Skip to main content

Comparative Molecular Analysis of Genes for Polycyclic Aromatic Hydrocarbon Degradation

  • Chapter
Genetic Engineering

Part of the book series: Genetic Engineering ((GEPM,volume 19))

Abstract

Aromatic hydrocarbons are found ubiquitously in nature. Their sources vary from biosynthesis de novo by organisms to abiotic reactions on naturally-occurring carbon deposits to chemical synthesis by man. It is generally accepted, however, that the bulk of aromatic compounds found in the environment are not of biosynthetic origin but are produced through the pyrolysis of organic materials such as the amorphous polymer lignin. Unsubstituted aromatic hydrocarbons are generally formed at high temperatures (2000°C) of pyrolysis. Intermediate temperatures of pyrolysis (400–800°C) result in the formation of alkylsubstituted aromatic hydrocarbons together with unsubstituted aromatic compounds. In contrast, petroleum is formed at low temperatures (80–150°C) and contains aromatic hydrocarbons with two or three alkyl substituents as the major components (1). The ubiquitous presence of aromatic hydrocarbons in the environment is generally thought to result from the deposition of airborne particles that contain combustion products (2,3). In addition to the abiotic source of aromatic compounds, there is little doubt that the rapid industrialization over the last century has increased the deposition of man-made aromatic hydrocarbons into the environment. Environmental contamination by anthropogenic sources results from the isolation, processing, combustion and disposal of fossil fuel. The production of value-added petroleum products such as polymers, plastics, pesticides, solvents, explosives and even pharmaceuticals can lead to release of aromatic hydrocarbons into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blumer, M. (1976) Sci. Amer. 234, 34–41.

    Article  CAS  Google Scholar 

  2. Blumer, M. and Youngblood, W. W. (1975) Science 188, 53–55.

    Article  PubMed  CAS  Google Scholar 

  3. Hites, R.A., Laflamme, R.E. and Farrington, J. W. (1977) Science 198, 829–831.

    Article  PubMed  CAS  Google Scholar 

  4. Miller, E.C. and Miller, J.A. (1981) Cancer 47, 2327–2345.

    Article  PubMed  CAS  Google Scholar 

  5. Jacob, J., Schmoldt, A., Hamann, M., Raab, G. and Grimmer, G. (1987) Cancer Lett. 34, 90–102.

    Article  Google Scholar 

  6. Jerina, D.M., Yagi, H., Thakker, D.R., Sayer, J.M., Van Bladeren, P.J., Lehr, R.E., Whalen, D.L., Levin, W., Chang, R.L., Wood, A.W. and Conney, H. (1984) in Foreign Compound Metabolism (Caldwell, L., and Paulsen, G.D., eds.), pp. 257–280, Taylor and Francis Ltd., London.

    Google Scholar 

  7. Alexander, M. (1981) Science 211, 132–138.

    Article  PubMed  CAS  Google Scholar 

  8. Thomas, J.M., Lee, M.D., Scott, M.J., and Ward, C. H. (1989) J. Indust. Microbiol. 4, 109–120.

    Article  Google Scholar 

  9. Madsen, E.L., Winding, A., Malachowsky, K., Thomas, C.T. and Ghiorse, W.C. (1992) Microb. Fxol. 24, 199–213.

    CAS  Google Scholar 

  10. Dagley, S. (1981) in Microbial Degradation of Xenobiotics and Recalcitrant Compounds (Leisinger, T., Cook, A.M., and Nuesch, J., eds.), pp. 181–186, Academic Press, New York, NY.

    Google Scholar 

  11. Gray, P. H.H. and Thornton, H.G. (1928) Zentralbl. Bakteriol. [II] 73, 74–96.

    CAS  Google Scholar 

  12. Davies, J.I. and Evans, W.C. (1964) Biochem. J. 91, 251–261.

    PubMed  CAS  Google Scholar 

  13. Eaton, R.W. and Chapman, P.J. (1992) J. Bacteriol. 174, 7542–7554.

    PubMed  CAS  Google Scholar 

  14. Ensley, B.D., Gibson, D.T. and Laborde, A. L. (1982) J. Bacteriol. 149, 948–954.

    PubMed  CAS  Google Scholar 

  15. Haigier, B.E. and Gibson, D.T. (1990) J. Bacteriol. 172, 457–464.

    Google Scholar 

  16. Haigier, B.E. and Gibson, D.T. (1990) J. Bacteriol. 172, 465–468.

    Google Scholar 

  17. Ensley, B.D., and Gibson, D.T. (1983) J. Bacteriol. 155, 505–511.

    PubMed  CAS  Google Scholar 

  18. Yen, K.-M., and Serdar, C.M. (1988) Crit. Rev. Microbiol. 15, 247–267.

    Article  PubMed  CAS  Google Scholar 

  19. Zylstra, G.J., Wang, X.P., Kim, E., and Didolkar, V.A. (1994) Ann. NY. Acad. Sci. 721, 386–398.

    Article  PubMed  CAS  Google Scholar 

  20. Menn, F.-M., Applegate, B.M. and Sayler, G. S. (1993) Appl. Environ. Microbiol. 59, 1938–1942.

    PubMed  CAS  Google Scholar 

  21. Yang, Y., Chen, R.F. and Shiaris, M. P. (1994) J. Bacteriol. 176, 2158–2164.

    PubMed  CAS  Google Scholar 

  22. Evans, W.C, Fernley, H.N. and Griffiths, E. (1965) Biochem. J. 95, 819–821.

    PubMed  CAS  Google Scholar 

  23. Kiyohara, H., Nagao, K. and Nomi, R. (1976) Agri. Biol. Chem. 40, 1075–1082.

    Article  CAS  Google Scholar 

  24. Kurkela, S., Lehväslaiho, H., Palva, E.T. and Teeri, T. H. (1988) Gene 73, 355–362.

    Article  PubMed  CAS  Google Scholar 

  25. Simon, M.J., Osslund, T.D., Saunders, R., Ensley, B.D., Suggs, S., Harcourt, A., Suen, W.-C., Cruden, D.L., Gibson, D.T. and Zylstra, G. J. (1993) Gene 127, 31–37.

    Article  PubMed  CAS  Google Scholar 

  26. Takizawa, N., Kaida, N., Torigoe, S., Moritani, T., Sawada, T., Satoh, S. and Kiyohara, H. (1994) J. Bacteriol. 176, 2444–2449.

    PubMed  CAS  Google Scholar 

  27. Denome, S.A., Stanley, D.C., Olson, E.S. and Young, K. D. (1993) J. Bacteriol. 175, 6890–6901.

    PubMed  CAS  Google Scholar 

  28. Takizawa, N., Iida, T., Yamauchi, K., Satoh, S., Wang, Y., Fukuda, M. and Kiyohara, H. GenBank Accession number D84146.

    Google Scholar 

  29. Goyal, A.K. and Zylstra, G.J. (1996) Appl. Environ. Microbiol. 62, 230–236.

    PubMed  CAS  Google Scholar 

  30. Serdar, C.M. and Gibson, D.T. (1989) Biochem. Biophys. Res. Commun. 164, 764–771.

    Article  PubMed  CAS  Google Scholar 

  31. Serdar, C.M. and Gibson, D.T. (1989) Biochem. Biophys. Res. Commun. 164, 772–779.

    Article  PubMed  CAS  Google Scholar 

  32. Suen, W.C, Haigler, B.E. and Spain, J. C. (1996) J. Bacteriol. 178, 4926–4934.

    PubMed  CAS  Google Scholar 

  33. Hofer, B., Backhaus, S. and Timmis, K. N. (1994) Gene 144, 9–16.

    Article  PubMed  CAS  Google Scholar 

  34. Assinder, S.J. and Williams, P. A. (1990) Adv. Microbial. Physiol. 31, 1–69.

    Article  CAS  Google Scholar 

  35. Furukawa, K. (1995) Biodegradation 5, 289–300.

    Article  Google Scholar 

  36. Zylstra, G. J. (1995) in Molecular Environmental Biology (Garte, S. J., ed.), pp. 83–115, Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  37. Khan, A.A., Wang, R.-F., Cao, W.-W., Franklin, W. and Cerniglia, C. E. (1996) Int. J. System. Bacteriol. 46, 466–490.

    Article  CAS  Google Scholar 

  38. Furukawa, K., Simon, J.R., and Chakrabarty, A. M. (1983) J. Bacteriol. 154, 1356–1362.

    PubMed  CAS  Google Scholar 

  39. Gibson, D.T., Roberts, R.L., Wells, M.C. and Kobal, V. M. (1973) Biochem. Biophys. Res. Commun. 50, 211–219.

    Article  PubMed  CAS  Google Scholar 

  40. Kuhm, A.E., Stolz, A. and Knackmuss, H.-J. (1991) Biodegradation 2, 115–120.

    Article  PubMed  CAS  Google Scholar 

  41. Fredrickson, J.K., Balkwill, D.L., Drake, G.R., Romine, M.F., Ringelberg, D.B. and White, D.C. (1995) Appl. Environ. Microbiol. 61, 1917–1922.

    PubMed  CAS  Google Scholar 

  42. Fredrickson, J.K., Brockman, F.J., Workman, D.J., Li, S.W. and Stevens, T. O. (1991) Appl. Environ. Microbiol. 57, 796–803.

    PubMed  CAS  Google Scholar 

  43. Ziffer, H., Kabuto, K., Gibson, D.T., Kobal, V.M. and Jerina, D. M. (1977) Tetrahedron 33, 2491–2496.

    Article  CAS  Google Scholar 

  44. Kim, E. and Zylstra, G. J. (1995) J. Bacteriol. 177, 3095–3103.

    PubMed  CAS  Google Scholar 

  45. Romanov, V. and Hausinger, R. P. (1994) J. Bacteriol. 176, 3368–3374.

    PubMed  CAS  Google Scholar 

  46. Kim, E., Aversano, P.J., Romine, M.F., Schneider, R.P. and Zylstra, G. J. (1996) Appl. Environ. Microbiol. 62, 1467–1470.

    PubMed  CAS  Google Scholar 

  47. Parales, J.V., Parales, R.E., Kumar, A., and Gibson, D.T. GenBank Accession number U49496.

    Google Scholar 

  48. Harayama, S. and Rekik, M. (1989) J. Biol. Chem. 264, 15328–15333.

    PubMed  CAS  Google Scholar 

  49. Eaton, R.W. (1994) J. Bacteriol. 176, 7757–7762.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zylstra, G.J., Kim, E., Goyal, A.K. (1997). Comparative Molecular Analysis of Genes for Polycyclic Aromatic Hydrocarbon Degradation. In: Setlow, J.K. (eds) Genetic Engineering. Genetic Engineering, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5925-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5925-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7717-7

  • Online ISBN: 978-1-4615-5925-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics