Skip to main content

Adequacy of Cerebral Vascular Remodeling Following Three Weeks of Hypobaric Hypoxia

Examined by an Integrated Composite Analytical Model

  • Chapter
Oxygen Transport to Tissue XVIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 411))

Abstract

Chronic exposure to moderate hypoxia is associated with considerable remodeling of the cerebral microvascular network. In rats exposed to hypobaric (0.5 ATM) hypoxia, cortical microvessel density increases to 171% of controls within the first week. Peak density is reached within two weeks. The increase in hematocrit follows a similar time course. Although the hemodynamic acclimation appears to complete after two weeks, levels of cortical metabolites, obtained after three weeks of exposure, suggest O2 insufficiency at rest. Increased lactate and slightly decreased glycogen concentrations within the brain, along with increased glucose consumption are consistent with an increased dependence on anaerobic glycolysis for energy production. Whatever the production mechanisms, the restored ATP and phosphocreatine levels indicate the energy demand is being met.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harik N., Harik S.I., LaManna J.C. On the Increased Cerebral Vascularity in Hypobaric Hypoxia: Time Course and Reversibity in Adult Rats. JCBFM Vol 15, Suppl. 1:S276, 1995.

    Google Scholar 

  2. Baumann R., Bauer C., and Bartels H. Influence of chronic and acute hypoxia on oxygen affinity and red cell 2,3 diphosphoglycerate of rats and guinea pigs, Resp. Physiol., 11: 135–144, 1971.

    Article  CAS  Google Scholar 

  3. Harik S.I., Lust W.D., Jones S.C., Lauro K.L., Pundik S., LaManna J.C., Brain glucose metabolism in hypobaric hypoxia, J. Appl. Physiol. 79:136–140, 1995.

    PubMed  CAS  Google Scholar 

  4. LaManna, J.C., Vendel, L.M. and Farrell, R.M. Brain adaptation to chronic hypobaric hypoxia in rats. J. Appl. Physiol. 72:2238–2243, 1992.

    PubMed  CAS  Google Scholar 

  5. Mironov, V., Hritz, M.A., LaManna, J.C., Hudetz, A.G. and Harik, S.I. Architectural alterations in rat cerebral microvessels after hypobaric hypoxia. Brain Res. 660:73–80, 1994.

    Article  PubMed  CAS  Google Scholar 

  6. Hudetz, A.G., Spaulding, J.G. and Kiani, M.F. Computer simulation of cerebral microhemodynamics. Adv. Exp. Med. Biol. 248:293–304, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Hawkins, R.A., Mans, A.M. and Davis, D.W. Regional ketone body utilization by rat brain in starvation and diabetes. Am.J.Physiol. 250:169–178, 1986.

    Google Scholar 

  8. Hudetz, A.G., Greene, A.S., Feher, G., Knuese, D.E. and Cowley, A.W.J. Imaging system for three-dimensional mapping of cerebrocortical capillary networks in vivo. Microvasc.Res. 46:293–309, 1993.

    Article  PubMed  CAS  Google Scholar 

  9. Lübbers, D.W. Oxygen Delivery and Microcirculation in the Brain. In: Microcirculation in Circulatory Disorders, edited by Manabe, Zweifach, and Messmer, Tokyo: Springer-Verlag, 1988, p. 33–50.

    Chapter  Google Scholar 

  10. Haynes, R. Physical basis of the dependence of blood viscosity on tube radius. Am.J.Physiol. 198:1193–1200, 1960.

    PubMed  CAS  Google Scholar 

  11. Whitmore, R. A theory of blood flow in small vessels. J.Appl.Physiol. 22:767–771, 1967.

    PubMed  CAS  Google Scholar 

  12. Blum, J.J., Concentration profiles in and around capillaries. Am. J. Physiol. 198:991–998, 1960.

    PubMed  CAS  Google Scholar 

  13. Musch, T.I., Dempsey, J.A., Smith, C.A., Mitchell, G.S. and Bateman, N.T. Metabolic acids and [H+] regulation in brain tissue during acclimatization to chronic hypoxia. J. Appl. Physiol. 55:1486–1495, 1983.

    PubMed  CAS  Google Scholar 

  14. Siesjo, B.K. and Messeter, K. Factors determining intracellular pH. In: Ion homeostasis of the brain, edited by Siesjo, B.K. and Sorensen, S.C., New York: Academic Press, 1970, p. 244–269.

    Google Scholar 

  15. Johannsson, H. and Siesjo, B.K. CBF and CMRO2 in hypoxia. Acta Physiol.Scand. 93:269–276, 1975.

    Article  PubMed  CAS  Google Scholar 

  16. LaManna, J.C., Light, A.I., Peretsman, S.J. and Rosenthal, M. Oxygen insufficiency during hypoxic hypoxia in rat brain cortex. Brain Res. 293:313–318, 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Connett, R.J., Honig, C.R., Gayeski, T.E.J. and Brooks, G.A. Defining hypoxia: a systems view of VO2, glycolysis, energetics, and intracellular PO2. J. Appl. Physiol. 68:833–842, 1990.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lauro, K.L., LaManna, J.C. (1997). Adequacy of Cerebral Vascular Remodeling Following Three Weeks of Hypobaric Hypoxia. In: Nemoto, E.M., et al. Oxygen Transport to Tissue XVIII. Advances in Experimental Medicine and Biology, vol 411. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5865-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5865-1_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7689-7

  • Online ISBN: 978-1-4615-5865-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics