Skip to main content

Cholesterol Cytochemistry in Cell Biology and Disease

  • Chapter
Cholesterol

Part of the book series: Subcellular Biochemistry ((SCBI,volume 28))

Abstract

Cholesterol localization in membranes, cells, and tissues is a topic of substantial and continuing interest to the biomedical cell biologist. Knowing precisely where and in what amount cholesterol is present offers potentially useful insights into the functional role of this lipid as a constituent of normal membranes, and the part it plays in the pathogenesis of diseases that involve dysfunction of cholesterol homeostasis. The cholesterol content of membranes influences a range of properties, such as fluidity, stability, the activities of membrane-bound enzymes, and the adhesive and electrical properties of the cell surface. Differences in cholesterol content characterize the various specialized membrane systems of the cell; plasma membranes and the membranes of endocytic organelles are normally cholesterol-rich, whereas endoplasmic reticulum, nuclear, and mitochondrial membranes typically have much lower cholesterol levels. Furthermore, the concept that cholesterol distribution may be heterogeneous within a given membrane, reflecting a mosaiclike pattern of functional differentiation, has also been widely debated. Despite the wealth of information from in vitro biophysical studies, however, there remain many gaps in our understanding of the functional significance of cholesterol distrtibution in relation to the diverse membrane-mediated cellular activities that are fundamental to issues function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alecio, M. R., Golan, D. E., Veatch, W. R., and Rando, R. R., 1982, Use of a fluorescent cholesterol derivative to measure lateral mobility of cholesterol in membranes, Proc. Natl Acad. Sci. USA 79:5171–5174.

    PubMed  CAS  Google Scholar 

  • Allain, C. C., Poon, L. S., Chan, C. S. G., Richmond, W., and Fu, P. C., 1974, Enzymatic determination of total serum cholesterol, Clin. Chem. 20:470–475.

    PubMed  CAS  Google Scholar 

  • Anderson, R. G. W., 1993, Caveolae: where incoming and outgoing messengers meet, Proc. Natl. Acad. Sci. USA 90:10909–10913.

    PubMed  CAS  Google Scholar 

  • Anderson, R. G. W., Kamen, B. A., Rothberg, K. G., and Lacey, S. W., 1992, Potocytosis: sequestration and transport of small molecules by caveolae, Science 255:410–411.

    PubMed  CAS  Google Scholar 

  • Andrews, L. D., and Cohen, A. I., 1979, Freeze-fracture evidence for the presence of cholesterol in particle-free patches of basal disks and the plasma membrane of retinal rod outer segments of mice and frogs, J. Cell Biol. 81:215–228.

    PubMed  CAS  Google Scholar 

  • Bangham, A. D., and Horne, R. W., 1962, Action of saponin on biological cell membranes, Nature 196:952–953.

    PubMed  CAS  Google Scholar 

  • Behnke, O., Tranum-Jensen, J., and van Deurs, B., 1984a, Filipin as a cholesterol probe. I. Morphology of filipin-cholesterol interaction in lipid model systems, Eur. J. Cell Biol. 35:189–199.

    CAS  Google Scholar 

  • Behnke, O., Tranum-Jensen, J., and van Deurs, B., 1984b, Filipin as a cholesterol probe. II. Filipin-cholesterol interaction in red blood cell membranes, Eur. J. Cell Biol. 35:200–215.

    PubMed  CAS  Google Scholar 

  • Bittman, R., 1978, Sterol-polyene antibiotic complexation: probe of membrane structure, Lipids 13:686–691.

    PubMed  CAS  Google Scholar 

  • Bittman, R., Chen, W. C., and Anderson, O. R., 1974, Interaction of filipin III and amphotericin B with lecithin-sterol vesicles and cellular membranes. Spectral and electron microscope studies, Biochemistry 13:1364-1313.

    Google Scholar 

  • Blanchette-Mackie, J. E., Dwyer, N. K., and Amende, L. M., 1989, Cytochemical studies of lipid metabolism: immunogold probes for lipoprotein lipase and cholesterol, Am. J. Anat. 185:255–263.

    PubMed  CAS  Google Scholar 

  • Branton, D., Bullivant, S., Gilula, N. B., Karnovsky, M. J., Moor, H., Muhlethaler, K., Northcote, D. H., Packer, L., Satir, B., Satir, P., Speth, V., Staehelin, L. A., Steere, R. L., and Weinstein, R. S., 1975, Freeze-etching nomenclature, Science 190:54–56.

    PubMed  CAS  Google Scholar 

  • Chang, W.-J., Ying, Y., Rothberg, K. G., Hooper, N. M., Turner, A. J., Gambliel, H. A., De Gunzburg, J., Mumby, S. M., Gilman, A. G., and Anderson, R. G. W., 1994, Purification and characterization of smooth muscle cell caveolae, J. Cell Biol. 126:127–138.

    PubMed  CAS  Google Scholar 

  • Chao, F-F., Amende, L. M., Blanchette-Mackie, J. E., Skarlatos, S. I., Gamble, W., Resau, J. H., Mergner, W. T., and Kruth, H. S., 1988, Unesterified cholesterol-rich lipid particles in atherosclerotic lesions of human and rabbit aortas, Am. J. Pathol 131:73–83.

    PubMed  CAS  Google Scholar 

  • Compere, P., Maneta-Peyret, L., Goffinet, G., and Cassagne, C., 1995, Immunogold labelling of fatty acyl chains, J. Immunol Methods 181:201–209.

    PubMed  CAS  Google Scholar 

  • Coulombe, P. A., Kan, F. W. K., and Bendayan, M., 1988, Introduction of a high-resolution cyto-chemical method for studying the distribution of phospholipids in biological tissues, Eur. J. Cell Biol. 46:564–576.

    PubMed  CAS  Google Scholar 

  • Coxey, R. A., Pentchev, P. G., Campbell, G., and Blanchette-Mackie, E. J., 1993, Differential accumulation of cholesterol in Golgi compartments of normal and Niemann-Pick type C fibroblasts incubated with LDL: a cytochemical freeze-fracture study, J. Lipid Res. 34:1165–1176.

    PubMed  CAS  Google Scholar 

  • Davis, E. C., and Shivers, R. R., 1992, Ordered distribution of membrane-associated dense plaques in intact quail gizzard smooth muscle cells revealed by freeze-fracture following treatment with cholesterol probes, Anat. Rec. 232:385–392.

    PubMed  CAS  Google Scholar 

  • De Kruijff, B., and Demel, R. A., 1974, Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes, Biochim. Biophys. Acta 339:57–70.

    PubMed  Google Scholar 

  • De Kruijff, B., Gerritsen, W. J., Oerlemans, A., van Dijck, P. W. M., Demel, R. A., and van Deenen, L. L. M., 1974, Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. II. Temperature dependence of the polyene antibiotic-sterol complex formation, Biochim. Biophys. Acta 339:44–56.

    PubMed  Google Scholar 

  • Dietzen, D. J., Hastings, W. R., and Lublin, D. M., 1995, Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae, J. Biol. Chem. 270:6838–6842.

    PubMed  CAS  Google Scholar 

  • Dupree, P., Parton, R. G., Raposo, G., Kurzchalia, T. V., and Simons, K., 1993, Caveolae and sorting in the trans-Golgi network of epithelial cells, EMBO J. 12:1597–1605.

    CAS  Google Scholar 

  • El Yandouzi, E. H., Zlatkine, P., Moll, G., and Le Grimellec, C., 1994, Cholesterol distribution in renal epithelial-cells LLC-PK1 as determined by cholesterol oxidase-evidence that glutaraldehyde fixation masks plasma-membrane cholesterol pools, Biochemistry 33:2329–2334.

    PubMed  Google Scholar 

  • Elias, P. M., Goerke, J., Friend, D. S., and Brown, B. E., 1978, Freeze-fracture identification of sterol-digitonin complexes in cell and liposome membranes, J. Cell Biol. 78:577–596.

    PubMed  CAS  Google Scholar 

  • Elias, P. M., Friend, D. S., and Goerke, J., 1979, Membrane sterol heterogeneity. Freeze-fracture detection with saponins and filipin, J. Histochem. Cytochem. 27:1247–1260.

    PubMed  CAS  Google Scholar 

  • Emeis, J. J., Van Gent, C. M., and Van Sabben, C. M., 1977, An enzymatic method for the histochemi-cal localization of free and esterified cholesterol separately, Histochem. J. 9:197–204.

    PubMed  CAS  Google Scholar 

  • Feltkamp, C. A., and van der Waerden, A. W. M., 1982, Membrane-associated proteins affect the formation of filipin-cholesterol complexes in viral membranes, Exp. Cell Res. 140:289–297.

    PubMed  CAS  Google Scholar 

  • Frank, J. S., Mottino, G., and Nievelstein-Post, P., 1995, Early events in atherosclerosis captured by the quick-freeze/deep-etch technique, in: Rapid Freezing, Freeze Fracture and Deep Etching (N. J. Severs and D. M. Shotton, eds.), pp. 335–345, Wiley, New York.

    Google Scholar 

  • Friend, D. S., and Bearer, E. L., 1981, Beta-hydroxysterol distribution as determined by freeze-fracture cytochemistry, Histochem. J. 13:535–546.

    PubMed  CAS  Google Scholar 

  • Frühling, J., Penasse, W., Sand, G., and Claude, A., 1971, Reactions de la digitonine avec le cholesterol et autres lipides de la corticosurrenale du rat: etude par microscopie electronique, J. Microscopie 12:83–106.

    Google Scholar 

  • Fujimoto, T., 1993, Calcium pump of the plasma membrane is localized in caveolae, J. Cell Biol. 120:1147–1157.

    PubMed  CAS  Google Scholar 

  • Fujimoto, T., Nakade, S., Miyawaki, A., Mikoshiba, K., and Ogawa, K., 1992, Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae, J. Cell Biol. 119:1507–1513.

    PubMed  Google Scholar 

  • Glauert, A. M., Dingle, J. T., and Lucy, J. A., 1962, Action of saponin on biological cell membranes, Nature 196:953–955.

    CAS  Google Scholar 

  • Hacker, G. W., 1989, Silver-enhanced colloidal gold for light microscopy, in: Colloidal Gold. Principles, Methods and Applications (M. A. Hayat, ed.), pp. 297–321, Vol. 1, Academic Press, San Diego.

    Google Scholar 

  • Hayat, M. A., 1989, Colloidal Gold. Principles, Methods and Applications, Academic Press, New York.

    Google Scholar 

  • Horisberger, M., 1983, Colloidal gold as a tool in molecular biology, Trends Biochem. Sci. 8: 395–397.

    CAS  Google Scholar 

  • Jones, H. M., and Miyai, K., 1981, Ultrastructural localization of cholesterol by enzyme histochemistry, Histochem. J. 13:1017–1028.

    PubMed  CAS  Google Scholar 

  • Kaesberg, B., Harrach, B., Dieplinger, H., and Robenek, H., 1993, In situ immunolocalization of lipoproteins in human arteriosclerotic tissue, Arterioscler. Thromb. 13:133–146.

    PubMed  CAS  Google Scholar 

  • Kan, F. W. K., and Rauch, J., 1993, Immunolocalization of phospholipids using freeze-fracture cytochemistry, in: Proceedings of the 51st Annual Meeting of the Microscopy Society of America (G. W. Bailey and C. L. Rieder, eds.), San Francisco Press, San Francisco.

    Google Scholar 

  • Keller, G., Siegel, M. W., and Caras, I. W., 1992, Endocytosis of glycophospholipid-anchored and trans membrane forms of CD4 by different endocytic pathways, EMBO J. 11:863–874.

    CAS  Google Scholar 

  • Kinsky, S. C., Luse, S, and van Deenen, L. L. M., 1966, Interaction of polyene antibiotics with natural and artificial membrane systems, Fed. Proc. Fed. Am. Soc. Exp. Biol. 25:1503.

    Google Scholar 

  • Kitajima, Y., Sekiya, T., and Nozawa, Y., 1976, Freeze-fracture ultrastructural alterations induced by filipin, pimaricin, nystatin and amphotericin B in the plasma membranes of epidermophyton, sac-charomyces and red blood cells. A proposal of models for polyene-ergosterol complex-induced lesions, Biochim. Biophys. Acta 445:452–465.

    Google Scholar 

  • Kruth, H. S., 1983, Filipin-positive, oil red O-negative particles in atherosclerotic lesions induced by cholesterol feeding, Lab. Invest. 50:87–93.

    Google Scholar 

  • Kruth, H. S., 1984a, Histochemical detection of esterified cholesterol within human atherosclerotic lesions using the fluorescent probe filipin, Atherosclerosis 51:281–292.

    PubMed  CAS  Google Scholar 

  • Kruth, H. S., 1984b, Localization of unesterified cholesterol in human atherosclerotic lesions. Demonstration of filipin-positive, oil-red-O-negative particles, Am. J. Pathol. 114:201–208.

    PubMed  CAS  Google Scholar 

  • Kruth, H. S., and Fry, D. L., 1984, Histochemical detection and differentiation of free and esterified cholesterol in swine atherosclerosis using filipin, Exp. Mol. Pathol. 40:288–294.

    PubMed  CAS  Google Scholar 

  • Kruth, H. S., Skarlatos, S. I., Lilly, K., Chang, J., and Ifrim, I., 1995, Sequestration of acetylated LDL and cholesterol crystals by human monocyte-derived macrophages, J. Cell Biol. 129: 133–145.

    PubMed  CAS  Google Scholar 

  • Kurzchalia, T. V., Dupree, P., and Monier, S., 1994, VIP21-caveolin, a protein of the trans-Golgi network and caveolae, FEBS Lett. 346:88–91.

    PubMed  CAS  Google Scholar 

  • Kurzchalia, T. V., Dupree, P., Parton, R. G., Kellner, R., Virta, H., Lehnert, M., and Simons, K., 1992, VIP21, a 21-kD membrane protein is an integral component of trans-golgi-network-derived transport vesicles, J. Cell Biol. 118:1003–1014.

    PubMed  CAS  Google Scholar 

  • Luciano, L., Reale, E., Konitz, H., Boseck, U., and Boseck, S., 1989, Alignment of cholesterol in the membrane bilayer, J. Histochem. Cytochem. 37:1421–1425.

    PubMed  CAS  Google Scholar 

  • Lucy, J. A., and Glauert, A. M., 1964, Structure and assembly of macromolecular lipid complexes composed of globular micelles, J. Mol. Biol. 8:727–748.

    PubMed  CAS  Google Scholar 

  • Maneta-Peyret, L., Picard, J-P., Bezian, J-H., and Cassagne, C., 1992, Fatty acids rendered immunogenic, Immunol Lett. 31:227–232.

    PubMed  CAS  Google Scholar 

  • Maraldi, N. M., Zini, N., Squarzoni, S., Del Coco, R., Sabatelli, P., and Manzoli, F. A., 1992, Intranuclear localization of phospholipids by ultrastructural cytochemistry, J. Histochem. Cytochem. 40:1383–1392.

    PubMed  CAS  Google Scholar 

  • Maurin, L., Bancel, F., Morin, P., and Bienveniie, A., 1988, Interactions between a paramagnetic analogue of cholesterol and filipin, Biochim. Biophys. Acta 939:102–110.

    PubMed  CAS  Google Scholar 

  • Mayor, S., Rothberg, K. G., and Maxfield, F. R., 1994, Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking, Science 264:1948–1951.

    PubMed  CAS  Google Scholar 

  • Miller, R. G., 1984a, Interactions between digitonin and bilayer membranes, Biochim. Biophys. Acta 774:151–157.

    PubMed  CAS  Google Scholar 

  • Miller, R. G., 1984b, The use and abuse of filipin to localize cholesterol in membranes, Cell Biol. Int. Rep. 8:519–535.

    PubMed  CAS  Google Scholar 

  • Miller, R. G., 1989, Freeze-fracture sterol localization with filipin, in: Freeze-Fracture Studies of Membranes (S. W. Hui, ed.), pp. 87–102, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Miller, R. G., and Baldridge, W. H., 1985, The tight junction as a barrier to cholesterol in canine epithelial cells, J. Ultrastruct. Res. 90:275–285.

    PubMed  CAS  Google Scholar 

  • Miyazawa, A., Inoue, H., Yoshioka, T., Horikoshi, T., Yanagisawa, K., Umeda, M., and Inoue, K., 1992, Monoclonal antibody analysis of phosphatidylserine and protein kinase C localizations in developing rat cerebellum, J. Neurochem. 59:1547–1554.

    PubMed  CAS  Google Scholar 

  • Montesano, R., 1979, Inhomogeneous distribution of filipin-sterol complexes in smooth muscle cell plasma membrane, Nature 280:328–329.

    PubMed  CAS  Google Scholar 

  • Moranto, A. R., 1982, Neuronal mapping: a photooxidation reaction makes Lucifer yellow useful for electron microscopy, Science 217:953–955.

    Google Scholar 

  • Murata, M., Peränen, J., Schreiner, R., Wieland, F., Kurzchalia, T. V., and Simons, K., 1995, VIP21/caveolin is a cholesterol-binding protein, Proc. Natl. Acad. Sci. USA 92:10339–10343.

    PubMed  CAS  Google Scholar 

  • Norman, A. W., Spielvogel, A. M., and Wong, R. G., 1976, Polyene antibiotic-sterol interaction, Adv. Lipid Res. 14:127–169.

    PubMed  CAS  Google Scholar 

  • Ökrös, I., 1968, Digitonin reaction in electron microscopy, Histochemie 13:91–96.

    PubMed  Google Scholar 

  • Orci, L., Miller, R. G., Montesano, R., Perrelet, A., Amherdt, M., and Vassalli, P., 1980, Opposite polarity of filipin-induced deformations in the membrane of condensing vacuoles and zymogen granules, Science 210:1019–1021.

    PubMed  CAS  Google Scholar 

  • Orci, L., Montesano, R., Meda, P., Malaisse-Lagae, F., Brown, D., Perrelet, A., and Vassalli, P., 1981, Heterogeneous distribution of filipin-cholesterol complexes across the cisternae of the Golgi apparatus, Proc. Natl. Acad. Sci. USA 78:293–297.

    PubMed  CAS  Google Scholar 

  • Pagano, R. E., Martin, O. C., Kang, H. C., and Haugland, R. P., 1991, A novel fluorescent ce-ramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor, J. Cell Biol. 113: 1267–1279.

    PubMed  CAS  Google Scholar 

  • Parton, R. G., and Simons, K., 1995, Digging into caveolae, Science 269:1398–1399.

    PubMed  CAS  Google Scholar 

  • Pelletier, R. M., and Byers, S. W., 1992, The blood testis barrier and Sertoli cell junctions: structural considerations, Microsc. Res. Tech. 20:3–33.

    PubMed  CAS  Google Scholar 

  • Pelletier, R. M., and Friend, D. S., 1983, The Sertoli cell junctional complex: structure and permeability to filipin in the neonatal and adult guinea pig, Am. J. Anat. 168:213–228.

    PubMed  CAS  Google Scholar 

  • Pelletier, R-M., and Vitale, M. L., 1994, Filipin vs enzymatic localization of cholesterol in guinea pig, mink and mallard duck testicular cells, J. Histochem. Cytochem. 42:1539–1554.

    PubMed  CAS  Google Scholar 

  • Pumplin, D. W., and Bloch, R. J., 1983, Lipid domains of acetylcholine receptor clusters detected with saponin and filipin, J. Cell Biol. 97:1043–1054.

    PubMed  CAS  Google Scholar 

  • Robenek, H., 1989, Topography and internalization of cell surface receptors as analyzed by affinity-and immunolabeling combined with surface replication and ultrathin sectioning techniques, in: Electron Microscopy of Subcellular Dynamics (H. Plattner, ed.), pp. 141–163, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Robenek, H., and Schmitz, G., 1988, Ca++ antagonist and ACAT inhibitors promote cholesterol efflux from macrophages by different mechanisms. II, Arteriosclerosis 8:57–67.

    PubMed  CAS  Google Scholar 

  • Robenek, H., and Schmitz, G., 1991, Abnormal processing of Golgi elements and lysosomes in Tangier disease, Arterioscler. Thromb. 11:1007–1020.

    PubMed  CAS  Google Scholar 

  • Robenek, H., and Severs, N. J., 1992, Endocytosis of lipoproteins and cholesterol homeostasis, in: Cell Interactions in Atherosclerosis (H. Robenek and N. J. Severs, eds.), pp. 261–303, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Robenek, H., and Severs, N. J., 1993, Lipoprotein receptors in macrophages and smooth muscle cells, in: Current Topics in Pathology, Recent Progress in Atherosclerosis Research, Vol.87 (E. Vollmer and A. Roessner, eds.), pp. 73–123, Springer-Verlag, Berlin.

    Google Scholar 

  • Robinson, J. M., and Karnovsky, M. J., 1980, Evaluation of the polyene antibiotic filipin as a cyto-chemical probe for membrane cholesterol, J. Histochem. Cytochem. 28:161–168.

    PubMed  CAS  Google Scholar 

  • Rodrigues, M. M., Kruth, H. S., Krachmer, J. H., and Willis, R., 1987, Unesterified cholesterol in Schnyder’s corneal crystalline dystrophy, Am. J. Ophthalmol. 104:157–163.

    PubMed  CAS  Google Scholar 

  • Rodrigues, M. M., Kruth, H. S., Krachmer, J. H., Vrabec, M. P., and Blanchette-Mackie, J. E., 1990, Cholesterol localization in ultrathin frozen sections in Schnyder’s corneal crystalline dystrophy, Am. J. Ophthalmol. 110:513–517.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Lafrasse, C., Rousson, R., Bonnet, J., Pentchev, P. G., Louisot, P., and Vanier, M. T., 1990, Abnormal cholesterol metabolism in imipramine-treated fibroblast cultures. Similarities with Niemann-Pick type C disease, Biochim. Biophys. Acta 1043:123–128.

    PubMed  CAS  Google Scholar 

  • Roth, J. E., 1983, The colloidal gold marker system for light and electron microscope cytochemistry, in: Techniques in Immunocytochemistry, Vol. 2 (G. R. Bullock and P. Petrusz, eds.), pp. 217–284, Academic Press, London.

    Google Scholar 

  • Romberg, K. G., Ying, Y-S., Kamen, B. A., and Anderson, R. G. W., 1990, Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate, J. Cell Biol. 111:2931–2938.

    Google Scholar 

  • Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y.-S., Glenney, J. R., and Anderson, R. G. W., 1992, Caveolin, a protein component of caveolae membrane coats, Cell 68:673–682.

    PubMed  CAS  Google Scholar 

  • Sandell, J. H., and Masland, R., 1988, Photoconversion of some fluorescent markers to a diaminoben-zidine product, J. Histochem. Cytochem. 36:555–559.

    PubMed  CAS  Google Scholar 

  • Sargiacomo, M., Scherer, P. E., Tang, Z., Kübier, E., Song, K. S., Sanders, M. C., and Lisanti, M. P., 1995, Oligomeric structure of caveolin: implications for caveolae membrane organization, Proc. Natl. Acad. Sci. USA 92:9407–9411.

    PubMed  CAS  Google Scholar 

  • Scallen, T. J., and Dietert, S. E., 1969, The quantitative retention of cholesterol in mouse liver prepared for electron microscopy by fixation in a digitonin-containing aldehyde solution, J. Cell Biol. 40:802–813.

    PubMed  CAS  Google Scholar 

  • Schmitz, G., Assmann, G., Robenek, H., and Brennhausen, B., 1985a, Tangier disease: a disorder of intracellular membrane traffic, Proc. Natl. Acad. Sci. USA 82:6305–6309.

    PubMed  CAS  Google Scholar 

  • Schmitz, G., Robenek, H., Lohmann, U., and Assmann, G., 1985b, Interaction of high density lipoproteins with cholesteryl ester-laden macrophages: biochemical and morphological characterization of cell surface receptor binding, endocytosis and resecretion of high density lipoproteins by macrophages, EMBO J. 4:613–622.

    CAS  Google Scholar 

  • Schmitz, G., Robenek, H., and Assmann, G., 1987, Role of the high-density lipoprotein receptor cycle in macrophage cholesterol metabolism, Atherosclerosis Rev. 16:95–107.

    Google Scholar 

  • Schmitz, G., Robenek, H., Beuk, M., Krause, R., Schurek, A., and Niemann, R., 1988, Ca++ antagonist and ACAT inhibitors promote cholesterol efflux from macrophages by different mechanisms. I, Arteriosclerosis 8:45–56.

    Google Scholar 

  • Schnitzer, J. E., Liu, J., and Oh, P., 1995a, Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases, J. Biol. Chem. 270:14399–14404.

    PubMed  CAS  Google Scholar 

  • Schnitzer, J. E., Oh, P., Pinney, E., and Allard, J., 1994, Filipin-sensitive caveolae-mediated transport in endothelium: Reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules, J. Cell Biol. 127:1217–1232.

    PubMed  CAS  Google Scholar 

  • Schnitzer, J. E., Mcintosh, D. P., Dvorak, A. M., Liu, J., and Oh, P., 1995b, Separation of caveolae from associated microdomains of GPI-anchored proteins, Science 269:1435–1439.

    PubMed  CAS  Google Scholar 

  • Schnitzer, J. E., Oh, P., Jacobson, B. S., and Dvorak, A. M., 1995c, Caveolae from luminal plas-malemma of rat lung endothelium: Microdomains enriched in caveolin, Ca2+-ATPase, and inositol trisphosphate receptor, Proc. Natl. Acad. Sci. USA 92:1759–1763.

    PubMed  CAS  Google Scholar 

  • Severs, N. J., 1981, Localization of cholesterol in the Golgi apparatus of cardiac muscle cells, Experi-entia 37:1195–1198.

    CAS  Google Scholar 

  • Severs, N. J., 1984a, Freeze-fracture cytochemical methods for studying the distribution of cholesterol in heart membranes, in: Methods in Studying Cardiac Membranes. Volume II (N. S. Dhalla, ed.), pp. 27–44, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Severs, N. J., 1984b, Freeze-fracture cytochemistry, in: Electron Microscopy 1984 (A. Csanady, P. Roh-lich, and D. Szabo, eds.), pp. 1747–1756, Programme Committee Eighth European Congress on Electron Microscopy, Budapest.

    Google Scholar 

  • Severs, N. J., 1988, Caveolae: static inpocketings of the plasma membrane, dynamic vesicles or plain artifact? J. Cell Sci. 90:341–348.

    PubMed  Google Scholar 

  • Severs, N. J., 1995, Lipid localization by membrane perturbation: A cautionary tale, in: Rapid Freezing, Freeze Fracture and Deep Etching (N. J. Severs and D. M. Shotton, eds.), pp. 225–234, Wiley, New York.

    Google Scholar 

  • Severs, N. J., and Robenek, H., 1983, Detection of microdomains in biomembranes—an appraisal of recent developments in freeze-fracture cytochemistry, Biochim. Biophys. Acta 737:373–408.

    PubMed  CAS  Google Scholar 

  • Severs, N. J., and Shotton, D. M., 1995, Rapid Freezing, Freeze Fracture, and Deep Etching, pp. 1–372, Wiley-Liss, New York.

    Google Scholar 

  • Severs, N. J., and Simons, H. L., 1983, Failure of filipin to detect cholesterol-rich domains in smooth muscle plasma membrane, Nature 303:637–638.

    PubMed  CAS  Google Scholar 

  • Severs, N. J., and Simons, H. L., 1986, Caveolar bands and the effects of sterol-binding agents in vascular smooth muscle plasma membrane. Single and double labelling with filipin and tomatin in the aorta, pulmonary artery and vena cava, Lab. Invest. 55:295–307.

    PubMed  CAS  Google Scholar 

  • Severs, N. J., and Simons, H. L., 1987, Lack of cytochemically-detectable cholesterol in rabbit vena cava endothelial plasma membrane, J. Anat. 151:233–248.

    PubMed  CAS  Google Scholar 

  • Severs, N. J., Warren, R. C., and Barnes, S. H., 1981, Analysis of membrane structure in the transitional epithelium of rat urinary bladder. 3. Localization of cholesterol using filipin and digitonin, J. Ultrastruct. Res. 77:160–188.

    PubMed  CAS  Google Scholar 

  • Simionescu, N., Lupu, F., and Simionescu, M., 1983, Rings of membrane sterols surround the openings of vesicles and fenestrae, in capillary endothelium, J. Cell Biol. 97:1592–1600.

    PubMed  CAS  Google Scholar 

  • Simons, H. L., and Severs, N. J., 1986, Plasmalemmal vesicles and the effects of sterol-binding agents in rabbit aortic endothelium, J. Cell Sci. 83:141–153.

    PubMed  CAS  Google Scholar 

  • Smart, E. J., Ying, Y.-S., Conrad, P. A., and Anderson, R. G. W., 1994, Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation, J. Cell Biol. 127:1185–1197.

    PubMed  CAS  Google Scholar 

  • Smejkal, G. B., and Hoff, H. F., 1994a, Cholesterol-specific probe for lipoproteins immobilized on nitrocellulose membranes, Biotechniques 16:68–70.

    PubMed  CAS  Google Scholar 

  • Smejkal, G. B., and Hoff, H. F., 1994b, Filipin staining of lipoproteins in Polyacrylamide gels: sensitivity and photobleaching of the fluorophore and its use in a double staining method, Electrophoresis 15:922–925.

    PubMed  CAS  Google Scholar 

  • Sokol, J., Blanchette-Mackie, E. J., Kruth, H. S., Dwyer, N. K., Amende, L. M., Butler, J. D., Robinson, E., Patel, S., Brady, R. O., Comly, M. E., Vanier, M. T., and Pentchev, P. G., 1988, Type-C Niemann-Pick disease: lysosomal accumulation and defective intracellular mobilization of LDL-cholesterol, J. Biol. Chem. 263:3411–3417.

    PubMed  CAS  Google Scholar 

  • Stahl, A., and Mueller, B. M., 1995, The urokinase-type plasminogen activator receptor, a GPI-linked protein, is localized in caveolae, J. Cell Biol. 129:335–344.

    PubMed  CAS  Google Scholar 

  • Steer, C. J., Bisher, M., Blumenthal, R., and Steven, A. C., 1984, Detection of membrane cholesterol by filipin in isolated rat liver coated vesicles is dependent upon removal of the clathrin coat, J. Cell Biol. 99:315–319.

    PubMed  CAS  Google Scholar 

  • Stefanovä, I., Horejsí, V., Ansotegui, I. J., Knapp, W., and Stockinger, H., 1991, GPI-anchored cell-surface molecules complexed to protein tyrosine kinases, Science 254:1016–1019.

    PubMed  Google Scholar 

  • Swartz, G. M., Gentry, M. K., Amende, L. M., Blanchette-Mackie, J. E., and Alving, C. R., 1988, Antibodies to cholesterol, Proc. Natl. Acad. Sci. USA 85:1902–1906.

    PubMed  CAS  Google Scholar 

  • Tamm, S. L., and Tamm, S., 1983, Distribution of sterol-specific complexes in a continually shearing region of a plasma membrane and at procaryotic-eucaryotic cell junctions, J. Cell Biol. 97:1098–1106.

    PubMed  CAS  Google Scholar 

  • Tillack, T. W., and Kinsky, S. C., 1973, A freeze-fracture study of the effects of filipin on liposomes and human erythrocyte membranes, Biochim. Biophys. Acta 323:43–54.

    PubMed  CAS  Google Scholar 

  • Vanier, M. T., Rodriguez-Lafrasse, C., Rousson, R., Gazzah, N., Juge, M-C, Pentchev, P. G., Revol, A., and Louisot, P., 1991, Type C Niemann-Pick disease: spectrum of phenotypic variation in disruption of intracellular LDL-derived cholesterol processing, Biochim. Biophys. Acta 1096:328–337.

    PubMed  CAS  Google Scholar 

  • Verkleij, A. J., De Kruijff, B., Gerritsen, W. F., Demel, W. F., van Deenen, L. L. M., and Ververgaert, P. H. J., 1973, Freeze-etch electron microscopy of erythrocytes, Acholeplasma laidlawii cells and liposomal membranes after the action of filipin and amphotericin B, Biochim. Biophys. Acta 291:577–581.

    PubMed  CAS  Google Scholar 

  • Warren, R. C., and Severs, N. J., 1980, Localization of cholesterol in the bladder luminal membrane using digitonin and filipin, in: Electron Microscopy 1980, Vol.2 (P. Brederoo and W. de Priester, eds.), pp. 326–327, Seventh European Congress on Electron Microscopy Foundation, Leiden.

    Google Scholar 

  • Ying, Y. S., Anderson, R. G. W., and Rothberg, K. G., 1992, Each caveola contains multiple glycosyl-phosphatidylinositol-anchored membranes, Cold Spring Harb. Symp. Quant. Biol. 57:593–604.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Severs, N.J. (1997). Cholesterol Cytochemistry in Cell Biology and Disease. In: Bittman, R. (eds) Cholesterol. Subcellular Biochemistry, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5901-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5901-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7707-8

  • Online ISBN: 978-1-4615-5901-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics