Skip to main content

A Nomenclature System for the Aldo-Keto Reductase Superfamily

  • Chapter
Enzymology and Molecular Biology of Carbonyl Metabolism 6

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 414))

Abstract

The aldo-keto reductases (AKRs) represent a growing superfamily of oxidoreductases (Bohren et al., 1989; Bruce et al., 1994). Proteins of the AKR superfamily are monomeric (α/β)8-barrel proteins, about 320 amino acids in length, which bind NAD(P)(H) without a Rossmann-fold motif (Rondeau et al., 1992; Wilson et al., 1992 > 1995; Hoog et al., 1994, El-Kabbani et al., 1995). Found in mammals, amphibians, plants, yeast, protozoa, and bacteria, the AKRs metabolize a range of substrates including aliphatic aldehydes, monosaccharides, steroids, prostaglandins, polycyclic aromatic hydrocarbons, and isoflavinoid phytoalexins. To date, at least thirty-nine proteins have been cloned and characterized as members of the superfamily, and additional genes have been identified that potentially code for AKR proteins. The rapid progress in identifying new AKRs has lead to some problem in the naming of these proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., & Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Amore, R., Kotter, P., Kuster, C., Ciriacy, M., & Hollenberg, C.P. (1991) Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene 109: 89–97

    Article  PubMed  CAS  Google Scholar 

  • Anderson, S., Berman-Marks, C., Lazarus, R., Miller, J., Stafford, K., Seymour, J., Light, D., Rastetter, W., & Estell, D. (1985) Production of 2-keto-L-gulonate, an intermediate in L-ascorbate synthesis, by a genetically modified Erwinia herbicola. Science 230: 144–149

    Article  PubMed  CAS  Google Scholar 

  • Bartels, D., Engelhardt, K., Roncarati, R., Schneider, K., Rutts, M., & Salamini, F. (1991) An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein. EMBO J. 10: 1037–1043

    PubMed  CAS  Google Scholar 

  • Billard, P.P., Menait, S.S., Fleer, R.R., & Bolotin-Fukuhara, M.M. (1994) Isolation and characterization of the gene encoding xylose reductase from Kluyveromyces lactis. Gene 162: 93–97

    Article  Google Scholar 

  • Bohren, K.M., Bullock, B., Wermuth, B., & Gabbay, K.H. (1989) The aldo-keto reductase superfamily J. Biol. Chem. 264:9547–9551

    PubMed  CAS  Google Scholar 

  • Bruce, N.C., Willey, D.L., Coulson, A.F.W., & Jeffrey, J. (1994) Bacterial morphine dehydrogenase further defines a distinct superfamily of oxidoreductases with diverse functional activities. Biochem. J. 299: 805–811

    PubMed  CAS  Google Scholar 

  • Carper, D., Nishimura, C., Shinohara, T., Dietzchold, B., Wistow, G., Craft, C., Kador, P., & Kinoshita, J.H. (1987) Aldose reductase and ρ-crystallin belong to the same protein superfamily as aldehyde reductse. FEBS Letters 220: 209–213

    Article  PubMed  CAS  Google Scholar 

  • Del Bello, B., Maellaro, E., Sugherini, L., Santucci, A., Comporti, M., & Casini, A.F. (1994) Purification of NADPH-dependent dehydroascorbate reductase from rat liver and its identification with 3α-hydroxysteroid dehydrogenase. Biochem. J. 304: 385–390

    PubMed  Google Scholar 

  • Devereux, J., Haeberil, P., & Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic. Acids Res. 12: 387–395

    Article  PubMed  CAS  Google Scholar 

  • Deyashiki, Y., Ohshima, K., Nakanishi, M., Sato, K., Matsuura, K., & Hara, A. (1995) Molecular cloning and characterization of mouse estradiol 17β-dehydrogenase (A-specific), a member of the aldo-keto reductase family. J. Biol. Chem. 270: 10461–10467

    Article  PubMed  CAS  Google Scholar 

  • Donohue, P.J., Alberts, G.F., Hampton, B.S. & Winkles, J.A. (1994) A delayed-early gene activated by fibroblast growth factor-1 encodes a protein related to aldose reductase. J. Biol. Chem. 269: 8604–8609

    PubMed  CAS  Google Scholar 

  • El-Kabbani, I., Judge, K., Ginell, S.L., Myles, D.A.A., DeLucas, L.J., & Flynn, T.G. (1995) Structure of porcine aldehyde reductase holoenzyme. Nature Structural Biology 2: 687–692

    Article  PubMed  CAS  Google Scholar 

  • Ellis, E.M., Judah, D.J., Neal, G.E., & Hayes, J.D. (1993) An ethoxyquin-inducible aldehyde reductase from rat liver that metabolizes aflatoxin Bl defines a subfamily of the aldo-keto reductases. Proc. Natl. Acad. Sci. USA 90: 10350–10354

    Article  PubMed  CAS  Google Scholar 

  • Farber, G.K. & Petsko, G.A. (1990) The evolution of α/β-barrel enzymes. Trends in Biochem. Sciences 15: 228–234

    Article  CAS  Google Scholar 

  • Flynn, T.G., Green, N.C., Bhatia, M.B., & El-Kabbani, O. (1995) Structure and mechanism of aldehyde reductase Adv. Exp. Med. & Bio. 372: 193–201

    Article  CAS  Google Scholar 

  • Garcia-Perez, A., Martin, B., Murphy, H.R., Uchida, S., Murer, H., Cowley, B.D., Handler, J.S., & Burg, M.B. (1989) Molecular cloning of cDNA coding for kidney aldose reductase. J. Biol. Chem. 264: 16815–16821

    PubMed  CAS  Google Scholar 

  • Gish, W. & States, D.J. (1993) Identification of protein coding regions by database similarity search. Nature Genetics 3: 266–272

    Article  PubMed  CAS  Google Scholar 

  • Grindley, J.G., Payton, M.A., De Pol, H., & Hardy, K.G. (1988) Conversion of glucose to 2-keto-L-gulonate, an intermediate in L-ascorbate synthesis, by a recombinant strain of Erwinia citreus. Appl. Environ. Microbiol. 54: 1770–1775

    PubMed  CAS  Google Scholar 

  • Gui, T., Tanimoto, T., Kokai, Y., & Nishimura, C. (1995) Presence of a closely related subgroup in the aldo-keto reductase superfamily of the mouse. Eur. J. Biochem. 227: 448–453

    Article  PubMed  CAS  Google Scholar 

  • Hara, A., Matsuura, K., Tamada, Y., Sato, K., Miyabe, Y., Deyashiki, Y., & Ishida, N. (1996) Relationship of human liver dihydrodiol dehydrogenases to hepatic bile-acid binding protein and an oxidoreductase of human colon cells. Biochem. J. 313: 373–376.

    PubMed  CAS  Google Scholar 

  • Hoog, S.S., Pawlowski, J.E., Alzari, P.M., Penning, T.M., & Lewis, M. (1994) Three-dimensional structure of rat liver 3α-hydroxysteroid/dihydrodiol dehydrogenase: a member of the aldo-keto reductase superfamily. Proc. Natl. Acad. Sci. USA 91: 2517–2521

    Article  PubMed  CAS  Google Scholar 

  • Jaquinod, M., Potier, N., Klarskov, K., Reymann, J.M., Sorokine, O., Kieffer, S., Barth, P., Andriantomanga, V., Biellman, J.F., & Van Dorsselaes, A. (1993) Sequence of pig lens aldose reductase and electrospray mass spectroscopy of non-covalent and covalent complexes. Eur. J. Biochem. 218: 893–903

    Article  PubMed  CAS  Google Scholar 

  • Jornvall, H., Persson, M., Krook, M., Atrian, S., Gonzalez-Duarte, R., Jeffrey, J., & Ghosh, D. (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34: 6003–6013

    Article  PubMed  CAS  Google Scholar 

  • Kanayama, Y., Moni, H., Imaseki, H., & Yamaki, S. (1992) Nucleotide sequence of a cDNA encoding NADP-sorbitol-6-phosphate dehydrogenase from apple. Plant Physio. 100: 1607–1608

    Article  CAS  Google Scholar 

  • Khanna, M., Qin, K.N., Wang, R.W., & Cheng, K.C. (1995) Substrate specificity, gene structure, and tissue-specific distribution of multiple human 3a-hydroxysteroid dehydrogenases. J. Biol. Chem. 270: 20162–20168

    Article  PubMed  CAS  Google Scholar 

  • Kita, K. (1995) Cloning, sequence analysis, and expression of aldehyde reductase from red yeast Sporobolomyces salmonicolor. GenBank submission

    Google Scholar 

  • Kondo, K., Kai, M., Setoguchi, Y., Eggertsen, G., Sjoblom, P., Setoguchi, T., Okuda, K., & Bjorkhem, I. (1994) Cloning and expression of cDNA of human Δ4-3-oxosteroid-5β-reductase and substrate specificity of the expresed enzyme. Eur. J. Biochem. 219: 357–363

    Article  PubMed  CAS  Google Scholar 

  • Lacy, W.R., Washenick, K.J., Cook, R.G., & Dunbar, B.S. (1993) Molecular cloning and expression of an abundant rabbit ovarian protein with 20α-hydroxysteroid dehydrogenase activity. Mol. Endo. 7: 58–66

    Article  CAS  Google Scholar 

  • Lee, S.P. & Chen, T.H.H. (1993) Molecular cloning of abscisic acid-responsive mRNAs expressed during induction of freezing tolerance in bromegrass suspension culture. Plant Physio. 101: 1089–1092

    Article  CAS  Google Scholar 

  • McCormack, T. & McCormack, K. (1994) Shaker K+ channel β-subunits belong to an NAD(P)H-dependent oxidoreductase superfamily. Cell 79: 1133–1135

    Article  PubMed  CAS  Google Scholar 

  • Miura, R., Shiota, K., Noda, K., Yagi, S., Ogawa, T., & Takahashi, M. (1994) Molecular cloning of cDNA for rat ovarian 20α-hydroxysteroid dehydrogenase (HSD1). Biochem. J. 299: 561–567

    PubMed  CAS  Google Scholar 

  • Needleman, S.B. & Wunsch, C.D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol Biol. 48: 443–453

    Article  PubMed  CAS  Google Scholar 

  • Oechsner, U., Magodolen, V., & Bandlow, W. (1988) A nuclear yeast gene (GCY) encodes a polypeptide with high homology to a vertebrate lens protein. FEBS Letters 238: 123–128

    Article  PubMed  CAS  Google Scholar 

  • Onishi, Y., Noshiro, M., Shimosato, T., & Okuda, K. (1994) Molecular cloning and sequence analysis of cDNA encoding Δ4-3-ketosteroid-5β-reductase of rat liver. FEBS Letters 283: 215–218

    Article  Google Scholar 

  • Pailhoux, E.A., Martinez, A., Veyssiere, G.M., Jean, C.G. (1990) Androgen-dependent protein from mouse vas deferens. J. Biol. Chem. 265: 19932–19936

    PubMed  CAS  Google Scholar 

  • Pawlowski, J.E., Huizinga, M., & Penning, T.M. (1991) Cloning and sequencing of the cDNA for rat liver 3α-hydroxysteroid/dihydrodiol dehydrogense. J. Biol. Chem. 266: 8820–8825

    PubMed  CAS  Google Scholar 

  • Petrash, J.M. & Favello, A.D. (1989) Isolation and characterization of cDNA clones encoding aldose reductase. Exp. Eye Res. 8: 1021–1027

    CAS  Google Scholar 

  • Rettig, J., Heinemann, S.H., Wunder, F., Lorra, C., Parcej, C.N., Dolly, J.O., & Pongs, O. (1994) Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature 369: 289–294

    Article  PubMed  CAS  Google Scholar 

  • Rondeau, J.M., Tete-Favier, F., Podjarny, A., Reymann, J.M., Barth, P., Biellman, J.F., & Moras, D. (1992) Novel NADPH-binding domain revealed by the crystal structure of aldose reductase. Nature 355: 469–472

    Article  PubMed  CAS  Google Scholar 

  • Sallaud, C., El Turk, C., Bigerre, L., Sevin, H., Welle, R., & Esnault, R. (1995) Nucleotide sequence of three chalcone reductase genes from alfalfa. Plant Physiology 108: 869–870

    Article  PubMed  CAS  Google Scholar 

  • Samaras, N. & Spithill, T.W. (1989) The developmentally regulated P100/11E gene of Leishmania major shows homology to a superfamily of reductase genes. J. Biol. Chem. 264: 4251–4254

    PubMed  CAS  Google Scholar 

  • Scott, V.E., Rettig, J., Parcej, D.N., Keen, J.N., Findlay, J.B., Pongs, O., & Dolly, J.O. (1994) Primary structure of a beta-subunit of alpha-dendrotoxin-sensitive K+ channels from bovine brain. Proc. Natl. Acad. Sci. USA 91: 1637–1641

    Article  PubMed  CAS  Google Scholar 

  • Stolz, A., Hammond, L., Lou, H., Takikawa, H., Ronk, M., & Shively, J.E. (1993) cDNA cloning and expression of the human bile-acid binding protein. J. Biol. Chem. 268: 10448–10457

    PubMed  CAS  Google Scholar 

  • Takahasi, M., Fujii, J., Teshima, T., Suzuki, K., Shiba, T., & Taniguchi, N (1993) Identity of a major 3-deoxyglucosone reducing enzyme with aldehyde reductase in rat liver established by amino acid sequencing and cDNA expression. Gene 127: 249–253

    Article  Google Scholar 

  • Tomarev, S.I., Zinovieva, R.D., Dolgilevich, S.M., Luchin, S.V., Krayev, A.S., Skyryabin, K.G., & Gause, G.G. (1984) A novel type of crystallin in the frog eye lens. FEBS Letters 171: 297–301

    Article  PubMed  CAS  Google Scholar 

  • Turner, A.J. and Flynn, T.G. (1982) The nomenclature of aldehyde reductases in Enzymology of Carbonyl Metabolism: Aldehyde Dehydrogenase and Aldo/Keto Reductase (Weiner, H., and Wermuth, B., eds.) pp. 401–402, Alan Liss, New York

    Google Scholar 

  • Warren, J.C., Murdock, G.L., Ma, Y., Goodman, S.R., & Zimmer, W.E. (1993) Molecular cloning of testicular 20α-hydroxysteroid dehydrogenase: identity with aldose reductase. Biochemistry 32: 1401–1406

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, K., Fujii, Y., Nakayama, K., Ohkubo, H., Kuramitsu, S., Kagamiyama, H., Nakanishi, S., & Hayaishi, O. (1988) Structural similarity of bovine lung prostaglandin F synthase to lens ε-crystallin of the European common frog. Proc. Natl. Acad. Sci. USA 85: 11–15

    Article  PubMed  CAS  Google Scholar 

  • Welle, R., Schroder, G., Schiltz, E., Grisebach, H., & Schroder, J. (1991) Induced plant responses to pathogen attack Eur. J. Biochem. 196: 423–430

    Article  PubMed  CAS  Google Scholar 

  • Wermuth, B., Omar, A., Forster, A., di Francesco, G., Wolf, M., von Wartbuth, J.P., Bullock, B., & Gabbay, K.H. (1987) Primary structure of aldehyde reductase from human liver. Prog. Clin. Biol. Res. 232: 297–307

    PubMed  CAS  Google Scholar 

  • Willey, D.L., Caswell, D.A., Lowe, C.R., & Bruce, N.C. (1993) Nucleotide sequence and over-expression of morphine dehydrogenase, a plasmid-encoded gene from Pseudomonas putida M10. Biochem. J. 290: 539–544

    PubMed  CAS  Google Scholar 

  • Wilson, D.K., Bohren, K.M., Gabbay, K.H., & Quiocho, F.A. (1992) An unlikely sugar substrate site in the 1.65 Å structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science 257: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D.K., Nakano, T., Petrash, J.M., & Quiocho, F.A. (1995) 1.7 Å Structure of FR-1, a fibroblast growth factor-induced member of the aldo-keto reductase family, complexed with coenzyme and inhibitor. Biochemistry 34: 14323–14330

    Article  PubMed  CAS  Google Scholar 

  • Winters, C.J., Molowa, D.T., & Guzelian, P.S. (1990) Isolation and characterization of cloned cDNAs encoding human liver chlordecone reductase. Biochemistry 29: 1080–1087

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jez, J.M., Flynn, T.G., Penning, T.M. (1996). A Nomenclature System for the Aldo-Keto Reductase Superfamily. In: Weiner, H., Lindahl, R., Crabb, D.W., Flynn, T.G. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 6. Advances in Experimental Medicine and Biology, vol 414. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5871-2_66

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5871-2_66

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7692-7

  • Online ISBN: 978-1-4615-5871-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics