Skip to main content

Abstract

Trabecular bone consists primarily of lamellar bone, arranged in packets that make up an interconnected irregular array of plates and rods, called trabeculae. These trabeculae, on average, have thicknesses in the range of 100–200 microns, dependent upon both anatomic site and donor age

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mosekilde, L. (1988) Age-related changes in vertebral trabecular bone architecture — Assessed by a new model. Bone, 9, 247–250.

    Article  PubMed  CAS  Google Scholar 

  2. Mosekilde, L., Bentzen, S.M., Ortoft, G. et al. (1989) The predictive value of quantitative computed tomography for vertebral body compressive strength and ash density. Bone, 10, 465–470.

    Article  PubMed  CAS  Google Scholar 

  3. Kuhn, J.L., Goldstein, S.A., Feldkamp, L.A. et al. (1990) Evaluation of a micro-computed tomography system to study trabecular bone structure. J. Orthop. Res., 8, 833–842.

    Article  PubMed  CAS  Google Scholar 

  4. Galante, J., Rostoker, W. and Ray, R.D. (1970) Physical properties of trabecular bone. Calcif. Tissue Res., 5, 236–246.

    Article  PubMed  CAS  Google Scholar 

  5. Ashman, R.B. and Rho, J.Y. (1988) Elastic modulus of trabecular bone material. J. Biomech., 21, 177–181.

    Article  PubMed  CAS  Google Scholar 

  6. Linde, F., Hvid, I. and Pongsoipetch, B. (1989) Energy absorptive properties of human trabecular bone specimens during axial compression. J. Orthop. Res., 7, 432–439

    Article  PubMed  CAS  Google Scholar 

  7. Rohlmann, A., Zilch, H., Bergman, G. et al. (1980) Material properties of femoral cancellous bone in axial loading. Part I: Time independent properties. Arch Orthop. Trauma Surg., 97, 95–102.

    Article  PubMed  CAS  Google Scholar 

  8. Mosekilde, L., Mosekilde, L. and Danielsen, C.C. (1987) Biomechanieal competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone, 8, 79–85.

    Article  PubMed  CAS  Google Scholar 

  9. Hansson, T.H., Keller, T.S. and Panjabi, M.M. (1987) A study of the compressive properties of lumbar vertebral trabeculae: effects of tissue characteristics. Spine, 12, 56–62.

    Article  PubMed  CAS  Google Scholar 

  10. Fyhrie, D.P., Fazalari, N.L., Goulet, R. et al. (1993) Direct calculation of the surface-to-volume ratio for human cancellous bone. J. Biomech., 26, 955–967.

    Article  PubMed  CAS  Google Scholar 

  11. Gong, J.K., Arnold, J.S. and Cohn, S.H. (1964) Composition of trabecular and cortical bone. Anat. Rec., 149, 325–332.

    Article  PubMed  CAS  Google Scholar 

  12. Goldstein, S.A., Wilson, D.L., Sonstegard, D.A. et al. (1983) The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. J. Biomech., 16, 965–969.

    Article  PubMed  CAS  Google Scholar 

  13. Townsend, P.R., Raux, P. and Rose, R.M. (1975) The distribution and anisotropy of the stiffness of cancellous bone in the human patella. J. Biomech., 8, 363–367.

    Article  PubMed  CAS  Google Scholar 

  14. Linde, F., Pongsoipetch, B., Frich, L.H. et al. (1990) Three-axial strain controlled testing applied to bone specimens from the proximal tibial epiphysis. J. Biomech., 23, 1167–1172.

    Article  PubMed  CAS  Google Scholar 

  15. Ciarelli, M.J., Goldstein, S.A., Kuhn, J.L. et al. (1991) Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J. Orthop. Res., 9, 674–682.

    Article  PubMed  CAS  Google Scholar 

  16. Goulet, R.W., Goldstein, S.A., Ciarelli, M.J. et al. (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J. Biomech., 27, 375–389.

    Article  PubMed  CAS  Google Scholar 

  17. Pugh, J.W., Radin, E.L. and Rose, R.M. (1974) Quantitative studies of human subchondral cancellous bone. Its relationship to the state of its overlying cartilage. J. Bone Joint Surg., 56A, 313–321.

    Google Scholar 

  18. Hipp, J.A., Rosenberg, A.E. and Hayes, W.C. (1992) Mechanical properties of trabecular bone within and adjacent to osseous metastases. J. Bone Miner. Res., 7, 1165–1171.

    Article  PubMed  CAS  Google Scholar 

  19. Hvid, I., Bentzen, S.M., Linde, F. et al. (1989) X-ray quantitative computed tomography: The relations to physical properties of proximal tibial trabecular bone specimens. J. Biomech., 22, 837–844.

    Article  PubMed  CAS  Google Scholar 

  20. Ashman, R.B., Rho, J.Y. and Turner, C.H. (1989) Anatomical variation of orthotropic elastic moduli of the proximal human tibia. J. Biomech., 22, 895–900.

    Article  PubMed  CAS  Google Scholar 

  21. Lotz, J.C., Gerhart, T.N. and Hayes, W.C. (1990) Mechanical properties of trabecular bone from the proximal femur: A quantitative CT study. J. Comput. Assist. Tomogr., 14, 107–114.

    Article  PubMed  CAS  Google Scholar 

  22. Keller, T.S. (1994) Predicting the compressive mechanical behavior of bone. J. Biomech., 27, 1159–1168.

    Article  PubMed  CAS  Google Scholar 

  23. McElhaney, J., Fogle, J., Melvin, J. et al. (1970) Mechanical properties of cranial bone. J. Biomech., 3, 495–511.

    Article  PubMed  CAS  Google Scholar 

  24. Gilbert, J.A., Maxwell, G.M., McElhaney, J.H. et al. (1984) A system to measure the forces and moments at the knee and hip during level walking. J. Orthop. Res., 2, 281–288.

    Article  PubMed  CAS  Google Scholar 

  25. Klever, F., Klumpert, R., Horenberg, J. et al. (1985) Global mechanical properties of trabecular bone: experimental determination and prediction from a structural model. In Biomechanics: Current Interdisciplinary Research, 167–172, Ed. Perren S.M. and Schneider E.; Martinus Nijhoff, Dordrecht.

    Google Scholar 

  26. Snyder, B. (1991) Anisotropic Structure-Property Relations for Trabecular Bone. Ph.D. Dissertation, University of Pennsylvania, Philadelphia, PA.

    Google Scholar 

  27. Hvid, I., Jensen, N.C., Bunger, C. et al. (1985) Bone mineral assay: its relation to the mechanical strength of cancellous bone. Eng. Med., 14, 79–83.

    Article  PubMed  CAS  Google Scholar 

  28. Rohl, L., Larsen, E., Linde, F. et al. (1991) Tensile and compressive properties of cancellous bone. J. Biomech., 24, 1143–1149.

    Article  PubMed  CAS  Google Scholar 

  29. Carter, D.R., Schwab, G.H. and Spengler, D.M. (1980) Tensile fracture of cancellous bone. Acta Orthop. Scand., 51, 733–741.

    Article  PubMed  CAS  Google Scholar 

  30. Carter, D.R. and Hayes, W.C. (1977) The compressive behavior of bone as a two-phase porous structure. J. Bone Joint Surg., 59A, 954–962.

    Google Scholar 

  31. Linde, F., Norgaard, P., Hvid, I. et al. (1991) Mechanical properties of trabecular bone. Dependency on strain rate. J. Biomech., 24, 803–809.

    Article  PubMed  CAS  Google Scholar 

  32. Ochoa, J.A., Sanders, A.P., Heck, D.A. et al. (1991) Stiffening of the femoral head due to inter-trabecular fluid and intraosseous pressure. J. Biomech. Eng., 113, 259–262.

    Article  PubMed  CAS  Google Scholar 

  33. Zilch, H., Rohlmann, A., Bergmann, G. et al. (1980) Material properties of femoral cancellous bone in axial loading. Part II: Time dependent properties. Arch. Orthop. Trauma. Surg., 97, 257–262.

    Article  PubMed  CAS  Google Scholar 

  34. Deligianni, D.D., Maris, A. and Missirlis, Y.F. (1994) Stress relaxation behaviour of trabecular bone specimens. J. Biomech., 27, 1469–1476.

    Article  PubMed  CAS  Google Scholar 

  35. Linde, F., Hvid, I. and Madsen, F. (1992) The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens. J. Biomech., 25, 359–368. 439.

    Article  PubMed  CAS  Google Scholar 

  36. Keaveny, T.M., Borchers, R.E., Gibson, L.J. et al. (1993) Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. J. Biomech., 26, 599–607.

    Article  PubMed  CAS  Google Scholar 

  37. Zhu, M., Keller, T.S. and Spengler, D.M. (1994) Effects of specimen load-bearing and free surface layers on the compressive mechanical properties of cellular materials. J. Biomech., 27, 57–66.

    Article  PubMed  CAS  Google Scholar 

  38. Odgaard, A. and Linde, F. (1991) The underestimation of Young’s modulus in compressive testing of cancellous bone specimens. J. Biomech., 24, 691–698.

    Article  PubMed  CAS  Google Scholar 

  39. Keaveny, T.M., Borchers, R.E., Gibson, LJ. et al. (1993) Trabecular bone modulus and strength can depend on specimen geometry. J. Biomech., 26, 991–1000.

    Article  PubMed  CAS  Google Scholar 

  40. Turner, C.H. (1989) Yield behavior of bovine cancellous bone. J. Biomech. Eng., 111, 256–260.

    Google Scholar 

  41. Keaveny, T.M., Guo, X.E., Wachtel, E.F. et al. (1994) Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J. Biomech., 27, 1127–1136.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Keaveny, T.M. (1998). Cancellous bone. In: Black, J., Hastings, G. (eds) Handbook of Biomaterial Properties. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5801-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5801-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-60330-3

  • Online ISBN: 978-1-4615-5801-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics