Skip to main content

Reactive Oxygen Intermediates as Signaling Molecules Regulating Leukocyte Activation

  • Chapter
Oxidative Stress and Signal Transduction

Abstract

The purpose of the inflammatory process is to combat infection by pathogenic microorganisms. The primary effectors of this response are leukocytes including neutrophils, monocytes, and macrophages. Of necessity, these cells have evolved many properties that facilitate their effective function in inflammation including the ability to move to the site of inflammation (Chemotaxis) and to ingest and kill pathogens by release of toxic products including proteolytic enzymes, reactive oxygen intermediates (ROI), and cationic proteins. Leukocytes have also evolved the ability to respond to signals released in an inflammatory milieu such as bacterial products (formyl peptides and lipopolysaccharide), components of the complement and clotting cascades, and soluble factors such as cytokines released by other inflammatory cells. The processes whereby soluble factors activate leukocyte effector functions (Chemotaxis, proteolytic enzyme secretion, and the oxidative burst) involve complex and interconnected transmembrane signaling pathways. Many of the components of these pathways have been elucidated including the molecular characterization of membrane receptors, GTP-binding proteins, phospholipases, protein kinases, and phosphatases (reviewed in Refs. 1 and 2). Recent studies have provided evidence that free radicals including reactive oxygen intermediates, traditionally viewed as potent microbicidal agents,3 may function in the regulation of these signaling pathways. Reactive oxygen intermediates fulfill important prerequisites for intracellular messenger molecules: they are small, diffusible, and ubiquitous molecules that can be synthesized as well as destroyed rapidly (reviewed in Ref. 4). However, because of their toxicity, there might be only a narrow concentration range in which they can function exclusively as second messengers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sha’afi, R. I., and T.F.P. Molski. 1988. Activation of the neutrophil. Prog. Allergy 42: 1–64.

    CAS  Google Scholar 

  2. Downey, G. P., T. Fukushima, L. Fialkow, and T. K. Waddell. 1995. Intracellular signalling in mechanisms neutrophil priming and activation. Semin. Cell Biol. 6: 345–356.

    Article  PubMed  CAS  Google Scholar 

  3. Cross, A. R., and O.T.G. Jones. 1989. The molecular mechanism of oxygen reduction by the neutrophil oxidase, pp. 97–111. In M. B. Hallet (ed.), The Neutrophil: Cellular Biochemistry and Physiology. CRC Press, Boca Raton, FL.

    Google Scholar 

  4. Schreck, R., and P. A. Baeuerle. 1991. A role for oxygen radicals as second messengers. Trends Cell Biol. 1: 2–3.

    Article  Google Scholar 

  5. Rotrosen, D. 1992. The respiratory burst oxidase, pp. 589–601. In J. I. Gallin, I. M. Goldstein, and R. Snyderman (eds.), Inflammation: Basic Principles and Clinical Correlates, 2nd ed. Raven Press, New York.

    Google Scholar 

  6. Bastian, N. T., and J. B. Hibbs, Jr. 1994. Assembly and regulation of NADPH oxidase and nitric oxide synthase. Curr. Opin. Immunol. 6: 131–139.

    Article  PubMed  CAS  Google Scholar 

  7. Morel, F., J. Doussiere, and P. V. Vignais. 1991. The superoxide-generating oxidase of phagocytic cells. Eur. J. Biochem. 201P: 523–546.

    Article  Google Scholar 

  8. Balridge, C. W., and R. W. Gerad. 1933. The extra respiration of phagocytosis. Am. J. Physiol. 103: 235–236.

    Google Scholar 

  9. Halliwell, B., and J.M.C. Gutteridge. 1985. Free radicals as useful species, pp. 246–278. In Free Radicals in Biology and Medicine, 2nd ed. Clarendon Press, Oxford.

    Google Scholar 

  10. Liang, B. and H. R. Petty. 1992. Imaging neutrophil activation: analysis of the translocation and utilization of NAD(P)H-associated autofluorescence during antibody-dependent target oxidation. J. Cell. Physiol. 152: 145–156.

    Article  PubMed  CAS  Google Scholar 

  11. Bovaris, A., and B. Chance. 1973. The mitochondrial generation of hydrogen peroxide. Biochem. J. 134: 707–716.

    Google Scholar 

  12. Turrens, J. F., and A. Bovaris. 1980. Generation of Superoxide anions by the NADPH dehydrogenase of bovine heart mitochondria. Biochem. J. 191: 421–427.

    PubMed  CAS  Google Scholar 

  13. Boveris, A., E. Cadenas, and A.O.M. Stopppani. 1976. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J. 156: 435–444.

    PubMed  CAS  Google Scholar 

  14. Boveris, A., and E. Cadenas. 1975. Mitochondrial production of Superoxide anions and its relationship to antimycin insensitive respiration. FEBS Lett 54: 311–314.

    Article  PubMed  CAS  Google Scholar 

  15. Egan, R. W., J. Paxton, and F. A. Kiehl, Jr. 1976. Mechanisms for the irreversible self deactivation of Prostaglandin synthetase. J. Biol. Chem. 251: 7329–7335.

    PubMed  CAS  Google Scholar 

  16. Kukreja, R. C., H. A. Kontos, M. L. Hess, and E. F. Ellis. 1986. PGH synthase and lipoxygenase generate Superoxide in the presence of NADH or NADPH. Circ. Res. 59: 612–619.

    Article  PubMed  CAS  Google Scholar 

  17. Taylor, A. A., and S. B. Shappell. 1992. Reactive Oxygen species, neutrophil and endothelial adherence molecules, and lipid-derived inflammatory mediators in muocardial ischemia-reperfusion injury, pp. 65–141. In: M. T. Moslen and C. V. Smith (eds.), Free Radical Mechanisms of Tissue Injury. CRC Press, Boca Raton, FL.

    Google Scholar 

  18. Egan, R. W., P. H. Gale, E. M. Baptista, K. L. Kennicott, W.J.A. VandeHeuvel, R. W. Walker, P. E. Fagerness, and F. A. Kuehl, Jr. 1981. Oxidation reactions by Prostaglandin cyclooxygenase-hydroperoxidase. J. Biol. Chem. 246: 7352–7361.

    Google Scholar 

  19. Naccache, P. H., R. I. Sha’afi, and P. Borgeat. 1989. Mobilization, metabolism, and biological effects of eicosanoids in polymorphonuclear leukocytes, pp. 113–139. In M. B. Hallet (ed.), The Neutrophil: Cellular Biochemistry and Physiology. CRC Press, Boca Raton, FL.

    Google Scholar 

  20. Los, M., J. Schenk, K. Hexel, P. A. Baeuerle, W. Dröge, and K. Schulze-Osthoff. 1995. IL-2 gene expression and NF-κB activation through CD28 requires reactive oxygen production by 5-lipoxygenase. EMBO J. 14: 3731–3740.

    PubMed  CAS  Google Scholar 

  21. Nebert, D. W., D. R. Nelson, M. J. Coon, R. W. Estabrook, R. Feyereisen, Y. Fujii-Kuriyama, F. J. Gonzalez, F. P. Guengerich, I. C. Gunsalus, E. F. Johnson, J. C. Loper, R. Sato, M. R. Waterman, and D. J. Waxman. 1991. The P450 superfamily: update on new sequences, gene mapping, and recommended momenclature. DNA Cell Biol. 10: 1–14.

    Article  PubMed  CAS  Google Scholar 

  22. Guengerich, P. 1995. Human cytochrome P450 enzymes, pp. 473–535. In R. Ortiz de Montellano (ed.), Cytochrome P-450: Structure, Mechanism, and Biochemistry, 2nd ed. New York: Plenum Press.

    Google Scholar 

  23. Robie-Suh, K., R. Bodinson, and H. V. Gelboin. 1980. Aryl hydrocarbon hydroxylase is inhibited by antibody to rat liver cytochorme P-450. Science 208: 1031–1033.

    Article  PubMed  CAS  Google Scholar 

  24. Kikuta, Y., E. Kusunose, K. Endo, S. Yamamoto, K. Sogawa, Y. Fujii-Kuriyama, and M. Kusunose. 1993. A novel form of cytochrome P-450 family 4 in human polymorphonuclear leukocytes: cDNA cloning and expression of leukotriene B4 co-hydroxylase. J. Biol. Chem. 268: 9376–9380.

    PubMed  CAS  Google Scholar 

  25. Shak, S., and I. M. Goldstein. 1985. Leukotriene B4 ω-hydroxylase in human polymorphonuclear leukocytes: partial purification and identification as a cytochrome P-450. J. Clin. Invest. 76: 1218–1228.

    Article  PubMed  CAS  Google Scholar 

  26. McCord, J. M. 1985. Oxygen derived free radicals in post-ischaemic tissue injury. N. Engl. J. Med. 312: 159–163.

    Article  PubMed  CAS  Google Scholar 

  27. Grum, C. M., T. J. Gross, C. H. Mody, and R. G. Sitrin. 1990. Expression of xanthine oxidase activity by murine leukocytes. J. Lab. Clin. Med. 116: 211–218.

    PubMed  CAS  Google Scholar 

  28. Rinaldo, J. E., M. Clark, J. Parinello, and V. L. Shepherd. 1994. Nitric oxide inactivates xanthine dehydrogenase and xanthine oxidase in interferon-γ-stimulated macrophages. Am. J. Respir. Cell. Mol. Biol. 11: 625–640.

    PubMed  CAS  Google Scholar 

  29. Nathan, C., and Q.-W. Xie. 1994. Nitric oxide synthases: roles, tolls, and controls. Cell 78: 915–918.

    Article  PubMed  CAS  Google Scholar 

  30. Markert, M., B. Carnal, and J. Mauel. 1994. Nitric oxide production by activated human neutrophils. Biochem. Biophys. Res. Commun. 199: 1245–1249.

    Article  PubMed  CAS  Google Scholar 

  31. McCall, T. B., R.M.J. Palmer, and S. Moncada. 1991. Induction of nitric oxide synthase in rat peritoneal neutrophils and its inhibition by dexamethasone. Eur. J. Immunol. 21: 2523–2527.

    Article  PubMed  CAS  Google Scholar 

  32. Kubes, P., M. Suzuki, and D. N. Granger. 1991. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA 88: 4651–4655.

    Article  PubMed  CAS  Google Scholar 

  33. Gaboury, J., R. C. Woodman, D. N. Granger, P. Reinhardt, and P. Kubes. 1993. Nitric oxide prevents leukocyte adherence: role of Superoxide. Am. J. Physiol. 34: H862–H867.

    Google Scholar 

  34. Kubes, P., I. Kurose, and D. N. Granger. 1994. NO donors prevent integrindependent leukocyte adhesion but not P-selectin-dependent rolling in potischemic venules. Am. J. Physiol. 36: H93l–H937.

    Google Scholar 

  35. Albina, J. E., and J. S. Reichner. 1995. Nitric oxide in inflammation and immunity. New Horizons 3: 46–64.

    PubMed  CAS  Google Scholar 

  36. Lander, H. M., P. K. Sehajpal, and A. Novogrodsyk. 1993. Nitric oxide signaling: a possible role for G proteins. Immunology 151: 7182–7187.

    CAS  Google Scholar 

  37. Bolotina, V. M., S. Najibi, J. J. Palacino, P. J. Pagano, and R. A. Cohen. 1994. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth musche. Nature 368: 850–853.

    Article  PubMed  CAS  Google Scholar 

  38. Gopalakrishna, R., Z. H. Chen, and U. Gundimeda. 1993. Nitric oxide and nitric oxide-generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. J. Biol. Chem. 268: 27180–27185.

    PubMed  CAS  Google Scholar 

  39. Stamler, J. S. 1994. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78: 931–936.

    Article  PubMed  CAS  Google Scholar 

  40. Feigl, E. O. 1988. EDRF-a protrective factor? Nature (London) 331: 490–491.

    Article  CAS  Google Scholar 

  41. Rubanyi, G. M., E. H. Ho, E. H. Cantor, W. C. Lumma, and L. H. Botelho. 1991. Cytoprotective function of nitric oxide: inactivation of Superoxide radicals produced by human leukocytes. Biochem. Biophys. Res. Commun. 181: 1392–1397.

    Article  PubMed  CAS  Google Scholar 

  42. Blough, N. V., and O. C. Zafiriou. 1985. Reaction of Superoxide with nitric oxide to form peroxonitrite in alkaline aqueous solution. Inorg. Chem. 24: 3502–3504.

    Article  CAS  Google Scholar 

  43. Darley-Usmar, V., H. Wiseman, and B. Halliwell. 1995. Nitric oxide and oxygen radicals: a question of balance. FEBS Lett. 369: 131–135.

    Article  PubMed  CAS  Google Scholar 

  44. Beckman, J. S., T. W. Bekman, J. Chen, P. M. Marshall, and B. A. Freeman. 1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and Superoxide. Proc. Natl. Acad. Sci. USA 87: 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  45. Augusto, O., and R. Radi. 1995. Peroxynitrite reactivity: free radical generationk thiol oxidation, and biological significance, pp. 83–116. In L. Packer and E. Cadenas (eds.), Biothiols in Health and Disease. Marcel Dekker, New York.

    Google Scholar 

  46. Haddad, I. Y., G. Pataki, P. Hu, C. Galliani, J. S. Beckman, and S. Matalon. 1994. Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J. Clin. Invest. 94: 2407–2413.

    Article  PubMed  CAS  Google Scholar 

  47. Halliwell, B., and J.M.C. Gutteridge. 1990. Free radicals and metal ions in human disease. Methods Enzymol. 186: 1–85.

    Article  PubMed  CAS  Google Scholar 

  48. Klebanoff, S. J. 1992. Oxygen metabolites from phagocytes, pp. 541–588. In J. I. Gallin, I. M. Goldstein, and R. Snyderman (eds.), Inflammation: Basic Principles and Clinical Correlates, 2nd ed. Raven Press, New York.

    Google Scholar 

  49. Rest, R. F., and J. K. Spitznagel. 1977. Subcellular distribution of Superoxide dismutases in human neutrophils. Influence of myeloperoxidase on the measurement of Superoxide dismutase activity. Biochem. J. 166: 145–153.

    PubMed  CAS  Google Scholar 

  50. Roos, D., R. S. Weening, S. R. Wyss, and H. E. Aebi. 1980. Protection of human neutrophils by endogenous catalase. Studies with cells from catalase-deficient individuals. J. Clin. Invest. 65: 1515–1522.

    Article  PubMed  CAS  Google Scholar 

  51. Voetman, A. A., and D. Roos. 1980. Endogenous catalase protects human blood phagocytes against oxidative damage by extracellularly generated hydrogen peroxide. Blood 56: 846–852.

    PubMed  CAS  Google Scholar 

  52. Spielberg, S. P., L. A. Boxer, J. M. Oliver, J. M. Allen, and J. D. Schulman. 1979. Oxidative damage to neutrophils in glutathione synthetase deficiency. Br. J. Haematol. 42: 215–223.

    Article  PubMed  CAS  Google Scholar 

  53. Roos, D., R. S. Weening, A. A. Boetman, M.L.J. Vanschaik, A.A.M. Bot, L. J. Meerhof, and J. A. Loos. 1979. Protection of phagocytic leukocytes by endogenous glutathione. Studies in a family with glutathione reductase deficiency. Blood 53: 851–866.

    PubMed  CAS  Google Scholar 

  54. Gee, J.B.L., C. L. Vassallo, P. Bell, J. Kaskin, R. E. Basford, and J. B. Field. 1970. Catalase dependent peroxidative metabolism in the alveolar macrophage during phagocytosis. J. Clin. Invest. 49: 1280–1287.

    Article  PubMed  CAS  Google Scholar 

  55. Michaelis, L. and L. B. Flexner. 1928. Oxidation-reduction systems of biological significance. I. The reduction potential of cysteine: its measurement and significance. J. Biol. Chem. 79: 689–722.

    CAS  Google Scholar 

  56. Guzman-Baron, E. S. 1951. Thiol groups of biological importance. Adv. Enzymol. Relat. Issues 11: 201–266.

    Google Scholar 

  57. Meister, A. and M. E. Anderson. 1983. Glutathione. [Review]. Annu. Rev. Biochem. 52: 711–760.

    Article  PubMed  CAS  Google Scholar 

  58. Cao, D., L. A. Boxer, and H. R. Petty. 1993. Deposition of reactive oxygen metabolites onto and within living tumor cells during neutrophil-mediated antibody-dependent cellular cytotoxicity. J. Cell. Physiol. 156: 428–436.

    Article  PubMed  CAS  Google Scholar 

  59. Maher, R. J., Cao D., L. A. Boxer, and H. R. Petty. 1993. Simultaneous calciumdependent delivery of neutrophil lactoferrin and reactive oxygen metabolites to erythrocyte targets: evidence supporting granule-dependent triggering of superoxide deposition. J. Cell. Physiol. 156: 226–234.

    Article  PubMed  CAS  Google Scholar 

  60. Storz, G., L. A. Tartaglia, and B. N. Ames. 1990. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248: 189–194.

    Article  PubMed  CAS  Google Scholar 

  61. Hentze, M. W., T. A. Rouault, J. B. Harford, and R. D. Klausner. 1989. Oxidationreduction and the molecular mechanism of a regulatory RNA-protein interaction. Science 244: 358–359.

    Article  Google Scholar 

  62. Ruppersberg, J. P., M. Stocker, O. Pongs, S. H. Heinemann, R. Frank, and M. Koenen. 1991. Regulation of fast inactivation of cloned mammalian Ik(A) channels by cysteine oxidation. Nature 352: 711–714.

    Article  PubMed  CAS  Google Scholar 

  63. Deiss, L. P., and A. Kimchi. 1991. A genetic toll used to identify thioredoxin as a mediator of a growth inhibitory signal. Science 252: 117–120.

    Article  PubMed  CAS  Google Scholar 

  64. Grippo, J. F., A. Holmgren, and W. B. Pratt. 1985. Proof that the endogenous, heat-stable glucocorticoid receptor-activating factor is thioredoxin. J. Biol. Chem. 260: 93–97.

    PubMed  CAS  Google Scholar 

  65. Ziegler, D. M. 1985. Role of reversible oxidation-reduction of enzyme thiolsdisulfides in metabolic regulation. Annu. Rev. Biochem. 54: 305–329.

    Article  PubMed  CAS  Google Scholar 

  66. Gilbert, H. F. 1984. Redox control of enzyme activities by thiol/disulfide exchange. Methods Enzymol. 107: 330–351.

    Article  PubMed  CAS  Google Scholar 

  67. Huang, C.-K., G. R. Laramee, and J. E. Casnellie. 1988. Chemotactic factor induced tyrosine phosphorylation of membrane associated proteins in rabbit peritoneal neutrophils. Biochem. Biophys. Res. Commun. 151: 794–801.

    Article  PubMed  CAS  Google Scholar 

  68. Berkow, R. L. and R. W. Dodson. 1990. Tyrosine-specific protein phosphorylation during activation of human neutrophils. Blood 75: 2445–2452.

    PubMed  CAS  Google Scholar 

  69. Akimaru, K., T. Utsumi, E. F. Sato, J. Klostergaard, M. Inoue, and K. Utsumi. 1992. Role of tyrosyl phosphorylation in neutrophil priming by tumor necrosis factor-α and granulocyte colony stimulating factor. Arch. Biochem. Biophys. 298: 703–709.

    Article  PubMed  CAS  Google Scholar 

  70. Gomez-Cambronero, J., M. Yamazaki, F. Metwally, T.F.P. Molsky, V. A. Bonak, C.-K. Huang, E. L. Becker, and R. I. Sha’afi. 1989. Granulocyte-macrophage colony-stimulating factor and human neutrophils: role of guanine nucleotide regulatory proteins. Proc. Natl. Acad. Sci. USA 86: 3569–3573.

    Article  PubMed  CAS  Google Scholar 

  71. McColl, S.R., J.F. DiPersio, A.C. Caon, P. Ho, and P. H. Naccache. 1991. Involvement of tyrosine kinases in the activation of human peripheral blood neutrophils by granulocyte-macrophage colony-stimulating factor. Blood 7: 1842–1852.

    Google Scholar 

  72. Gomez-Cambronero, J., E. Wang, G. Johnson, C. K. Huang, and R. I. Sha’afi. 1991. Platelet activating factor induces tyrosine phosphorylation in human neutrophils. J. Biol. Chem. 266: 6240–6245.

    PubMed  CAS  Google Scholar 

  73. Grinstein, S., W. Furuya, D. J. Lu, and G. B. Mills. 1990. Vanadate stimulates oxygen consumption and tyrosine phosphorylation in electropermeabilized human neutrophils. J. Biol Chem. 265: 318–327.

    PubMed  CAS  Google Scholar 

  74. Grinstein, S., and W. Furuya. 1991. Tyrosine phosphorylation and oxygen comsumption induced by G proteins in neutrophils. Am. J. Physiol. (Cell Physiol) 260: C1019–C1027.

    CAS  Google Scholar 

  75. Gomez-Cambronero, J., C.-K. Huang, V. A. Bonak, E. Wang, J. E. Casnellie, T. Shiraishi, and R. I. Sha’afi. 1989. Tyrosine phosphorylation in human neutrophils. Biochem. Biophys. Res. Commun. 162: 1478–1485.

    Article  PubMed  CAS  Google Scholar 

  76. Naccache, P. H., C. Gilbert, A. C. Caon, M. Gaudry, C.-K. Huang, V. A. Bonak, K. Umezawa, and S. R. McColl. 1990. Selective inhibition of human neutrophil functional responsiveness by erbstatin, an inhibitor of tyrosine protein kinase. Blood 76:10: 2098–2104.

    PubMed  CAS  Google Scholar 

  77. Gaudry, M., A. C. Caon, C. Gilbert, S. Lille, and P. H. Naccache. 1992. Evidence for the involvement of tyrosine kinases in the locomotory responses of human neutrophils. J. Leukocyte Biol. 51: 103–108.

    PubMed  CAS  Google Scholar 

  78. Laudanna, C., F. Rossi, and G. Berton. 1993. Effect of inhibitors of distinct signalling pathways on neutrophil O2 generation in response to tumor necrosis factor-α, and antibodies against CD18 and CD11a: evidence for a common and unique pattern of sensitivity to wortmannin and protein tyrosine kinase inhibitors. Biochem. Biophys. Res. Commun. 3: 935–940.

    Article  Google Scholar 

  79. Melamed, I., G. P. Downey, and C. M. Roifman. 1991. Tyrosine phosphorylation is essential for microfilament assembly in B lymphocytes. Biochem Biophys. Res. Commun. 3: 1424–1429.

    Article  Google Scholar 

  80. McGregor, P. E., D. K. Agrawal, and J. D. Edwards. 1994. Attenuation of human leukocyte adherence to endothelial cell monolayers by tyrosine kinase inhibitors. Biochem. Biophys. Res. Commun. 198: 359–365.

    Article  PubMed  CAS  Google Scholar 

  81. Greenberg, S., P. Chang, and S. C. Silverstein. 1993. Tyrosine phosphorylation is required for Fc receptor-mediated phagocytosis in mouse macrophages. J. Exp. Med. 177: 529–534.

    Article  PubMed  CAS  Google Scholar 

  82. Fukushima, T., S. Grinstein, T. K. Waddell, G. G. Goss, C. K. Chan, M. Woodside, J. Orlowski, and G. P. Downey. 1996. Molecular and pharmacological characterization of Na+/H+ exchanger in human neutrophils. J. Cell Biol. 132: 1037–1052.

    Article  PubMed  CAS  Google Scholar 

  83. Fukushima, T., D. Rotin, M. Wheeler, and G. P. Downey. Submitted. Cloning and characterization of protein tyrosine phosphatases expressed in human neutrophils.

    Google Scholar 

  84. Waddell, T. K., L. Fialkow, C. K. Chan, T. K. Kishimoto, and G. P. Downey. 1995. Signalling functions of L-selectin: enhancement of tyrosine phosphorylation and activation of MAP kinase. J. Biol Chem. 270: 15403–15411.

    Article  PubMed  CAS  Google Scholar 

  85. Schieven, G. L., J. M. Kirihara, D. L. Burg, R. L. Geahlen, and J. A. Ledbetter. 1993. p72syk tyrosine kinase is activated by oxidizing conditions that induce lymphocyte tyrosine phosphorylation and Ca2+ signals. J. Biol. Chem. 268: 16688–16692.

    PubMed  CAS  Google Scholar 

  86. Fialkow, L., C. K. Chan, S. Grinstein, and G. P. Downey. 1993. Regulation of tyrosine phosphorylation in neutrophils by the NADPH oxidase: role of reactive oxygen intermediates. J. Biol Chem. 268: 17131–17137.

    PubMed  CAS  Google Scholar 

  87. Margoliash, E., A. Novogrodsky, and A. Schejter. 1960. Irreversible reaction of 3-amino-l: 2:4-triazole and related inhibitors with the protein of catalase. Biochem. J. 74: 339–348.

    PubMed  CAS  Google Scholar 

  88. Zor, U., E. Ferber, P. Gergely, K. Szucs, V. Dombradi, and R. Goldman. 1993. Reactive oxygen species mediate phorbol ester-regulated tyrosine phosphorylation and phospholipase A2 activation: potentiation by vanadate. Biochem. J. 295: 879–888.

    PubMed  CAS  Google Scholar 

  89. Trudel, S., M. R. Paquet, and S. Grinstein. 1991. Mechanism of vanadate-induced activation of tyrosine phosphorylation and of the respiratory burst in HL-60 cells: role of reduced oxygen metabolites. Biochem. J. 276: 611–619.

    PubMed  CAS  Google Scholar 

  90. Hayes, G. R., and D. H. Lockwood. 1987. Role of insulin receptor phophorylation in the insulinomimetic effects of hydrogen peroxide. Proc. Natl. Acad. Sci. USA 84: 8115–8119.

    Article  PubMed  CAS  Google Scholar 

  91. Koshio, O., Y. Akanuma, and M. Kasuga. 1988. Hydrogen peroxide stimulates tyrosine phosphorylation of the insulin receptor and its tyrosine kinase activity in intact cells. Biochem. J. 250: 95–101.

    PubMed  CAS  Google Scholar 

  92. Heffetz, D., and Y. Zick. 1989. H2O2 potentiates phosphorylation of novel putative substrates for the insulin receptor kinase in intact fao cells. J. Biol. Chem. 17: 10126–10132.

    Google Scholar 

  93. Heffetz, D., I. Bushkin, R. Dror, and Y. Zick. 1990. The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J. Biol. Chem. 265: 2896–2902.

    PubMed  CAS  Google Scholar 

  94. Cross, A. R., and O.T.G. Jones. 1986. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system in neutrophils: specific labelling of a component Polypeptide of the oxidase. Biochem. J. 237: 111–116.

    PubMed  CAS  Google Scholar 

  95. Stuehr, D. J., O. A. Fasehun, N. S. Kwon, S. S. Gross, J. A. Gonzalez, R. Levi, and C. Nathan. 1991. Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. FASEB J. 5: 98–103.

    PubMed  CAS  Google Scholar 

  96. Lamas, S., T. Michel, B. M. Brenner, and P.A. Marsden. 1991. Nitric oxide synthesis in endothelial cells: evidence for a pathway inducible by TNF-α. Am. J. Physiolo. 261 (Cell Physiol 30): C634–C641.

    CAS  Google Scholar 

  97. Grinstein, S., and W. Furuya. 1988. Receptor-mediated activation of electropermeabilized neutrophils: evidence for a Ca2+ and protein kinase C-independent signaling pathway. J. Biol. Chem. 263: 1779–1783.

    PubMed  CAS  Google Scholar 

  98. Fialkow, L. 1994. Reactive oxygen intermediates as signaling molecules: implications for acute lung injury. Ph.D. Thesis. Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.

    Google Scholar 

  99. Seifert, R., R. Burde, and G. Schultz. 1989. Activation of NADPH oxidase by purine and pyrimidine nucleotides involves G proteins and is potentiated by chemotactic peptides. Biochem. J. 259: 813–819.

    PubMed  CAS  Google Scholar 

  100. Grinstein, S., and W. Furuya. 1988. Receptor-mediated activation of electropermeabilized neutrophils: evidence for a Ca2+ and protein kinase C-independent signaling pathway. J. Biol Chem. 263: 1779–1783.

    PubMed  CAS  Google Scholar 

  101. Sklar, L. A., P. A. Hyslop, Z. G. Oades, G. M. Omann, A. J. Jesaitis, R. G. Painter, and C. G. Cochrane. (1985). Signal transduction and ligand-receptor dynamics in the human neutrophil: transient responses and occupacy-response relations at the formyl peptide receptor. J. Biol. Chem. 260: 11461–11467.

    PubMed  CAS  Google Scholar 

  102. Mustelin, T. 1994. Src Family Tyrosine Kinases in Leukocytes, pp. 8–33. R. G. Landes, Austin, TX.

    Google Scholar 

  103. Bauskin, A. R., I. Alkalay, and Y. Ben-Neriah. 1991. Redox regulation of a protein tyrosine kinase in the endoplasmic reticulum. Cell 66: 1–20.

    Article  Google Scholar 

  104. Asahi, M., T. Taniguchi, E. Hashimoto, T. Inazu, H. Maeda, and H. Yamamura. 1993. Activation of protein-tyrosine kinase p72syk with concanavalin A in polymorphonuclear neutrophils. J. Biol. Chem. 268: 23334–23338.

    PubMed  CAS  Google Scholar 

  105. Ziegler, S. F., J. D. Marth, D. B. Lewis, and R. M. Perlmutter. 1987. Novel proteintyrosine kinase gene (hck) preferentially expressed in cells of hematopoietic origin. Mol. Cell. Biol. 7: 2276–2285.

    PubMed  CAS  Google Scholar 

  106. Gutkind, J. S., and K. C. Robbins. 1989. Translocation of the FGR protein-tyrosine kinase as a consequence of neutrophil activation. Proc. Natl. Acad. Sci. USA 86: 8783–8787.

    Article  PubMed  CAS  Google Scholar 

  107. Yamada, N., Y. Kawakami, H. Kimura, H. Fukamachi, G. Baier, A. Altman, T. Kato, Y. Inagaki, and T. Kawakami. 1993. Structure and expression of novel protein-tyrosine kinases, EMB and EMT, in hematopoietic cells. Biochem. Biophys. Res. Commun. 192: 231–240.

    Article  PubMed  CAS  Google Scholar 

  108. Brumell, J. H., A. L. Burkhardt, J. B. Bolen, and S. Grinstein. 1996. Endogenous reactive oxygen intermediates activate tyrosine kinases in human neutrophils. J. Biol. Chem. 271: 1455–1462.

    Article  PubMed  CAS  Google Scholar 

  109. Berton, G., L. Fumagalli, C. Laudanna, and C. Sorio. 1994. β2 integrin-dependent protein tyrosine phosphorylation and activation of the FGR protein tyrosine kinase in human neutrophils. J. Cell Biol. 126: 1111–1121.

    Article  PubMed  CAS  Google Scholar 

  110. Hamada, F., M. Aoki, T. Akiyama, and K. Toyoshima. 1993. Association of Immunoglobulin G Fc receptor II with Src-like protein-tyrosine kinase Fgr in neutrophils. Proc. Natl. Acad. Sci. USA 90: 6305–6309.

    Article  PubMed  CAS  Google Scholar 

  111. Corey, S., A. Eguinoa, K. Puyanatheall, J. B. Bolen, L. Cantley, F. Mollinedo, T. R. Jackson, P. T. Kawkins, and L. R. Stephens. 1993. Granulocyte macrophagecolony stimulating factor stimulates both association and activation of phosphoinositide 3OH-kinase and src-related tyrosine kinase(s) in human myeloid derived cells. EMBO J 12: 2681–2690.

    PubMed  CAS  Google Scholar 

  112. Gaudry, M., G. F. Barabé, P. E. Poubelle, and P. H. Naccache. 1995. Activation of Lyn is a common element of the stimulation of human neutrophils by soluble and particulate agonists. Blood 86: 3567–3574.

    PubMed  CAS  Google Scholar 

  113. Ptasznik, A., A. Traynor-Kaplan, and G. M. Bokoch. 1995. G protein-coupled chemoattractant receptors regulate Lyn tyrosine kinase Sch adapter protein signaling complexes. J. Biol. Chem. 270: 19969–19973.

    Article  PubMed  CAS  Google Scholar 

  114. Skubitz, K.M., K. D. Campbell, K. Ahmed, and A.P.N. Skubitz. 1995. CD66 family members are associated with tyrosine kinase activity in human neutrophils. J. Immunol. 155: 5382–5390.

    PubMed  CAS  Google Scholar 

  115. Huchcroft, J. E., M. L. Harrison, and R. L. Geahlen. 1992. Association of the 72-kDa protein-tyrosine kinase PTK72 with the B cell antigen receptor. J. Biol. Chem. 267: 8613–8619.

    Google Scholar 

  116. Agarwal, A., P. Salem, and K. C. Robbins. 1993. Involvement of P72syk, a proteintyrosine kinase, in Fcγ receptor signaling. J. Biol. Chem. 268: 15900–15905.

    PubMed  CAS  Google Scholar 

  117. Darby, C., R. L. Geahlen, and A. D. Schreiber. 1994. Stimulation of macrophage FcγRIIIA activated the receptor-associated protein tyrosine kinase syk and induces phosphorylation of multiple proteins including p95vav and p62/GAP-associated protein. J. Immunol. 152: 5429–5437.

    PubMed  CAS  Google Scholar 

  118. Weiss, A., and D. R. Littman. 1994. Signal transduction by lymphocyte antigen receptors. Cell 76: 263–274.

    Article  PubMed  CAS  Google Scholar 

  119. Cooper, J. A., and B. Howeel. 1993. The when and how of src regulation. Cell 73: 1051–1054.

    Article  PubMed  CAS  Google Scholar 

  120. Mustelin, T. 1994. Regulation of src-family PTKs, pp. 34–52. In T. Mustelin (ed.), Src Family Tyrosine Kinases in Leukocytes. R. G. Landes, Austin, TX.

    Google Scholar 

  121. Superti-Fuga, G. 1995. Regualtion of the Src protein kinase. FEBS Lett. 369: 62–66.

    Article  Google Scholar 

  122. Streuli, M., N. X. Krueger, A. Y. Tsai, and H. Saito. 1989. A family of receptorlinked protein tyrosine phosphatases in humans and drosophila. Proc. Natl. Acad. Sci. USA 86: 8698–8702.

    Article  PubMed  CAS  Google Scholar 

  123. Tonks, N. K., C. D. Diltz, and E. H. Fischer. 1988. Characterization of the major protein-tyrosine-phosphatases of human placenta. J. Biol. Chem. 263: 6731–6737.

    PubMed  CAS  Google Scholar 

  124. Stocken, L. A., R. H. S. Thompson. 1946. Arsenic derivatives of thiol proteins. Biochem. J. 40: 529–535.

    CAS  Google Scholar 

  125. Garcia-Morales, P., Y. Minami, E. Luong, R. Klausner, and L. E. Samelson. 1992. Tyrosine phosphorylation in T cells is regulated by phopshatase activity: studies with phenylarsine oxide. Proc. Natl. Acad. Sci. USA 87: 9255–9259.

    Article  Google Scholar 

  126. Balloti, R., S. Tartare, A. Chauvel, J.-C. Scimeca, F. Alengrin, C. Filloux, and E. Van Obberghen. 1991. Phenylarsine oxide stimulates a cytosolic tyrosine kinase activity and glucose transport in mouse fibroblasts. Exp. Cell Res. 197: 300–306.

    Article  Google Scholar 

  127. Hecht, D., and Y. Zick. 1992. Selective inhibition of protein tyrosine Phosphatase activities by H2O2 and vanadate in vitro. Biochem. Biophys. Res. Commun. 188: 773–779.

    Article  PubMed  CAS  Google Scholar 

  128. Goldman, R., E. Ferber, and U. Zor. 1992. Reactive oxygen species are second messengers for activation of cellular-phospholipase A2. FEBS Lett. 309: 190–192.

    Article  PubMed  CAS  Google Scholar 

  129. Trudel, S., G. P. Downey, and S. Grinstein. 1990. Activation of permeabilized HL60 cells by vanadate: evidence for divergent signalling pathways. Biochem. J. 269: 127–131.

    PubMed  CAS  Google Scholar 

  130. Pulido, R., V. Alvarez, F. Mollinedo, and F. Sanchez-Madrid. 1992. Biochemical and functional characterization of the leucocyte tyrosine Phosphatase CD45 (CD45RO, 180 kD) from human neutrophils. In vivo upregulation of CD45RO plasma membrane expression on patients undergoing haemodialysis. Clin. Exp. Immunol. 87: 329–335.

    Article  PubMed  CAS  Google Scholar 

  131. Caldwell, C. W., W. P. Patterson, and Y. W. Yesus. 1991. Translocation of CD45RA in neutrophils. J. Leukocyte Biol. 49: 317–318.

    PubMed  CAS  Google Scholar 

  132. Cui, Y., K. Harvey, L. Akard, J. Jansen, C. Hyghes, R. A. Siddiqui, and D. English. 1994. Regulation of neutrophil responses by phosphotyrosine Phosphatase. J. Immunol. 152: 5420–5428.

    PubMed  CAS  Google Scholar 

  133. Mustelin, T., K. M. Coggeshall, and A. Altman. 1989. Rapid activation of the T-cell tyrosine protein kinase pp56lckby the CD45 phosphotyrosine Phosphatase. Proc. Natl. Acad. Sci. USA 86: 6302–6306.

    Article  PubMed  CAS  Google Scholar 

  134. Secrist, J. P., L. A. Burns, L. Karnitz, G. A. Koretzky, and R. T. Abraham. 1993. Stimulatory effects of protein tyrosine Phosphatase inhibitor, pervanadate on T-cell activation events. J. Biol. Chem. 268: 5886–5893.

    PubMed  CAS  Google Scholar 

  135. Fiakow, L., C. K. Chan, and G. P. Downey. Regulation of CD45 in neutrophils by reactive oxygen intermediates. Immunol. 1977.

    Google Scholar 

  136. Fialkow, L., C. K. Chan, D. Rotin, S. Grinstein, and G. P. Downey.1994. Activation of the mitogen-activated protein kinase signaling pathway in neutrophils: role of oxidants. J. Biol. Chem. 269: 31234–31242.

    PubMed  CAS  Google Scholar 

  137. Kansha, M., K. Takeshige, and S. Minakami. 1993. Decrease in the phosphotyrosine Phosphatase activity in the plasma membrane of human neutrophils on stimulation by phorbol 12-myristate 13-acetate. Biochim. Biophys. Acta 1179: 189–196.

    Article  PubMed  CAS  Google Scholar 

  138. Kraft, A. S., and R. L. Berkow. 1987. Tyrosine kinase and phosphotyrosine phosphatase activity in human promyelocytic leukemia cells and human polymorphonuclear leokocytes. Blood 70: 356–362.

    PubMed  CAS  Google Scholar 

  139. Hancock, J. T., and T. G. Jones. 1987. The inhibition by diphenyleneiodonium and its analogues of Superoxide generation by macrophages. Biochem. J. 242: 103–107.

    PubMed  CAS  Google Scholar 

  140. Porter, T. D., and M. J. Coon. 1991. Cytochrome P-450. J. Biol. Chem. 266: 13469–13472.

    PubMed  CAS  Google Scholar 

  141. Emmendörffer, A., J. Roesler, J. Eisner, E. Raeder, M. L. Lohmann-Matthes, and B. Meier. 1993. Production of oxygen radicals by fibroblasts and neutrophils from a patient with X-linked chronic granulomatous disease. Eur. J. Haematol. 51: 223–227.

    Article  PubMed  Google Scholar 

  142. Tonks, N.K, C. D. Diltz, and E. H. Fischer. 1988. Characterization of the major protein-tyrosine-phosphatases of human placenta. J. Biol. Chem. 263: 6731–6739.

    PubMed  CAS  Google Scholar 

  143. Yamada, A., M. Streuli, H. Saito, D. M. Rothstein, S. F. Scholssman, and C. Morimoto. 1990. Effect of activation of protein kinase C on CD45 isoform expression and CD45 protein tyrosine Phosphatase activity in T cells. Eur. J. Immunol 20: 1655–1660.

    Article  PubMed  CAS  Google Scholar 

  144. Koretzky, G. 1993. A role of the CD45 tyrosine Phosphatase in signal transduction in the immune system. FASEB J. 7: 420–426.

    PubMed  CAS  Google Scholar 

  145. Sun, H., C. H. Charles, L. F. Lau, and N. K. Tonks. 1993. MKP-1 (3CH134), an immediate early gene product, is a dual specificity Phosphatase that dephosphorylates MAP kinase in vivo. Cell 75: 487–493.

    Article  PubMed  CAS  Google Scholar 

  146. Guy, G. R., J. Cairns, S. B. Ng, and Y. H. Tan. 1993. Inactivation of a redoxsensitive protein Phosphatase during the early events of tumor necrosis factor/ interleukin-1 signal transduction. J. Biol. Chem. 268: 2141–2148.

    PubMed  CAS  Google Scholar 

  147. MacKintosh, R. W., K. N. Dalby, D. G. Campbell, P.T.W. Cohen, P. Cohen, and C. MacKintosh. 1995. The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein Phosphatase 1. FEBS Lett. 371: 236–240.

    Article  PubMed  CAS  Google Scholar 

  148. Shima, H., H. Tohda, S. Aonuma, M. Nakayasu, A. A. DePaoli-Roach, T. Sumigura, and M. Nagao. 1994. Characterization of the PP2Aα gene mutation in okadaic acid-resistant variants of CHO-K1 cells. Proc. Natl. Acad. Sci. USA 91: 9267–9271.

    Article  PubMed  CAS  Google Scholar 

  149. Brummell, J., C. K. Chan, J. Butler, N. Borregaard, K. Siminovitch, S. Grinstein, and G. P. Downey. Submitted. Regulation of PTP1C during activation of human neutrophils: role of protein kinase C. J. Biol. Chem.

    Google Scholar 

  150. Ahn, N. G., R. Seger, and E. C. Krebs. 1992. The mitogen-activated protein kinase activator. Curr. Opin. Cell. Biol. 4: 992–999.

    Article  PubMed  CAS  Google Scholar 

  151. Crews, C. M., and R. L. Erikson. 1993. Extracellular signals and reversible protein phosphorylation: what to Mek of it all. Cell 74: 215–217.

    Article  PubMed  CAS  Google Scholar 

  152. Dent, P., W. Haser, T. A. Haystead, L. A. Vincent, T. M. Roberts, and T. W. Sturgill. 1992. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science 257: 1404–1407.

    Article  PubMed  CAS  Google Scholar 

  153. Howe, L. R., S. J. Leevers, N. Gomes, S. Nakielny, P. Cohen, and C. J. Marshall. 1992. Activation of the MAP kinase pathway by the protein kinase raf. Cell 71: 335–342.

    Article  PubMed  CAS  Google Scholar 

  154. Kyriakis, J. M., H. App, X.-F. Zhang, P. Banerjee, D. L. Brautigan, U. R. Rapp, and J. Avruch. 1992. Raf-1 activates MAP kinase-kinase. Nature 358: 417–421.

    Article  PubMed  CAS  Google Scholar 

  155. Lange-Carter, C. A., C. M. Pleiman, A. M. Gardner, K. J. Blumer, and G. L. Johnson. 1993. A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260: 315–319.

    Article  PubMed  CAS  Google Scholar 

  156. Anderson, N. G., J. L. Maller, N. K. Tonks, and T. W. Sturgill. 1990. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 343: 651–652.

    Article  PubMed  CAS  Google Scholar 

  157. Nishizuka, Y. 1988. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334: 661–665.

    Article  PubMed  CAS  Google Scholar 

  158. Kass, G.E.N., S. K. Duddy, and S. Orrenius. 1989. Activation of hepatocyte protein kinase C by redox-cycling quinones. Biochem. J. 260: 499–507.

    PubMed  CAS  Google Scholar 

  159. Gopalakrishna, R., and W. B. Anderson. 1989. Ca2+-and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc. Natl Acad. Sci. USA 86: 6758–6762.

    Article  PubMed  CAS  Google Scholar 

  160. Lin, L.-L., M. Wartmann, A. Y. Lin, J. L. Knopf, A. Seth, and R. J. Davis. 1993. cPLA2 is phosphorylated and activated by MAP kinase. Cell 72: 269–278.

    Article  PubMed  CAS  Google Scholar 

  161. Durstin, M., S. Durstin, T.F.P. Molski, E. Becker, and R. I. Sha’afi. 1994. Cytolasmic phopholipase A2 translocates to membrane fraction in human neutrophils activated by stimuli that phosphorylate mitogen-activated protein kinase. Proc. Natl. Acad. Sci. USA 91: 3142–3146.

    Article  PubMed  CAS  Google Scholar 

  162. Schulze-Osthoff, K., M. Los, and P. A. Baeuerle. 1995. Redox signalling by transcription factors NF-kappa B and AP-1 in lymphocytes. Biochem. Pharmacol. 50: 735–741.

    Article  PubMed  CAS  Google Scholar 

  163. Salmon, J. E., S. S. Millard, N. L. Brogle, and R. P. Kimberly. 1995. Fcγ receptor 111b enhances FcγIIa function in an oxidant-dependent and allele-sensitive manner. J. Clin. Invest. 95: 2877–2885.

    Article  PubMed  CAS  Google Scholar 

  164. Gresham, H. D., J. A. McGarr, P. G. Shackelford, and E. J. Brown. 1988. Studies on the molecular mechanisms of human Fc receptor-mediated phagocytosis. Amplification of ingestion is dependent on the generation of reactive oxygen metabolites and is deficient in polymorphonuclear from patients with chronic granulomatous disease. J. Clin. Invest. 82: 1192–1201.

    Article  PubMed  CAS  Google Scholar 

  165. Connelly, P. A., C. A. Farrell, J. M. Merenda, M. J. Conklyn, and H. J. Showell. 1991. Tyrosine phosphorylation is an early signaling event common to Fc receptor cross-linking in human neutrophils and rat basophilic leukemia cells (RBL-2H3). Biochem. Biophys. Res. Commun. 1: 192–201.

    Article  Google Scholar 

  166. Scholl P. R., D. Ahern, and R. S. Geha. 1992. Protein tyrosine phosphorylation induced via the IgG receptors FcγRI and FcγRII in the human monocytic cell line THP-1. J. Immunol. 149: 1751–1757.

    PubMed  CAS  Google Scholar 

  167. Greenberg, S., P. Chang, and S. C. Silverstein. 1994. Tyrosine phosphorylation of the γ subunit of Fcγ receptors, p72syk and paxillin during Fc receptor-mediated phagocytosis in macrophages. J. Biol. Chem. 269: 3897–3902.

    PubMed  CAS  Google Scholar 

  168. Zhou, M.-J., D. M. Lublin, D. C. Link, and E. J. Brown. 1995. Distinct tyrosine kinase activation and Triton X-100 insolubility upon FcγRII or FcγRIIIB ligation in human polymorphonuclear leukocytes. J. Biol. Chem. 270: 13553–13560.

    Article  PubMed  CAS  Google Scholar 

  169. Thomas, M. L. 1994. The regulation of B-and T-lymphocyte activation by the transmembrane protein tyrosine Phosphatase CD45. Curr. Opin. Cell Biol. 6: 247–252.

    Article  PubMed  CAS  Google Scholar 

  170. Okumura, M., and M. L. Thomas. 1995. Regulation of immune function by protein tyrosine phosphatases. Curr. Opin. Immunol. 7: 312–319.

    Article  PubMed  CAS  Google Scholar 

  171. Trowbridge, I. S. 1994. CD45: and emerging role as a protein tyrosine Phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol. 12: 85–116.

    Article  PubMed  CAS  Google Scholar 

  172. Staal, F.J.T., Anderson, M. T., Staal, G.E.J., Herzenberg, L. A., Gitler C., and Herzenberg L. N. 1994. Redox regulation of signal transduction: tyrosine phosphorylation and calcium influx. Proc. Natl. Acad. Sci. USA. 91: 3619–3622.

    Article  PubMed  CAS  Google Scholar 

  173. Harvath, L., J. A. Balke, N. P. Christiansen, A. A. Russell, and K. M. Skubitz. 1991. Selected antibodies to leukocyte common antigen (CD45) inhibit human neutrophil Chemotaxis. J. Immunol. 146: 949–957.

    PubMed  CAS  Google Scholar 

  174. Hoffmeyer, F., K. Witte, U. Gebhardt, and R. E. Schmidt. 1995. The low affinity FCγRIIa and FCγRIIIb on polymorphonuclear neutrophils are differentially regulated by CD45 Phosphatase. J. Immunol. 155: 4016–4022.

    PubMed  CAS  Google Scholar 

  175. Omann, G. M., J. M. Harter, J. M. Burger, and D. B. Hinshaw. 1994. H2O2-induced increased in cellular F-actin occur without increased in actin nucleation activity. Arch. Biochem. Biophys. 308: 407–412.

    Article  PubMed  Google Scholar 

  176. Sundaresan, M., Z.-X Yu, V. J. Ferrans, K. Irani, and T. Finkel. 1995. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270: 296–299.

    Article  PubMed  CAS  Google Scholar 

  177. Grinstein, S., W. Furuya, J. R. Butler, and J. Tseng. 1993. Receptor-mediated activation of multiple serine/threonine kinases in human leukocytes. J. Biol. Chem. 268: 20223–20231.

    PubMed  CAS  Google Scholar 

  178. Grinstein, S., and W. Furuya. 1992. Chemoattractant-induced tyrosine phosphorylation and activation of microtubule-associated protein kinase in human neutrophils. J. Biol. Chem. 25: 18122–18125.

    Google Scholar 

  179. Pulverer, B. J., J. M. Kyriakis, J. Avruch, E. Nikolakaki, and J. R. Woodgett. 1991. Phosphorylation of c-jun mediated by MAP kinases. Nature 353: 670–674.

    Article  PubMed  CAS  Google Scholar 

  180. Kramer, R. M. 1993. Structure, function and regulation of mammalian phospholipases A2. Adv. Second Messenger Phosphoprotein Res. 28: 81–89.

    PubMed  CAS  Google Scholar 

  181. Peppelenbosch, M. P., L.G.J. Tertoolen, W. J. Hage, and S. W. De Laat. 1993. Epidermal growth factor-induced actin remodeling is regulated by 5-lipoxygenase and cyclooxygenase products. Cell 74: 565–575.

    Article  PubMed  CAS  Google Scholar 

  182. Haslett, C., S. Savill, M.K.B. Whyte, M. Stern, I. Dransfield, and L. C. Meagher. 1994. Granulocyte apoptosis and the control of inflammation. Phil. Trans. R. Soc. Lond. B. 345: 327–333.

    Article  CAS  Google Scholar 

  183. Savill, J. and C. Haslett. 1995. Granulocyte clearance by apoptosis in the resolution of inflammation. Semin. Cell Biol. 6: 385–393.

    Article  PubMed  CAS  Google Scholar 

  184. Buttke, T. M., and P.A. Sandstrom. 1994. Oxidative stress as a mediator of apoptosis. Immunol. Today 15: 7–10.

    Article  PubMed  CAS  Google Scholar 

  185. Lennon, S. V., S. J. Martin, and T. G. Cotter. 1991. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 24: 203–214.

    Article  PubMed  CAS  Google Scholar 

  186. Greenlund, L. J., T. L. Deckwerth, and E. M. Johnson, Jr. 1995. Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death. Neuron 14: 303–312.

    Article  PubMed  CAS  Google Scholar 

  187. Yao, X. R., and D. W. Scott. 1994. Antisense oligodeoxynecleotides to the blk tyrosine kinase prevent anti-mu-chain-mediated growth inhibition and apoptosis in a B-cell lymphoma. Proc. Natl. Acad. Sci. USA 90: 7946–7950.

    Article  Google Scholar 

  188. Manabe, A., T. Yi, M. Kumagai, and D. Campana. 1993. Use of strome-supported cultures of leukemic cells to assess antileukemic drugs. Cytotoxicity of interferon alpha in acute lymphoblastic leukemia. Leukemia 7: 1990–1995.

    PubMed  CAS  Google Scholar 

  189. Yousefi, S., D. R. Grenn, K. Blaser, and H.-U. Simon. 1994. Protein-tyrosine phosphorylation regulates apoptosis in human eosinophils and neutrophils. Proc. Natl. Acad. Sci. USA 91: 10868–10872.

    Article  PubMed  CAS  Google Scholar 

  190. Schieven, G. L., A. F. Wahl, S. Myrdal, L. Grosmaire, and J. A. Ledbetter. 1995. Lineage-specific induction of B cell apoptosis and altered signal transduction by the phosphotyrosine Phosphatase inhibitor bis (maltolato) oxovanadium (IV). J. Biol. Chem. 270: 20824–20831.

    Article  PubMed  CAS  Google Scholar 

  191. Hanaoka, K., N. Fujita, S. H. Lee, H. Seimiya, M. Naito, and T. Tsuruo. 1995. Involvement of CD45 in adhesion and suppression of apoptosis of mouse malignant T-lymphoma cells. Cancer Res. 55: 2186–2190.

    PubMed  CAS  Google Scholar 

  192. Lin, K.-T., J.-Y. Xue, M. Nonlen, B. Spur, and P. Y.-K. Wong. 1995. Peroxynitriteinduced apoptosis in HL-60 cells. J. Biol. Chem. 270: 16487–16490.

    Article  PubMed  CAS  Google Scholar 

  193. Schreck, R., P. Rieber, and P. A. Baeuerle. 1991. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J. 10: 2247–2258.

    PubMed  CAS  Google Scholar 

  194. Crawford, D., I. Zbinden, P. Amstad, and P. Cerutti. 1988. Oxidant stress induces the protooncogenes c-fos and c-myc in mouse epidermal cells. Oncogene 3: 27–32.

    CAS  Google Scholar 

  195. Nose, K., M. Shibanuma, K. Kikuchi, H. Kageyama, S. Sakiyama, and T. Kuroki. 1991. Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur. J. Biochem. 201: 99–106.

    Article  PubMed  CAS  Google Scholar 

  196. Xanthoudakis, S., G. Miao, F. Wang, Y.-C.E. Pan, and T. Curran. 1992. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J. 11: 3323–3335.

    PubMed  CAS  Google Scholar 

  197. Baeuerle, P. A. 1991. The inducible transcrition activator NF-κB: regulation by distinct proteins subunits. Biochim. Biophys. Acta 1072: 63–80.

    PubMed  CAS  Google Scholar 

  198. Ding, A., S. Hwang, H. M. Lander, and Q. W. Xie. 1995. Macrophages derived from C3H/HeJ (Lpsd) mice respond to bacterial lipopolysaccharide by activating NF-kappa B. J. Leukocyte Biol. 57: 174–179.

    PubMed  CAS  Google Scholar 

  199. Xie, Q.-W., Y. Kashiwabara, and C. Nathan. 1994. Role of transcription factor NF-KB/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269: 4705–4708.

    PubMed  CAS  Google Scholar 

  200. Müller, J. M., H.W.L. Ziegler-Heitbrock, and P. A. Baeuerle. 1993. Nuclear factor kappa B, a mediator of lipopolysaccharide effects. Immunob. 187: 233–256.

    Article  Google Scholar 

  201. Shakhov, A. N., M. A. Collait, P. Vassalli, A. S. Nedospasov, and C. V. Jongeneei. 1990. KB-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor α gene in macrophages. J. Exp. Med. 171: 35–47.

    Article  PubMed  CAS  Google Scholar 

  202. Lo, Y. Y. and T. F. Cruz. 1995. Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J. Biol. Chem. 270: 11727–11730.

    Article  PubMed  CAS  Google Scholar 

  203. Schulze-Osthoff, K., R. Beyaert, V. Vandevoorde, G. Haegeman, and W. Fiers. 1993. Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J. 8: 3095–3104.

    Google Scholar 

  204. Satriano, J. A., M. Shuldiner, K. Hora, Y. Xing, Z. Shan, and D. Schlondorff. 1993. Oxygen radicals as second messengers for expression of the monocyte chemoattractant protein, JE/MCP-1 and the monocyte colony-stimulating factor, CSF-1, in response to tumor necrosis factor-α and immunoglobulin G. J. Clin. Invest. 92: 1564–1571.

    Article  CAS  Google Scholar 

  205. Root, R. K., J. Metcalf, N. Oshino, and B. Chance. 1975. H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors. J. Clin. Invest. 55: 945–955.

    Article  PubMed  CAS  Google Scholar 

  206. Patel, K. C., G. A. Zimmerman, S. M. Precott, R. P. McEver, and T. M. Mclntyre. 1991. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. J. Cell Biol. 112: 749–759.

    Article  PubMed  CAS  Google Scholar 

  207. Natajaran, V., M. M. Taher, B. Roehm, N. L. Parinandi, H.H.O. Schmid, Z. Kiss, and J.G.N. Garcia. 1993. Activation of endothelial cell phospholipase D by hydrogen peroxide and fatty acid hydroperoxide. J. Biol. Chem. 930–937.

    Google Scholar 

  208. Downey, G. P., and H. O’Brodovich. In press. Mechanisms of lung injury and repair. In L. Tanssig and M. Textbook (eds.), Textbook of Pediatric Respiratory Medicine. Mosby-Yearbook, St. Louis, MO.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fialkow, L., Downey, G.P. (1997). Reactive Oxygen Intermediates as Signaling Molecules Regulating Leukocyte Activation. In: Forman, H.J., Cadenas, E. (eds) Oxidative Stress and Signal Transduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5981-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5981-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7741-2

  • Online ISBN: 978-1-4615-5981-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics