Skip to main content

Coordinate Regulation of Cholesterol 7α-Hydroxylase and HMG-CoA Reductase in the Liver

  • Chapter
Cholesterol

Part of the book series: Subcellular Biochemistry ((SCBI,volume 28))

Abstract

Cholesterol homeostasis in the liver is dependent upon the activity of a number of key structures: 3-hydroxy-3-methylglutaryl-CoA, HMG-CoA reductase (HMGR), acyl cholesterol acyltransferase, cholesterol 7α-hydroxylase, and the LDL receptor (for a review, see Goldstein and Brown, 1990). The regulation of all these proteins is steroid dependent. This steroid-dependent regulation has been characterized in some detail at the gene level for HMG CoA synthase and the LDL receptor, and involves sophisticated coordinate transcriptional control, with interaction of trans-acting factors with sterol regulatory elements (SRE-1) sequences present in the promoter regions of these genes. In addition to this transcriptional control, there may also be regulatory control at different posttranscriptional levels. The detailed mechanism behind the sterol-dependent regulation of the other key enzymes is not as well characterized at present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguan, K., Scott, J., See, C. G., and Sarkar, N. H., 1994, Characterization and chromosomal localization of the human homologue of a rat AMP-activated protein kinase-encoding gene: A major regulator of lipid metabolism in mammals, Gene 149:345–350.

    PubMed  CAS  Google Scholar 

  • Åkerlund, J.-E., Björkhem, I., and Andersson, U., 1990, Studies on the regulation of cholesterol 7α-hydroxylase and HMG CoA-reductase in rat liver: effects of lymphatic drainage and ligation of the lymph duct, J. Lipid Res. 31:2159–2166.

    PubMed  Google Scholar 

  • Anderson, J. A., Leonard, D. A., Cusack, K. P., and Frye, L. L., 1995, 15-Substituted lanosterols: post-transcriptional suppressors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, Arch. Biochem. Biophys. 316:190–196.

    PubMed  CAS  Google Scholar 

  • Angelin, B., Reihnér, E., Rudling, M., Ewerth, S., Björkhem, I., and Einarsson, K., 1987, In vitro studies of lipid metabolism in human liver, Am. Heart J. 113:482–487.

    PubMed  CAS  Google Scholar 

  • Axelson, M., and Larsson, O., 1995, Low density lipoprotein (LDL) cholesterol is converted to 27-hydroxycholesterol in human fibroblasts: Evidence that 27-hydroxycholesterol can be an important intracellular mediator between LDL and the suppression of cholesterol production, J. Biol. Chem. 270:15102–15110.

    PubMed  CAS  Google Scholar 

  • Axelson, M., and Sjövall, J., 1990, Potential bile acid precursors in plasma—possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acids in man, J. Steroid Biochem. 36:631–640.

    PubMed  CAS  Google Scholar 

  • Balasubramaniam, S., Mitropoulos, K. A., and Myant, W. B., 1979, Evidence for compartimentaliza-tion of cholesterol in rat liver microsomes, Eur. J. Biochem. 34:77–83.

    Google Scholar 

  • Berkowitz, C. M., Shen, C. S., Bilir, B. M., Guilbert, E., and Gumucio, J. J., 1995, Different hepato-cytes express the cholesterol 7α-hydroxylase gene during its circadian modulation in vivo, Hepatology 21:1658–1667.

    PubMed  CAS  Google Scholar 

  • Bifulco, M., Perillo, B., Saji, M., Laezza, C., Tedesco, I., Kohn, L. D., and Aloj, S. M., 1995, Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in FTRL-5 cells. I. Identification and characterization of a cyclic AMP responsive element in the rat reductase promoter, J. Biol. Chem. 270:15231–15236.

    PubMed  CAS  Google Scholar 

  • Binder, R., Hwang, S.-P. L., Ratnasabapathy, R., and Williams, D. L., 1989, Degradation of apolipoprotein II mRNA occurs via endonucleotic cleavage at 5′-AUU-3′, 5′-UAA-3′ elements in single-stranded loop domains of the 3′-noncoding region, J. Biol. Chem. 264:16910–16918.

    PubMed  CAS  Google Scholar 

  • Björkhem, I., 1985, Mechanism of bile acid biosynthesis, in: Sterols and Bile Acids. Comprehensive Biochemistry, Vol. 12 (H. Danielsson and J. Sjövall, eds.) pp. 231–278, Elsevier, Amsterdam.

    Google Scholar 

  • Björkhem, I., 1986, Effects of mevinolin in rat liver. Evidence for a lack of coupling between synthesis of hydroxymethylglutaryl-CoA reductase and cholesterol 7α-hydroxylase activity, Biochim. Biophys. Acta 877:43–49.

    PubMed  Google Scholar 

  • Björkhem, I., 1992, Mechanism of degradation of the steroid side chain in the formation of bile acids, J. Lipid Res. 33:455–470.

    PubMed  Google Scholar 

  • Björkhem, I., and Åkerlund, J.-E., 1988, Studies on the link between HMG-CoA reductase and cholesterol 7α-hydroxylase in rat liver, J. Lipid Res. 29:136–143.

    PubMed  Google Scholar 

  • Björkhem, I., and Boberg, K., 1994, Inborn errors in bile acid biosynthesis and storage of sterols other than cholesterol, in: The Metabolic Basis of Inherited Diseases, Seventh Ed. (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.) pp. 2073–2100, McGraw Hill, New York.

    Google Scholar 

  • Björkhem, I., and Lewenhaupt, A., 1979, Preferential utilization of newly synthesized cholesterol as substrate for bile acid synthesis, J. Biol. Chem. 254:5252–5257.

    PubMed  Google Scholar 

  • Björkhem, I., Eggertsen, G., and Andersson, U., 1991, On the mechanism of stimulation of cholesterol 7α-hydroxylase by dietary cholesterol, Biochim. Biophys. Acta 1085:329–335.

    PubMed  Google Scholar 

  • Björkhem, I., Nyberg, B., and Einarsson, K., 1992, 7α-Hydroxylation of 27-hydroxycholesterol in human liver microsomes, Biochim. Biophys. Acta 1128:73–76.

    PubMed  Google Scholar 

  • Björkhem, I., Andersson, U., Sudjana-Sugiaman, E., Eggertsen, G., and Hylemon, P., 1993, Studies on the link between HMG-CoA reductase and cholesterol 7α-hydroxylase in lymph fistula rats: Evidence for both transcriptional and posttranscriptional mechanisms for down-regulation of the two enzymes by bile acids, J. Lipid Res. 34:1497–1503.

    PubMed  Google Scholar 

  • Björkhem, I., Anderson, C., Diczfalusy, U., Sevastik, B., Xiu, R.-J., Duan, C., and Lund, E., 1994, Atherosclerosis and sterol 27-hydroxylase. Evidence for a role of this enzyme in elimination of cholesterol from human macrophages, Proc. Natl. Acad. Sci. USA 91:8592–8596.

    PubMed  Google Scholar 

  • Boström, H., 1983, Binding of cholesterol to cytochrome P-450 from rabbit liver microsomes, J. Biol. Chem. 258:15091–15094.

    PubMed  Google Scholar 

  • Bradfute, D. L., and Simoni, R. D., 1994, Non-sterol compounds that regulate cholesterol genesis. Analogues of farnesyl pyrophosphate reduce 3-hydroxy-3-methylglutaryl-coenzyme A reductase levels, J. Biol. Chem. 269:6645–6650.

    PubMed  CAS  Google Scholar 

  • Breuer, O., Sudjana-Sugiaman, E., Eggertsen, G., Chiang, J., and Björkhem, I., 1993, Cholesterol 7α-hydroxylase is upregulated by the competitive inhibitor 7-oxocholesterol in rat liver, Eur. J. Biochem. 215:705–710.

    PubMed  CAS  Google Scholar 

  • Brown, M. S., and Goldstein, J. L., 1980, Multivalent feed-back regulation of HMG CoA reductase, a control mechanism coordination isoprenoid synthesis and cell growth, J. Lipid Res. 21:505–517.

    PubMed  CAS  Google Scholar 

  • van Cantfort, J., and Gielen, J. E., 1979, Comparison of rat and mouse cirdadian rhythm of cholesterol 7α-hydroxylase activity, J. Steroid Biochem. 10:647–651.

    PubMed  Google Scholar 

  • Carling, D., Aguan, K., Woods, A., Verhoeven, A., Beri, R., Brennan, C., Sidebottome, C., Davison, M., and Scott, J., 1994, Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinase involved in the regulation of carbon metabolism, J. Biol. Chem. 269:11442–11448.

    PubMed  CAS  Google Scholar 

  • Chang, T.-Y., and Limanek, J. S., 1980, Regulation of cytosolic acetoacetyl coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, and mevalonate kinase by low density lipoprotein and by 25-hydroxycholesterol in Chinese hamster ovary cells, J. Biol. Chem. 255:7787–7795.

    PubMed  CAS  Google Scholar 

  • Chiang, J. Y. L., and Stroup, D., 1994, Identification and characterization of a putative bile acid-responsive element in cholesterol 7α-hydroxylase gene promotor, J. Biol. Chem. 269:17502–17507.

    PubMed  CAS  Google Scholar 

  • Chiang, J. Y. L., Miller, W. F., and Lin, G. M., 1990, Regulation of cholesterol 7α-hydroxylase in the liver: Purification of cholesterol 7α-hydroxylase and the immunochemical evidence for the induction of cholesterol 7α-hydroxylase by cholestyramine and circadian rhythm, J. Biol. Chem. 265:3889–3897.

    PubMed  CAS  Google Scholar 

  • Chin, D. J., Luskey, K. L., Faust, J. R., MacDonald, R. J., Brown, M. S., and Goldstein, J. L., 1982, Molecular cloning of 3-hydroxy-3-methylglutaryl coenzyme A reductase and evidence for regulation of its mRNA, Proc. Natl. Acad. Sci. USA 79:7704–7708.

    PubMed  CAS  Google Scholar 

  • Chin, D. J., Gil, G., Faust, J. R., Goldstein, J. L., Brown, M. S., and Luskey, K. L., 1985, Sterols accelerate degradation of hamster 3-hydroxy-3-methylglutaryl coenzyme A reductase encoded by a constitutively expressed cDNA, Mol. Cell Biol. 5:634–641.

    PubMed  CAS  Google Scholar 

  • Cohen, B. I., 1975, Effects of phenobarbital upon bile acid synthesis in two strains of rats, Lipids 10:168–174.

    PubMed  CAS  Google Scholar 

  • Cohen, J. C., Cali, J. J., Jelinek, D. F., Mehbrabian, M., Sparkes, R. S., Lusis, A. J., Russell, D. W., and Hobbs, H. H., 1992, Cloning of the human cholesterol 7α-hydroxylase gene (CYP7) and localization to chromosome 8q11-q12, Genomics 14:153–161.

    PubMed  CAS  Google Scholar 

  • Correll, C. C., and Edwards, P. A., 1994, Mevalonic acid-dependent degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in vivo and in vitro, J. Biol. Chem. 269:633–638.

    PubMed  CAS  Google Scholar 

  • Correll C. C., Ng, L., and Edwards, P. A., 1994, Identification of farnesol as the non sterol derivative of mevalonic acid required for the accelerated degradation of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, J. Biol. Chem. 269:17390–17393.

    PubMed  CAS  Google Scholar 

  • Crestani, M., Galli, G., and Chiang, J. Y. L., 1993, Genomic cloning, sequencing, and analysis of the hamster cholesterol 7α-hydroxylase gene (CYP7), Arch. Biochem. Biophys. 306:451–460.

    PubMed  CAS  Google Scholar 

  • Dahl, N. K., Guthei, W. G., and Liscum, L., 1993, Abnormal regulation of LDL-sensitive events in a cholesterol transport mutant, J. Biol. Chem. 268:16979–16986.

    PubMed  CAS  Google Scholar 

  • Danielsson, H., and Wikvall, K., 1991, Evidence for a specific cytochrome P-450 with short half-life catalyzing 7α-hydroxylation of cholesterol, Biochem. Biophys. Res. Commun. 103:46–51.

    Google Scholar 

  • Davis, R. A., Hyde, P. M., Kuan, J. C. W., Malone-McNeal, M., and Archarmbault-Schexnayder, J., 1983a, Bile acid secretion by cultured rat hepatocytes. Regulation by cholesterol availability, J. Biol. Chem. 258:3661–3667.

    PubMed  CAS  Google Scholar 

  • Davis, R. A., Highsmith, S. E., Malone-McNeal, M., Archambault-Schexnayder, J., Hyde, P. M., and Kuan, J-C. W., 1983b, Bile acid synthesis by cultured rat hepatocytes: Inhibition by mevinolin but not by bile acids, J. Biol. Chem. 258:4079–4082.

    PubMed  CAS  Google Scholar 

  • Dawson, P. A., Ridgway, N. D., Slaughter, C. A., Brown, M. S., and Goldstein, J. L., 1989a, cDNA cloning and expression of oxysterol-binding protein, an oligomer with a potential leucine zipper, J. Biol. Chem. 264:16798–16803.

    PubMed  CAS  Google Scholar 

  • Dawson P. A., van der Westhuyzen, D. R., Goldstein, J. L., and Brown, M. S., 1989b, Purification of oxysterol binding protein from hamster liver cytosol, J. Biol. Chem. 264:9046–9052.

    PubMed  CAS  Google Scholar 

  • Dawson, P. A., Metherall, J. E., Ridgeway, N. D., Brown, M. S., and Goldstein, J. L., 1991, Genetic distinction between sterol-mediated transcriptional and post-transcriptional control of 3-hydroxy-3-methylglutaryl coenzyme A reductase, J. Biol. Chem. 266:9128–9134.

    PubMed  CAS  Google Scholar 

  • Deliconstantinos, G., and Ramantanis, G., 1982, Evoked effects of estradiol on hepatic cholesterol 7α-hydroxylase and drug oxidase in castrated rats. Int. J. Biochem. 14:811–815.

    PubMed  CAS  Google Scholar 

  • Dietschy, J. M., Turley, S. D., and Spady, D. K., 1993, Role of liver in the maintenance of cholesterol and LDL homeostasis in different animal species, including man, J. Lipid Res. 34:1637–1659.

    PubMed  CAS  Google Scholar 

  • Doerner, K. C., Gurley, E. C., Vlahcevic, Z. R., and Hylemon, P. B., 1995, Regulation of cholesterol 7α-hydroxylase expression by sterols in primary hepatocyte cultures, J. Lipid Res. 36:168–177.

    Google Scholar 

  • Duane, W. C., Lewitt, D. G., and Mueller, S. M., 1983, Regulation of bile acid synthesis in man. Presence of a diurnal rhythm, J. Clin. Invest. 72:1930–1936.

    PubMed  CAS  Google Scholar 

  • Duckworth, P. F., Vlahcevic, Z. R., Studer, E. J., Gurley, E. C., Heuman, D. M., Beg, Z. H., and Hylemon, P. B., 1991, Effect of hydrophobic bile acids on HMG-CoA reductase activity and mRNA levels in the rat, J. Biol. Chem. 266:9413–9418.

    PubMed  CAS  Google Scholar 

  • Dueland, S., Trawick, J. D., Nenseter, M. S., MacPhee, A. A., and Davies, R. A., 1992, Expression of 7α-hydroxylase in non-hepatic cells results in liver phenotypic resistance of the LDL-receptor to cholesterol repression, J. Biol. Chem. 267:22695–22698.

    PubMed  CAS  Google Scholar 

  • Einarsson, K., and Johansson, G., 1968, Effect of actinomycin D and puromycin on the conversion of cholesterol into bile acids in bile fistula rats, FEBS Lett. 1:219–222.

    PubMed  CAS  Google Scholar 

  • Einarsson, K., Åkerlund, J.-E., and Björkhem, I., 1987, The pool of free cholesterol is not of major importance for regulation of the cholesterol 7α-hydroxylase activity in rat liver microsomes, J. Lipid Res. 28:253–256.

    PubMed  CAS  Google Scholar 

  • Einarsson, K., Reihnér, E., and Björkhem, I., 1989, On the saturation of cholesterol 7α-hydroxylase in human liver microsomes, J. Lipid Res. 30:1477–1481.

    PubMed  CAS  Google Scholar 

  • Esterman, A. L., Baum, H., Javitt, N. B., and Darlington, G. J., 1983, 26-Hydroxy-cholesterol: regulation of hydroxymethylglutaryl-CoA reductase activity in Chinese hamster ovary cell culture, J. Lipid Res. 24:1304–1309.

    PubMed  CAS  Google Scholar 

  • Faust, J. R., Luskey, K. L., Chin, D. J., Goldstein, J. L., and Brown, M. S., 1982, Regulation of synthesis and degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by low density lipoprotein and 25-hydroxycholesterol in UT-1 cells, Proc. Natl. Acad. Sci. USA 79:5205–5209.

    PubMed  CAS  Google Scholar 

  • Field, F. J., Shreves, T., Fujiwara, D., Murthy, S., Albright, E., and Mathur, S. N., 1991, Regulation of gene expression and synthesis and degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by micellar cholesterol in CaCo-2 cells, J. Lipid Res. 32:1811–1821.

    PubMed  CAS  Google Scholar 

  • Fukushima, K., Ichimiya, H., Higashijima, H., Yamashita, H., Kuroki, S., Chijiiwa, K., and Tanaka, M., 1995, Regulation of bile acid synthesis in the rat: relationship between hepatic cholesterol 7α-hydroxylase activity and portal bile acids, J. Lipid Res. 36:315–321.

    PubMed  CAS  Google Scholar 

  • Gielen, J., van Cantfort, J., Robaye, B., and Renson, J., 1969, Rytme circadien de la cholesterol-7α-hydroxylase chez la rat, C. R. Acad Sci Paris 269:731–732.

    CAS  Google Scholar 

  • Gil, G., Faust, J. R., Chin, D. J., Goldstein, J. L., and Brown, M. S., 1985, Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme, Cell 41: 249–258.

    PubMed  CAS  Google Scholar 

  • Goldstein, J. L., and Brown, M. S., 1990, Regulation of the mevalonate pathway, Nature 343:425–430.

    PubMed  CAS  Google Scholar 

  • Gupta, P. A., Sexton, R. C., and Rudney, H., 1986, Modulation of regulatory oxysterol formation and low density lipoprotein suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by ketoconazole, J. Biol. Chem. 261:8348–8356.

    PubMed  CAS  Google Scholar 

  • Hall, R., Kok, E., and Javitt, N. B., 1988, Bile acid synthesis: downregulation by monohydroxy bile acids, Fed. Am.Soc. Exp. Biol. 2:152–156.

    PubMed  CAS  Google Scholar 

  • Hamprecht, B. R., Roscher, G., Waltinger, G., and Nussler, C., 1971, Influence of bile acids on the activity of rat liver HMG-CoA reductase. Effect of cholic acid in lymph fistula rats, Eur. J. Biochem. 18:15–19.

    PubMed  CAS  Google Scholar 

  • Hardie, D. G., 1992, Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase, Biochim. Biophys. Acta 1123:231–238.

    PubMed  CAS  Google Scholar 

  • Heubi, C. E., Burstein, S., Sperling, M. A., Gregg, D., Ravi Subbiah, M. T., and Mathews, D. E., 1984, The role of human growth hormone in the regulation of cholesterol and bile acid metabolism, J. Clin. Endocrinol. Metab. 57:885–891.

    Google Scholar 

  • Heuman, D. M., Hylemon, P. B., and Vlahcevic, Z. R., 1989, Regulation of bile acid synthesis. III. Correlation between biliary salt hydrophobicity index and the activities of enzymes regulating cholesterol and bile acid synthesis in the rat, J. Lipid Res. 30:1161–1171.

    PubMed  CAS  Google Scholar 

  • Hoekmann, M. F. M., Rientjes, J. M. J., Twisk, J., Planta, R. J., Princen, H. M. G., and Mager, W. H., 1993, Transcriptional regulation of the gene encoding cholesterol 7α-hydroxylase in the rat, Gene 130:217–233.

    Google Scholar 

  • Hwa, J. J., Zollman, S., Warden, C. H., Taylor, B. A., Edwards, P. A., Fogelman, A. M., and Lusis, A. J., 1992, Genetic and dietary interactions in the regulation of HMG-CoA reductase gene expression, J. Lipid Res. 33:711–725.

    PubMed  CAS  Google Scholar 

  • Hylemon, P. B., Gurley, E. C., Stravitz, R. T., Litz, J. S., Pandak, W. M., Chiang, J. Y. L., and Vlahcevic, Z. R., 1992, Hormonal regulation of cholesterol 7α-hydroxylase mRNA levels and transcriptional activity in primary rat hepatocyte cultures, J. Biol. Chem. 267:16866–16871.

    PubMed  CAS  Google Scholar 

  • Jelinek, D. F., Andersson, S., Slaughter, C. A., and Rüssel, D. W., 1990, Cloning and regulation of cholesterol 7α-hydroxylase, the rate limiting enzyme in bile acid biosynthesis, J. Biol. Chem. 265:8190–8197.

    PubMed  CAS  Google Scholar 

  • Jones, M. P., Pandak, W. M., Hylemon, P. B., and Vlahcevic, Z. R., 1993, Cholesterol 7α-hydroxylase: Evidence for regulation by mevalonate and/or metabolic products of mevalonate, J. Lipid Res. 34:885–892.

    PubMed  CAS  Google Scholar 

  • Kai, M.-H., Eto, T.-A., Kondo, K.-H., Setoguchi, Y., Higashi, S., Maeda, Y., and Setogushi, T., 1995, Syncronous circadian rythms of mRNA levels and activities of cholesterol 7α-hydroxylase in the rabbit and rat, J. Lipid Res. 36:367–374.

    PubMed  CAS  Google Scholar 

  • Kandutsch, A. A., Chen, H. W., and Heiniger, H.-J., 1978, Biological activity of some oxygenated sterols, Science 201:498–501.

    PubMed  CAS  Google Scholar 

  • Kinugasa, T., Uchida, K., Kadowaki, M., Takase, H., Nomura, Y., and Saito, Y., 1981, Effect of bile duct ligation on bile acid metabolism in rats, J. Lipid Res. 22:201–207.

    PubMed  CAS  Google Scholar 

  • Kudo, K., Emmons, G. T., Casserly, E. W., Via, D. P., Smith, L. C., Pyrek, J. S., and Schroepfer Jr., G. J., 1989, Inhibitors of sterol synthesis. Chromatography of acetate derivatives of oxygenated sterols, J. Lipid Res. 30:1097–1111.

    PubMed  CAS  Google Scholar 

  • Kushwaha, R. S., and Born, K. M., 1991, Effect of estrogen and progesterone on the hepatic cholesterol 7α-hydroxylase in ovariectomized baboons, Biochim. Biophys. Acta 1084:300–302.

    PubMed  CAS  Google Scholar 

  • Kwekkeboom, J., Van Voorthuizen, E. M., Princen, H. M. G., and Kempen, H. J. M., 1988, Feedback inhibition of bile acid synthesis in cultured pig hepatocytes, Biochem. Biophys. Res. Commun. 155:850–856.

    PubMed  CAS  Google Scholar 

  • Lange, Y., Ye, J., and Strebel, F., 1995, Movement of 25-hydroxycholesterol from the Wasma membrane to the rough endoplasmic reticulum in cultured hepatoma cells, J. Lipid Res. 36: 1092–1097.

    PubMed  CAS  Google Scholar 

  • Lavery, D. J., and Schibier, U., 1993, Circadian transcription of the cholesterol 7α-hydroxylase gene may involve the liver-enriched bZIP protein DBP, in: Genes & Development 7, pp. 1871–1884, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Leonard, D. A., Kotarski, M. A., Tessiatore, J. E., Favata, M. F., and Trzaskos, J. M., 1994, Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by 3β-hydroxy-lanost-8-en-32-al, an intermediate in the conversion of lanosterol to cholesterol, Arch. Biochem. Biophys. 310:152–157.

    PubMed  CAS  Google Scholar 

  • Levanon, D., Hsieh, C.-L., Francke, U., Dawson, P. A., Ridgway, N. D., Brown, M. S., and Goldstein, J. L., 1990, cDNA cloning of human oxysterol-binding protein and localization of the gene to human chromosome 11 and mouse chromosome 19, Genomics 7:65–74.

    PubMed  CAS  Google Scholar 

  • Li, Y. C., Wang, D. P., and Chiang, J. Y. L., 1990, Regulation of cholesterol 7α-hydroxylase in the liver. Cloning, sequencing and regulation of cholesterol 7α-hydroxylase mRNA, J. Biol. Chem. 265: 12012–12019.

    PubMed  CAS  Google Scholar 

  • Lund, E., and Björkhem, I., 1995, Role of oxysterols in the regulation of cholesterol homeostasis: a critical evaluation, Acc. Chem. Res. 28:241–249.

    CAS  Google Scholar 

  • Lund, E., Breuer, O., and Björkhem, I., 1992, Evidence that 24-and 27-hydroxylation are not involved in the cholesterol-induced downregulation of HMG CoA reductase in mice, J. Biol. Chem. 261: 25092–25097.

    Google Scholar 

  • Mayer, D., 1974, Hormones and 7α-hydroxylation of cholesterol, in: Advances in Bile Acid Research III: Bile Acid Meeting (S. Matern, J. Hackenschmidt, P. Back, and W. Gerok, eds.). pp. 53–60, Schattauer Verlag, New York.

    Google Scholar 

  • Mayer, D., 1976, The circadian rhythm of synthesis and catabolism of cholesterol, Arch. Toxicol 36:267–276.

    PubMed  CAS  Google Scholar 

  • Miettinen, T. A., and Gylling, H., 1988, Mortality and cholesterol metabolism in familial hypercholesterolemia, Arteriosclerosis 8:163–167.

    PubMed  CAS  Google Scholar 

  • Mitropoulos, K. A., Balasubramaniam, S., and Myant, N. B., 1973, The effect of interruption of the enterohepatic circulation of bile acids and of cholesterol feeding on cholesterol 7α-hydroxylase in relation to the diurnal rhythm in its activity, Biochim. Biophys. Acta 326:428–438.

    PubMed  CAS  Google Scholar 

  • Mitropoulos, K. A., Balasubramaniam, S., Vankatesan, S., and Reeves, B. E. A., 1978, On the mechanism for the regulation of HMG CoA reductase of cholesterol 7α-hydroxylase and of ACAT by free cholesterol, Biochim. Biophys. Acta 530:99–111.

    PubMed  CAS  Google Scholar 

  • Molowa, D. T., Chen, W. S., Cimis, G. M., and Tan, C. P., 1992, Transcriptional regulation of the human cholesterol 7α-hydroxylase gene, Biochemistry 31:2539–2544.

    PubMed  CAS  Google Scholar 

  • Mueller, C.R., Maire, P., and Schibler, U., 1990, DBP, a liver enriched transcriptional activator, is expressed late in ontogeny and its tissue specificity is determined posttranscriptionallly, Cell 61:279–291.

    PubMed  CAS  Google Scholar 

  • Nakanishi, M., Goldstein, J. L., and Brown, M. S., 1988, Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase: mevalonate-derived product inhibits translation of mRNA and accelerates degradation of enzyme. J. Biol. Chem. 263:8929–8937.

    PubMed  CAS  Google Scholar 

  • Ness, G. C., Pendleton, L. C., Li, Y. C., and Chiang, J. Y. L., 1990, Effect of thyroid hormone on hepatic cholesterol 7α-hydroxylase, LDL receptor, HMG-CoA reductase, farnesyl pyrophosphate synthetase and apolipoprotein A-I mRNA levels in hypophysectomized rats, Biochem. Biophys. Res. Commun. 172:1150–1156.

    PubMed  CAS  Google Scholar 

  • Ness, G. C., Keller, R. K., and Pendleton, L. C., 1991, Feed-back regulation of hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase activity by dietary cholesterol is not due to altered mRNA levels, J. Biol. Chem. 266:14854–14857.

    PubMed  CAS  Google Scholar 

  • Ness, G. C., Zhao, Z., and Keller, R. K., 1994, Effect of squalene synthase inhibition on the expression of hepatic cholesterol biosynthetic enzymes, LDL receptor, and cholesterol 7α-hydroxylase, Arch. Biochem. Biophys. 311:277–285.

    PubMed  CAS  Google Scholar 

  • Noshiro, M., and Okuda, K., 1990, Molecular cloning and sequence analysis of cDNA encoding human cholesterol 7α-hydroxylase, FEBS Lett. 268:137–140.

    PubMed  CAS  Google Scholar 

  • Noshiro, M., Nishimoto, M., Morohashi, K.-I., and Okuda, K., 1989, Molecular cloning of cDNA for cholesterol 7α-hydroxylase from rat liver microsomes, FEBS Lett. 257:97–100.

    PubMed  CAS  Google Scholar 

  • Osborne, T. F., Gil, G., Goldstein, J. L., and Brown, M. S., 1988, Operator constitutive mutation of 3-hydroxy-3-methylglutaryl coenzyme A reductase promoter abolishes protein binding to sterol regulatory element, J. Biol. Chem. 263:3380–3387.

    PubMed  CAS  Google Scholar 

  • Osborne, T.F., Bennet, M., and Rhee, K., 1992, Red 25, a protein that binds specificlly to the sterol regulatory region in the promoter for HMG CoA reductase, J. Biol. Chem. 267: 18973–18982.

    PubMed  CAS  Google Scholar 

  • Pandak, W. M., Heuman, D. M., Hylemon, P. B., and Vlahcevic, Z. R., 1990a, Regulation of bile acid synthesis. IV. Interrelationship between cholesterol and bile acid biosynthesis pathways, J. Lipid Res. 31:79–90.

    PubMed  CAS  Google Scholar 

  • Pandak, W. M., Li, Y. C., Chiang, J. Y. L., Studer, E. J., Gurley, E. C., Heuman, D. M., Vlahcevic, Z. R., and Hylemon, P. B., 1991, Regulation of cholesterol 7α-hydroxylase mRNA and transcriptional activity by taurocholate and cholesterol in the chronic biliary diverted rat, J. Biol. Chem. 266:3446-3421.

    Google Scholar 

  • Pandak, W. M., Vlahcevic, Z. R., Heuman, D. M., Chiang, J. Y. L., and Hylemon, P. B., 1994a, Intraduodenal but not intravenous infusion of taurocholate downregulates HMG CoA reductase and cholesterol 7α-hydroxylase, Gastroenterology 106:A958.

    Google Scholar 

  • Pandak, W. M., Heuman, D. M., Compton, G., Hylemon, P. B., and Vlahcevic, Z. R., 1995, Regulation of hepatic cholesterol and bile acid biosynthesis by glucagon and enteroglucagon, Gastroenterology 108:A1142.

    Google Scholar 

  • Panini, S. R., Delate, T. A., and Sinensky, M., 1992, Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by 24(S),25-oxidolanosterol, J. Biol. Chem. 267: 12647–12654.

    PubMed  CAS  Google Scholar 

  • Parker, R. A., Pearce, B. C., Clark, R. W., Gordon, D. A., and Wright, J. J., 1993, Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, J. Biol. Chem. 268:11230–11238.

    PubMed  CAS  Google Scholar 

  • Perillo, B., Tedesco, I., Laezza, C., Santillo, M., Romano, A., Aloj, S. M., and Bifulco, M., 1995, Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in FTRL-5 cells. II. Down-regulation by v-K-ras oncogene, J. Biol. Chem. 270:15231–15236.

    PubMed  Google Scholar 

  • Ramirez, M., Karaoglu, D., Haro, D., Barillas, C., Bashirzadeh, R., and Gil, G., 1994, Cholesterol and bile acids regulate cholesterol 7α-hydroxylase expression at the transcriptional level in culture and in transgenic mice, Mol. Cell Biol. 14:2809–2821.

    PubMed  CAS  Google Scholar 

  • Reihnér, E., Björkhem, I., Angelin, B., Ewerth, S., and Einarsson, K., 1989, Bile acid synthesis in humans: regulation of hepatic microsomal cholesterol 7α-hydroxylase activity, Gastroenterology 97:1498–1505.

    PubMed  Google Scholar 

  • Reihnér, E., Rudling, M., Ståhlberg, D., Berglund, L., Ewerth,,S., Björkhem, I., Einarsson, K., and Angelin, B., 1990, Influence of pravastatin, a specific inhibitor of HMG CoA reductase, on hepatic metabolism of cholesterol, TV. Engl. J. Med. 323:224–228.

    Google Scholar 

  • Rennert, H., Fischer, R. T., Alvarez, J. G., Trzaskos, J. M., and Strauss III, J. F., 1990, Generation of regulatory oxysterols: 26-Hydroxylation of cholesterol by ovarian mitochondria, Endocrinology 127:738–746.

    PubMed  CAS  Google Scholar 

  • Ridgway, N. D., Dawson, P. A., Ho, Y. K., Brown, M. S., and Goldstein, J. L., 1992, Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding, J. Cell Biol. 116:307–319.

    PubMed  CAS  Google Scholar 

  • Roitelman, J., and Simoni, R. D., 1992, Distinct sterol and nonsi:erol signals for the regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, J. Biol. Chem. 267:25264–25273.

    PubMed  CAS  Google Scholar 

  • Rudel, L., Deckelman, C., Wilson, M., Scobey, M., and Anderson, R., 1994, Dietary cholesterol and downregulation of cholesterol 7α-hydroxylase and cholesterol absorption in African green monkeys, J. Clin. Invest. 93:2463–2472.

    PubMed  CAS  Google Scholar 

  • Rudling, M., 1992, Hepatic mRNA levels for the LDL receptor and HMG-CoA reductase show coordinate regulation in vivo, J. Lipid Res. 33:493–501.

    PubMed  CAS  Google Scholar 

  • Rudling, M., and Angelin, B., 1993, Stimulation of rat hepatic low density lipoprotein receptors by glucagon. Evidence of a novel regulatory mechanism in vivo, J. Clin. Invest. 91:2796–2805.

    PubMed  CAS  Google Scholar 

  • Russell, D.W., and Setchell, K. D. R., 1992, Bile acid biosynthesis, Biochemistry 31:4737–4739.

    PubMed  CAS  Google Scholar 

  • Sanghvi, A., Grassi, E., Warty, V., Diven, W., Wight, C., and Lester, R., 1981, Reversible activation-inactivation of cholesterol 7α-hydroxylase possibly due to phosphorylation—dephosphorylation, Biochem. Biophys. Res. Commun. 103:886–892.

    PubMed  CAS  Google Scholar 

  • Sanghvi, A., Grassi, E., and Diven, W., 1983, Loss of cholesterol 7α-hydroxylase activity in vitro in the presence of bivalent metal ions and by dialysis of rat liver microsomes, Proc. Natl. Acad. Sci. USA 80:2175–2178.

    PubMed  CAS  Google Scholar 

  • Sato, R., Goldstein, J. L., and Brown, M. S., 1993, Replacement of serine-871 of hamster 3-hydroxy-3-methylglutaryl-CoA reductase prevents phosphorylation by AMP-activated kinase and blocks inhibition of sterol synthesis induced by ATP depletion, Proc. Natl. Acad. Sci. USA 90:9261–9265.

    PubMed  CAS  Google Scholar 

  • Saucier, S. E., Kandutsch, A. A., Gayen, A. K., Swahn, D. K., and Spencer, T. A., 1989, Oxysterol regulators of 3-hydroxy-3-methylglutaryl-CoA reductase in liver: effect of dietary cholesterol, J. Biol. Chem. 264:6863–6869.

    PubMed  CAS  Google Scholar 

  • Scallen, T., and Sanghvi, A., 1983, Regulation of three key enzymes in cholesterol metabolism by phosphorylation—dephosphorylation, Proc. Natl. Acad. Sci. USA 80:2477–2480.

    PubMed  CAS  Google Scholar 

  • Shefer, S., Nguyen, L. B., Salen, G., Ness, C. G., Chowdhary, I. R., Lerner, S., Batta, A. K., and Tint, G. S., 1992, Differing effects of cholesterol and taurocholate on steady state hepatic HMG-CoA reductase and cholesterol 7α-hydroxylase activities and mRNA levels in the rat, J. Lipid Res. 33:1193–1200.

    PubMed  CAS  Google Scholar 

  • Shoda, J., Toll, A., Axelson, M., Pieper, F., and Sjövall, J., 1993, Formation of 7α-and 7α-hydroxylated bile acid precursors from 27-hydroxycholesterol in human liver microsomes, Hepatology 17:395–403.

    PubMed  CAS  Google Scholar 

  • Smith, J. L., Lear, S. R., and Erickson, S. K., 1995, Developmental expression of elements of hepatic cholesterol metabolism in the rat, J. Lipid Res. 36:641–652.

    PubMed  CAS  Google Scholar 

  • Spady, D. K., and Cuthbert, J. A., 1992, Regulation of hepatic sterol metabolism in the rat. Parallel regulation of activity and mRNA for 7α-hydroxylase but not 3-hydroxy-3-methylglutaryl-coenzyme A reductase or low density lipoprotein receptor, J. Biol. Chem. 267:5584–5591.

    PubMed  CAS  Google Scholar 

  • Spady, D. K., Cuthbert, J. A., Willard, M. N., and Meidell, R. S., 1995, Adenovirus-mediated transfer of a gene encoding cholesterol 7α-hydroxylase into hamsters increases hepatic enzyme activity and reduces plasma total and low density lipoprotein cholesterol, J. Clin. Invest. 96: 700–709.

    PubMed  CAS  Google Scholar 

  • Stange, E. F., Scheibner, J., and Ditschuneit, H., 1989, Role of primary and secondary bile acids as feedback inhibitors of bile acid synthesis in the rat in vivo, J. Clin. Invest. 84:173–180.

    PubMed  CAS  Google Scholar 

  • Straka, M. S., and Panini, S. R., 1995, Post-transcriptional regulation of 3-hydroxy-3-methyl-glutaryl coenzyme A by mevalonate, Arch. Biochem. Biophys. 317:235–243.

    PubMed  CAS  Google Scholar 

  • Straka, M. S., Junker, L. H., Zacarro, L., Zogg, D. L., Dueland, S., Everson, G. T., and Davis, R. A., 1990, Substrate stimulation of 7α-hydroxylase, an enzyme located in the cholesterol-poor ER, J. Biol. Chem. 265:7145–7149.

    PubMed  CAS  Google Scholar 

  • Stravitz, R. T., Hylemon, P. B., Heuman, D. M., Hagey, L. R., Schteingart, C. D., Ton-Nu, H.-T., Hofmann, A. F., and Vlahcevic, Z. R., 1993, Transcriptional regulation of cholesterol 7α-hydroxylase mRNA by conjugated bile acids in primary cultures of raat hepatocytes, J. Biol. Chem. 268:13987–13993.

    PubMed  CAS  Google Scholar 

  • Stravitz, R. T., Vlahcevic, Z. R., Gurley, E. C., and Hylemon, P. B., 1995, Repression of cholesterol 7α-hydroxylase transcription by bile acids is mediated through protein kinase C in primary cultures of rat hepatocytes, J. Lipid Res. 36:1359–1369.

    PubMed  CAS  Google Scholar 

  • Subbiah, M. T., and Yunker, R. L., 1984, Cholesterol 7α-hydroxylase of rat liver: an insulin sensitive enzyme, Biochem. Biophys. Res. Commun. 124:896–902.

    PubMed  CAS  Google Scholar 

  • Sudjana-Sugiaman, E., Eggertsen, G., and Björkhem, I., 1994a, Stimulation of HMG CoA reductase as a consequence of phenobarbital-induced primary stimulation of cholesterol 7α-hydroxylase in rat liver, J. Lipid Res. 35:319–327.

    PubMed  CAS  Google Scholar 

  • Sudjana-Sugiaman, E., Eggertsen, G., Sjöblom, P., Maeda, Y., Okuda, K., and Björkhem, I., 1994b, Presence of cholesterol 7α-hydroxylase enzyme protein in COS-cells leads to increased HMG CoA reductase activity, Biochem. Biophys. Res. Commun. 202:896–901.

    PubMed  CAS  Google Scholar 

  • Sundseth, S. S., and Waxman, D. J., 1990, Hepatic P-450 cholesterol 7α-hydroxylase. Regulation in vivo at the protein and mRNA level in response to mevalonate, diurnal rhythm, and bile acid feedback, J. Biol. Chem. 265:15090–15095.

    PubMed  CAS  Google Scholar 

  • Takagi, K., Alvarez, J. G., Favata, M. F., Trzaskos, J. M., and Strauss III, J. F., 1989, Control of low density lipoprotein receptor gene promoter activity: ketoconazole inhibits serum lipoprotein but not oxysterol suppression of gene transcription, J. Biol. Chem. 264:12352–12357.

    PubMed  CAS  Google Scholar 

  • Tang, K. Y., and Houslay, M. D., 1992. Glucagon, vasopressin and angiotensin all elicit a rapid, transient increase in hepatocyte protein kinase C activity, Biochem J. 283:341–346.

    PubMed  CAS  Google Scholar 

  • Taylor, F. R., Saucier, S. E., Shown, E. P., Parish, E. J., and. Kandutsch, A. A., 1984, Correlation between oxysterol binding to a cytosolic binding protein and potency in the repression of hydroxymethylglutaryl coenzyme A reductase, J. Biol. Chem. 259:12382–12387.

    PubMed  CAS  Google Scholar 

  • Tint, G., and Salen, G., 1982, Synthesis of cholesterol and its precursors but not cholestanol in cultured fibroblasts from patients with cerebrotendinous xanthomatosis, J. Lipid Res. 23:597–603.

    PubMed  CAS  Google Scholar 

  • Toll, A., Wikvall, K., Sudjana-Sugiaman, E., Kondo, K. I., and Björkhem, I., 1994, 7α-Hydroxylation of 25-hydroxycholesterol in liver microsomes. Evidence that the enzyme is different from cholesterol 7α-hydroxylase, Eur. J. Biochem. 224:309–316.

    PubMed  CAS  Google Scholar 

  • Trzaskos, J. M., Magolda, R. L., Favata, M. F., Fischer, R. T., Johnson, P. R., Wen, H., Ko, S. S., Leonard, D. A., and. Gaylor, J. L., 1993, Modulation of 3-hydroxy-3-methylglutaryl-CoA reductase by 15α-fluorolanost-T-en3β-ol, J. Biol. Chem. 268:22591–22599.

    PubMed  CAS  Google Scholar 

  • Turley, S. D., and Dietschy, J. M., 1988. Cholesterol metabolism and excretion, in: The Liver, Biology and Pathology. (I. M. Arias, W. B. Jakoby, H. Popper, D. Schachter, and D. A. Shafritz, eds.) pp. 467–492, Raven Press, New York.

    Google Scholar 

  • Twisk, J., 1994, Regulation of cholesterol 7α-hydroxylase and sterol 27-hydroxylase in cultured rat hepatocyte, Ph.D. dissertation, Copyshop Pre-Klinische Laboratoria, Leiden, The Netherlands.

    Google Scholar 

  • Twisk, J., Lehmann, E. M., and Princen, H. M. G., 1993, Differential feedback regulation of cholesterol 7α-hydroxylase mRNA and transcriptional activity by rat bile acids in primary monolayer cultures of rat hepatocytes, Biochem. J. 290:685–691.

    PubMed  CAS  Google Scholar 

  • Twisk, J., Hoekman, M. F. M., Lehmann, E. M., Meijer, P., Mager, W. H., and Princen, H. M. G., 1994, Insulin suppresses bile acid synthesis by down-regulation of cholesterol 7α-hydroxylase and sterol 27-hydroxylase gene transcription, Hepatology 21:501–510.

    Google Scholar 

  • Twisk, J., Hoekman, M. F. M., Mager, W. H., Moorman, A. F., Boer, P. A. J., Scheja, L., Princen, H., and Gebhardt, R., 1995, Heterogenous expression of cholesterol 7α-hydroxylase and sterol 27-hydroxylase genes in the rabbit liver lobulus, J. Clin. Invest. 95:1235–1243.

    PubMed  CAS  Google Scholar 

  • Vlahcevic, Z. R., Heuman, D. M., and Hylemon, P. B., 1991, Regulation of bile acid biosynthesis, Hepatology 13:590–600.

    PubMed  CAS  Google Scholar 

  • Wang, D. P., and Chiang, J. Y. L., 1993, Structure and nucleotide sequences of the human cholesterol 7α-hydroxylase gene (CYP7), Genomics. 20:320–323.

    Google Scholar 

  • Wuarin, J., and Schibler, U., 1990, Expression of the liver-enriched transcriptional activator protein DBP follows a stringent circadian rhythm, Cell 63:1257–1266.

    PubMed  CAS  Google Scholar 

  • Xu, G., Salen, G., Shefer, S., Batta, A. K., Ness, G. C., Nguyen, L. B., Zhao, Z., Chen, T. S., Niemann, W., and Tint, G. S., 1993, Different feedback regulation of hepatic cholesterol and bile acid synthesis by glycocholic acid in rabbits, Gastroenterology 105:1192–1199.

    PubMed  CAS  Google Scholar 

  • Xu, G., Salen, G., Shefer, S., Ness, G. C., Nguyen, L. B., Parker, T. S., Chen, T. S., Zhao, Z., Donnelly, T., and Tint, G. S., 1995, Unexpected inhibition of cholesterol 7α-hydroxylase by cholesterol in New Zealand white and Watanabe heritable hyperlipiidemic rabbits, J. Clin. Invest. 95: 1497–1504.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Björkhem, I., Lund, E., Rudling, M. (1997). Coordinate Regulation of Cholesterol 7α-Hydroxylase and HMG-CoA Reductase in the Liver. In: Bittman, R. (eds) Cholesterol. Subcellular Biochemistry, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5901-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5901-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7707-8

  • Online ISBN: 978-1-4615-5901-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics