. J., 1984, Distribution of neuropeptides in the limbic system of the rat: The hippocampus, Neuroscience 11:35–77.

    PubMed  CAS  Google Scholar 

  • Rose, G., and Schubert, P., 1977, Release and transfer of [3H]adenosine derivatives in the cholinergic septal system, Brain Res. 121:353–357.

    PubMed  CAS  Google Scholar 

  • Rosene, D. L., and Van Hoesen, G. W., 1977, Hippocampal efferents reach widespread areas of the cerebral cortex and amygdala in the rhesus monkey, Science 198:315–317.

    PubMed  CAS  Google Scholar 

  • Ruth, R. E., Collier, T. J., and Routtenberg, A., 1982, Topography between the entorhinal cortex and the dentate septotemporal cortex in rats. I. Medial and intermediate entorhinal projecting cells, J. Comp. Neurol. 209:69–78.

    PubMed  CAS  Google Scholar 

  • Saunders, R. C., and Rosene, D. L., 1987, A comparison of efferents from the amygdala and the hippocampal formation in the rhesus monkey. I. Convergence in the entorhinal, prorhinal and perirhinal cortices, J. Comp. Neurol. submitted for publication.

    Google Scholar 

  • Saunders, R. C., Murray, E. A., and Mishkin, M., 1984, Further evidence that the amygdala and hippocampus contribute equally to recognition memory, Neuropsychologia 22:785–796.

    PubMed  CAS  Google Scholar 

  • Saunders, R. C., Rosene, D., and Van Hoesen, G. W., 1987, A comparison of the efferents of the amygdala of the hippocampal formation in the rhesus monkey. II. Reciprocal and non-reciprocal connections, J. Comp. Neurol. submitted for publication.

    Google Scholar 

  • Schwerdtfeger, W. K., 1979, Direct efferent and afferent connections of the hippocampus with the neocortex in the marmoset monkey, Am. J. Anat. 156:77–83.

    PubMed  CAS  Google Scholar 

  • Scoville, W. B., and Milner, B., 1957, Loss of recent memory after bilateral hippocampal lesions, J. Neurol. Neurosurg. Psychiatry 20:11–21.

    PubMed  CAS  Google Scholar 

  • Sibley, C. G., and Ahlquist, J. E., 1984, The phylogeny of the hominid primates as indicated by DNA—DNA hybridization, J. Mol. Evol. 20:2–15.

    PubMed  CAS  Google Scholar 

  • Siegel, A., Oghami, S., and Edinger, H., 1975, Projections of the hippocampus to the septal area in the squirrel monkey, Brain Res. 99:247–260.

    PubMed  CAS  Google Scholar 

  • Simpson, D. A., 1952, The efferent fibres of the hippocampus in the monkey, J. Neurol. Neurosurg. Psychiatry 15:79–92.

    PubMed  CAS  Google Scholar 

  • Sorensen, K. E., 1980, Ipsilateral projection from the subiculum to the retrosplenial cortex in the guinea pig, J. Comp. Neurol. 193:893–911.

    PubMed  CAS  Google Scholar 

  • Sorensen, K. E., and Shipley, M. T., 1979, Projections from the subiculum to the deep layers of the ipsilateral presubicular and entorhinal cortices in the guinea pig, J. Comp. Neurol. 188:313–334.

    PubMed  CAS  Google Scholar 

  • Stephan, A., 1963, Vergleichend-anatomische untersuchungen am uncus bei insectivoren und primaten, in: The Rhinencephalon and Related Structures Vol. 3, (W. Bargman and J. P. Shade, eds.), Elsevier, Amsterdam, pp. 111–121

    Google Scholar 

  • Stephan, H., and Andy, O. J., 1970, The allocortex in primates, in: The Primate Brain (C. R. Noback and W. Montagna, eds.), Appleton—Century—Crofts, New York

    Google Scholar 

  • Steward, O., 1976, Topographic organization of the projections from the entorhinal area to the hippocampal formation in the rat, J. Comp. Neurol. 167:285–314.

    PubMed  CAS  Google Scholar 

  • Steward, O., and Scoville, S. A., 1976, Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat, J. Comp. Neurol. 169:347–370.

    PubMed  CAS  Google Scholar 

  • Swanson, L. W., 1981, A direct projection from Ammon’s horn to prefrontal cortex in the rat, Brain Res. 217:150–154.

    PubMed  CAS  Google Scholar 

  • Swanson, L. W., and Cowan, W. M., 1977, An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat, J. Comp. Neurol. 172:49–84.

    PubMed  CAS  Google Scholar 

  • Swanson, L. W., and Cowan, W. M., 1979, The connections of the septal region in the rat, J. Comp. Neurol. 186:621–656.

    PubMed  CAS  Google Scholar 

  • Swanson, L. W., and Cowan, W. M., 1975, Hippocampal—hypothalamic connections: Origin in subicular cortex, not Ammon’s horn, Science 189:303–304.

    PubMed  CAS  Google Scholar 

  • Swanson, L. W., Wyss, J. M., and Cowan, W. M., 1978, An autoradiographic study of the organization of intra-hippocampal association pathways in the rat, J. Comp. Neurol. 181:681–716.

    PubMed  CAS  Google Scholar 

  • Templeton, A. R., 1983, Phylogenetic inference from restriction endonuclease cleavage site maps with narticular reference to the evolution of humans and the apes, Evol. 37:221–244.

    CAS  Google Scholar 

  • Van Hoesen, G. W., and Pandya, D. N., 1975, Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections, Brain Res. 95:39–59.

    PubMed  Google Scholar 

  • Van Hoesen, G. W., Rosene, D. L., and Mesulam, M.-M., 1979, Subicular input from temporal cortex in the rhesus monkey, Science 205:608–610.

    PubMed  Google Scholar 

  • Veazy, R. B., Amaral, D. G., and Cowan, W. M., 1982, The morphology and the connections of the posterior hypothalamus in the cynomolgus monkey (Macaca Fasicularis). II. Efferent connections, J. Comp. Neurol. 207:135–156.

    Google Scholar 

  • Vogt, B. A., 1976, Retrosplenial cortex in the rhesus monkey: A cytoarchitectonic and Golgi study, J. Comp. Neurol. 169:63–98.

    PubMed  CAS  Google Scholar 

  • Voneida, T. J., Vardaris, R. M., Fish, S. E., and Reiheld, T., 1981, The origin of the hippocampal commissure in the rat, Anat. Rec. 201:91–103.

    PubMed  CAS  Google Scholar 

  • Weiskrantz, L., 1977, Trying to bridge some neurophysiological gaps between monkey and man, Br. J. Psychol. 68:431–445.

    PubMed  CAS  Google Scholar 

  • West, J. R., Van Hoesen, G. W., and Kosel, K. C., 1982, A demonstration of hippocampal mossy fiber axon morphology using anterograde transport of horseradish peroxidase, Exp. Brain Res. 48:209–216.

    PubMed  CAS  Google Scholar 

  • White, L. E., Jr., 1965, A morphologic concept of the limbic lobe, Int. Rev. Neurobiol. 8:1–34.

    PubMed  Google Scholar 

  • Woolsey, R. M., and Nelson, J. S., 1975, Asymptomatic destruction of the fornix in man, Arch. Neurol. 32:566–568.

    PubMed  CAS  Google Scholar 

  • Wyss, J. M., 1981, An autoradiographic study of the efferent connections of the entorhinal cortex in the rat, J. Comp. Neurol. 199:495–512.

    PubMed  CAS  Google Scholar 

  • Wyss, J. M., Swanson, L. W., and Cowan, W. M., 1979, Evidence for an input to the molecular layer and stratum granulosum of the dentate gyrus from the supramammillary region of the hypothalamus, Anat. Embryol. 156:165–176.

    PubMed  CAS  Google Scholar 

  • Wyss, J. M., Swanson, L. W., and Cowan, W. M., 1980, The organization of the fimbria, fornix, and ventral hippocampal commissure in the rat, Anat. Embryol. 158:303–316.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Rosene, D.L., Van Hoesen, G.W. (1987). The Hippocampal Formation of the Primate Brain. In: Jones, E.G., Peters, A. (eds) Cerebral Cortex. Cerebral Cortex, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6616-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6616-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6618-2

  • Online ISBN: 978-1-4615-6616-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics