Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 92))

Abstract

The high incidence of malignancies in children with primary immune deficiencies has been well documented over several decades. As increased awareness of the problem drew the interest of experts in lymphoma morphology, it became clear that these were primarily B-lymphoid lymphoproliferations that ranged from benign, but aggressive, to frankly malignant diseases. Some of this understanding came as the result of improved classifications of lymphomas and the realization that a new category diseases — the post-transplant lymphoproliferations — were very similar to many of the neoplasms of the immune-deficient individuals. These tumors were not the only types found in the transplant patients, however. It was recognized that the renal transplant recipients (mostly adults) had a much higher incidence of skin cancers than expected, as well as some other solid tumors. When the AIDS epidemic began in the 1980s, it soon became clear that HIV-infected children were also having a high incidence of lymphomas and otherwise rare leiomyosarcomas. The obvious reasons behind all these neoplasms were failure of immune surveillance and the opportunity for benign proliferations to achieve independent growth as malignancies. From the initial observations that Epstein—Barr virus DNA is found in many of these tumors to the recent findings of mutations in tumor suppressor genes, there have been significant contributions to our understanding of oncogenesis as a result of studying such cases, although more research is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Filipovich AH, Shapiro R, Robison L, Mertens A, Fizzera G. 1990. Lymphoproliferative disorders associated with immunodeficiency. In McGath IT (ed). The Non-Hodgkin’s Lymphomas, London: Edward Arnold, pp 135–154.

    Google Scholar 

  2. Park JK, Rosenstein YJ, Rmold-O’Donnell E, Bierer BE, Rosen FS, Burakoff SJ. 1991. Enhancement of T-cell activation by the CD43 molecule whose expression is defective in Wiskott-Aldrich syndrome. Nature 350:706–709.

    PubMed  CAS  Google Scholar 

  3. Savitsky K, Bar-Shira A, Gilad S, et al. 1995. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753.

    PubMed  CAS  Google Scholar 

  4. Meyn MS. 1995. Ataxia-teleangiectasia and cellular responses to DNA damage. Cancer Res 55:5991–6001.

    PubMed  CAS  Google Scholar 

  5. Kersey JH, Spector BD, Good RA. 1975. Cancer in children with primary immunodeficiency diseases. Pediatrics 84:263–264.

    Google Scholar 

  6. Purtilo DT. 1983. Immunopathology of X-linked lymphoproliferative syndrome. Immunol Today 4:291–297.

    Google Scholar 

  7. Hanto DW, Gajl-Peczalska KJ, Frizerra G, et al. 1983. Epstein—Barr virus (EBV) induced polyclonal and monoclonal B-cell lymphoproliferative diseases occurring after renal transplantation. Ann Surg 198:356–368.

    PubMed  CAS  Google Scholar 

  8. Wilkinson AH, Smith JL, Hunsicker LG, et al. 1989. Increased frequency of post transplant lymphomas in patients treated with cyclosporine, azathioprine, and prednisone. Transplantation 47:293–303.

    Google Scholar 

  9. Leblond V, Sutton L, Dorent R, et al. 1995. Lymphoproliferative disorders after organ transplantation: a report of 24 cases observed in a single center. J Clin Oncol 13:961–968.

    PubMed  CAS  Google Scholar 

  10. Shapiro RS, McClain KL, Frizzera G. et al. 1988. Epstein—Barr virus associated B cell lymphoproliferative disorders following bone marrow transplantation. Blood 71:1234–1243.

    PubMed  CAS  Google Scholar 

  11. Kamel OW, Rijn Mvd, LeBrun DP, et al. 1994. Lymphoid neoplasms in patients with rheumatoid arthritis and dermatomyositis. Hum Pathol 25:638–643.

    PubMed  CAS  Google Scholar 

  12. Frizzera G, Hanto DW, Gajl-Peczalska KJ, et al. 1981. Polymorphic diffuse B-cell hyperplasias and lymphoma transplant recipients. Cancer Res 41:4262–4279.

    PubMed  CAS  Google Scholar 

  13. Fingeroth JD, Weiss JJ, Tedder TF, et al. 1994. Epstein—Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci USA 4:4510–4514.

    Google Scholar 

  14. Sixbey JW, Veterinen EH, Nedrud JG, et al. 1983. Replication of Epstein—Barr virus in human epithelial cells infected in vitro. Nature 306:480–483.

    PubMed  CAS  Google Scholar 

  15. Henle W, Henle G, Horowitz CA. 1974. Epstein—Barr virus-specific diagnostic tests in infectious mononucleosis. Hum Pathol 5:551–565.

    PubMed  CAS  Google Scholar 

  16. Miyashita EM, Yang B, Lam KMC, et al. 1995. A novel form of Epstein—Barr virus latency in normal B cells in vivo. Cell 80:593–602.

    PubMed  CAS  Google Scholar 

  17. Ho M, Miller G, Atchison RW, et al. 1985. Epstein—Barr virus infections and DNA hybridization studies in posttransplant lymphoma and lymphoproliferative lesions: the role of primary infection. J Infect Dis 152:876–886.

    PubMed  CAS  Google Scholar 

  18. Zimber U, Aldinger HK, Lenoir GM, et al. 1986. Geographical prevalence of two types of Epstein—Barr virus. Virology 154:56–63.

    PubMed  CAS  Google Scholar 

  19. Sculley TB, Apollini A, Hurren L, et al. 1987. Coinfection with A- and B-typc Epstein—Barr virus in human immunodeficiency virus-positive subjects. J Infect Dis 162:643–667.

    Google Scholar 

  20. Young LS, Yao QY, Rooney CM, et al. 1987. New type B isolate of Epstein—Barr virus from Burkitt’s lymphoma and normal individuals in endemic areas. J Gen Virol 68:2853–2859.

    CAS  Google Scholar 

  21. Frank D, Cesarman E, Liu YF, et al. 1995. Posttransplantation lymphoproliferative disorders frequently contain type A and not type B Epstein—Barr virus. Blood 85:1396–1403.

    PubMed  CAS  Google Scholar 

  22. Patton DF, Wilkowski CW, Hanson CA, et al. 1990. Epstein—Barr virus-determined clonality in posttransplant lymphoproliferative disease. Transplantation 49:1080–1084.

    PubMed  CAS  Google Scholar 

  23. Cen H, Williams PA, McWilliams HP, et al. 1993. Evidence for restricted Epstein—Barr virus latent gene expression and anti-EBNA antibody response in solid organ transplant recipients with post transplant lymphoproliferative disorders. Blood 81:1393–1404.

    PubMed  CAS  Google Scholar 

  24. Wang D, Liebowitz D, Kieff E. 1985. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43:831–840.

    PubMed  CAS  Google Scholar 

  25. Li-Fu H, Minarovits J, Shi-Long C, et al. 1991. Variable expression of latent membrane protein in nasophyaryngeal carcinoma can be related to methylation status of the Epstein—Barr virus BNLF-1 5′-flanking region. J Virol 65:1558–1564.

    Google Scholar 

  26. Herbst H, Dallenbach F, Hummel M, et al. 1991. Epstein—Barr virus latent membrane protein expression in Hodgkin and Reed—Sternberg cells. Proc Natl Acad Sci USA 88:4766–4771.

    PubMed  CAS  Google Scholar 

  27. Young L, Alfieri C, Hennessy K, et al. 1989. Expression of Epstein—Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N Engl J Med 321:1080–1085.

    PubMed  CAS  Google Scholar 

  28. Skare J, Farley J, Strominger J, et al. 1985. Transformation by Epstein—Barr virus requires DNA sequences in the region of BamHI fragments Y and H. J Virol 55:286–297.

    PubMed  CAS  Google Scholar 

  29. Delecluse H-J, Kremmer E, Roualult J-P, et al. 1995. The expression of Epstein—Barr virus latent proteins is related to the pathological features of post-transplant lymphoproliferative disorders. Am J Pathol 146:1113–1120.

    PubMed  CAS  Google Scholar 

  30. Knowles DM, Cesarman E, Chadburn A, et al. 1995. Correlative morphologic and molecular genetic analysis demonstrates three distinct categories of posttransplantation lymphoproliferative disorders. Blood 85:552–565.

    PubMed  CAS  Google Scholar 

  31. Seremetis S, Inghirami G, Ferrero D, et al. 1989. RAS oncogenes cause malignant transformation and plasmacytoid differentiation of EBV-infected human B-lymphoblasts. Science 243:660–663.

    PubMed  CAS  Google Scholar 

  32. Hanto D. 1995. Classification of Epstein—Barr virus-associated posttransplant lympho-proliferative diseases: implications for understanding their pathogenesis and developing rational treatment strategies. Annu Rev Med 46:381–394.

    PubMed  CAS  Google Scholar 

  33. Savoie A, Perpete C, Carpentier L, et al. 1994. Direct correlation between the load of Epstein—Barr virus-infected lymphocytes in the peripheral blood of pediatric transplant patients and risk of lymphoproliferative disease. Blood 83:2715–2722.

    PubMed  CAS  Google Scholar 

  34. Riddler SA, Breinig MC, McKnight JLC. 1994. Increased levels of circulating Epstein—Barr virus (EBV)-infected lymphocytes and decreased EBV nuclear antigen antibody responses are associated with the development of posttransplant lymphoproliferative disease in solid-organ transplant recipients. Blood 84:972–984.

    PubMed  CAS  Google Scholar 

  35. Preiksaitis JK, Diaz-Mitoma F, Mirzayans F, et al. 1992. Quantitative oropharyngeal Epstein—Barr virus shedding in renal and cardiac transplant recipients: relationship to immunosuppressive therapy, serologic responses, and the risk of posttransplant lymphoproliferative disorder. J Infect Dis 166:988–995.

    Google Scholar 

  36. Randhawa PS, Jaffe R, Demetris AJ. 1992. Expression of Epstein—Barr virus-encoded small RNA (by the EBER-1 gene) in liver specimens from transplant recipients with posttransplantation lymphoproliferative disease. N Engl J Med 327:1710–1714.

    PubMed  CAS  Google Scholar 

  37. Toshizaki K, Matsuda T, Nishimonto N, et al. 1989. Pathogenic significance of interleukin-6 (IL-6/BSF-2) in Castleman’s disease. Blood 74:1360–1363.

    Google Scholar 

  38. Miles SA, Rezia AR, Salazar-Golzalez JF, et al. 1990. AIDS Kaposi sarcoma-derived cells produce and respond to interleukin- 6. Proc Natl Acad Sci USA 87:4068–4073.

    PubMed  CAS  Google Scholar 

  39. Kawano M, Hirano T, Matusuda T, et al. 1988. Autocrine generation and requirement of BSF-2/IL-6 from human multiple myeloma. Nature 332:83–85.

    PubMed  CAS  Google Scholar 

  40. Tanner J, Tosato G. 1992. Regulation of B cell growth and immunoglobulin transcription by interleukin-6. Blood 79:452–457.

    PubMed  CAS  Google Scholar 

  41. Tosato G, Tanner JE, Jones KD, el al. 1990. Identification of interleukin-6 as an autocrine growth factor for Epstein—Barr virus-immortalized B cell. J Virol 64:3033–3038.

    PubMed  CAS  Google Scholar 

  42. Tosato G, Jones K, Breinig MK, et al. 1993. Interleukin-6 production in post-transplant lymphoproliferative disease. J Clin Invest 91:2806–2810.

    PubMed  CAS  Google Scholar 

  43. Tanner JE, Menezes J. 1994. Inlerleukin-6 and Epstein—Barr virus induction by Cyclosporine A: potential role in lymphoproliferative disease. Blood 84:3956–3964.

    PubMed  CAS  Google Scholar 

  44. Sigal NH, Dumont FJ. 1992. Cyclosporine A, FK-506, and ripamycin: pharmacologic probes of lymphocyte signal transduction. Annu Rev Immunol 10:519–533.

    PubMed  CAS  Google Scholar 

  45. Tanner JE, Tosato G. 1991. Impairment of natural killer functions by interleukin 6 increases lymphoblastoid cell tumorigenicity in athymic mice. J Clin Invest 88:239–244.

    PubMed  CAS  Google Scholar 

  46. Schwarz MA, Tardelli L, Macosko HD, et al. 1995. Interleukin 4 retards dissemination of a human B-cell lymphoma in severe combined immunodeficient mice. Cancer Res 55:3692–3696.

    PubMed  CAS  Google Scholar 

  47. Peyron E, Banchereau J. 1994. Interleukin 4. Structure, function and clinical aspects. Fur J Dermatol 4:181–188.

    CAS  Google Scholar 

  48. Starzl TE, Nalesnik MA, Proter KA, et al. 1984. Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-sleroid therapy. Lancet 1:583–587.

    PubMed  CAS  Google Scholar 

  49. Pirsch JD, Stratta RJ, Sollinger HW, et al. 1989. Treatment of severe Epstein—Barr virus-induced lymphoproliferative syndrome with ganciclovir: two cases after solid organ transplantation. Am J Med 86:241–244.

    PubMed  CAS  Google Scholar 

  50. Bacon TH, Boyd MR, 1995. Activity of penciclovir against Epstein—Barr virus. Antimicrob Agents Chemother 39:1599–1602.

    PubMed  CAS  Google Scholar 

  51. Blanche S, LeDeist F, Veber F, et al. 1988. Treatment of severe Epstein—Barr virusinduced polyclonal B-lymphocyte proliferation by anti-B-cell monoclonal antibodies. Ann Intern Med 108:199–203.

    PubMed  CAS  Google Scholar 

  52. Shapiro RS, Chauvenet A, McGuire W, et al. 1988. Treatment of B-cell lymphoproliferative disorders with interferon alpha and intravenous gamma globulin. N Engl J Med 318:1334–1335.

    PubMed  CAS  Google Scholar 

  53. Murphy WJ, Fuakoshi S, Beckwith M, et al. 1995. Antibodies to CD40 prevent Epstein—Barr virus-mediated human B-cell lymphomagenesis in severe combined immune deficient mice given human peripheral blood lymphocytes. Blood 86:1946–1953.

    PubMed  CAS  Google Scholar 

  54. Mosier DE, Gulizia RJ, Baird SM, et al. 1988. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335:256–259.

    PubMed  CAS  Google Scholar 

  55. Funakoshi F, Longo DL, Beckwith M, et al. 1994. Inhibition of human B-cell lymphoma growth by CD40 stimulation. Blood 83:2787–2794.

    PubMed  CAS  Google Scholar 

  56. Swinnen LJ, Mullen GM, Carr TJ, et al. 1995. Aggressive treatment for postcardiac transplant lymphoproliferation. Blood 86:3333–3340.

    PubMed  CAS  Google Scholar 

  57. Arico M, Caslli D, D’Argenio PD, et al. 1991. Malignancies in children with human immunodeficiency virus Type 1 infection. Cancer 68:2473–2479.

    PubMed  CAS  Google Scholar 

  58. Pluda JM, Yarchoan R, Jaffe ES, et al. 1990. Development of non-Hodgkin’s lymphoma in a cohort of patients with severe human immunodeficiency virus (HIV) infection on long-term antiretroviral therapy. Ann Intern Med 113:276–280.

    PubMed  CAS  Google Scholar 

  59. Mueller BU, Shad AT, Magrath IT, et al. 1994. Malignancies in children with HIV infection. In Pizzo PA, Wilfert CM (eds): Pediatric AIDS, the challenge of HIV infection in infants. children, and adolescents. Baltimore, MD, Williams and Wilkins, pp 603–622.

    Google Scholar 

  60. Ragni MV, Belle SH, Jaffe RA, et al. 1993. Acquired immunodeficiency syndrome-associated non-Hodgkin’s lymphomas and other malignancies in patients with hemophilia. Blood 81:1889–1894.

    PubMed  CAS  Google Scholar 

  61. Epstein LG, DiCarlo FJ, Joshi VV, et al. 1988. Primary lymphoma of the central nervous system in. children with acquired immuodeficiency syndrome. Pediatrics 82:355–360.

    Google Scholar 

  62. McArthur JC. 1987. Neurologic manifestations of AIDS. Medicine 66:407–416.

    PubMed  CAS  Google Scholar 

  63. Pierce MA, Johnson MD, Maciunas RJ, et al. 1995. Evaluating contrast-enhancing brain lesions in patients with AIDS by using positron emission tomography. Ann Intern Med 123:594–598.

    PubMed  CAS  Google Scholar 

  64. Andiman WA, Eastman R, Martin K, el al. 1985. Opportunistic lymphoproliferations associated with Epstein—Barr viral DNA in infants and children with AIDS. Lancet 2:1390–1394.

    PubMed  CAS  Google Scholar 

  65. Belman AL, Diamond G, Dickson D, et al. 1988. Pediatric acquired immunodeficiency syndrome: neurologic syndromes. Am J Dis Child 142:29–35.

    PubMed  CAS  Google Scholar 

  66. Chilcole R, Williams T, Siegel S. 1989. Therapy of Burkitt’s lymphoma in children with HIV infection. Pediatr Res 25:149A.

    Google Scholar 

  67. Goldstein J, Dickson DW, Rubenstein A, et al. 1990. Primary central nervous system lymphoma in pediatric patient with acquired immmune deficiency syndrome. Cancer 66: 2503–2508.

    PubMed  CAS  Google Scholar 

  68. Kamani N, Kennedy J, Brandsma J. 1988. Burkitt’s lymphoma in a child with human immunodeficiency virus infection. J Pediatr 112:241–247.

    PubMed  CAS  Google Scholar 

  69. Nadal D, Caduff R, Frey E, et al. 1994. Non-Hodgkin’s lymphoma in four children infected with the human immunodeficiency virus. Cancer 73:224–229.

    PubMed  CAS  Google Scholar 

  70. Neumann Y, Toren A, Mandel M, et al. 1993. Favorable response of pediatric AIDS-related Burkitt’s lymphoma treated by aggressive chemotherapy. Med Pediatr Oncol 21:661–667.

    PubMed  CAS  Google Scholar 

  71. Patton DF, Sixbey JW, Murphy SB. 1988. Epstein—Barr virus in human immunodeficiency virus-related Burkitt lymphoma. J Pediatr 113:951–956.

    PubMed  CAS  Google Scholar 

  72. Lane HC, Feinberg J, Davey V, et al. 1988. Anti-retroviral effects of interferon-α in AIDS-associated Kaposi’s sarcoma. Lancet 2:1218–1222.

    PubMed  CAS  Google Scholar 

  73. Rohatincr AZS. 1991. Interferon alpha in lympoma. Br J Haematol 79 (Suppl 1):26–34.

    Google Scholar 

  74. Vellatini C, Horschowski N, Philippon V, et al. 1995. Development of lymphoid hyperplasia in transgenic mice expressing the HIV tat gene. AIDS Res Hum Retrovir 11:21–27.

    Google Scholar 

  75. Shibata D, Weiss LM, Nathwani BN. 1991. Epstein—Barr virus in benign lymph node biopsies from individuals infected with the human immunodeficiency virus is associated with concurrent or subsequent development of non-Hodgkin’s lymphoma. Blood 77:1527–1533.

    PubMed  CAS  Google Scholar 

  76. Hamilton-Dutoit SJ, Raphael M, Audouin J, et al. 1993. In situ demonstration of Epstein—Barr virus small RNAs (EBER 1) in acquired immunodeficiency syndrome-related lymphomas: correlation with tumor morphology and primary site. Blood 82:619–623.

    PubMed  CAS  Google Scholar 

  77. MacMahon EME, Glass JD, Hayward SD, et al. 1991. Epstein—Barr virus in AIDS-related primary central nervous system lymphoma. Lancet 338:969–973.

    PubMed  CAS  Google Scholar 

  78. Suber M, Neri A, Inghirami G, et al. 1988. Frequent c-myc oncogene activation and infrequent presence of Epstein—Barr virus genome in AIDS-associated lymphoma. Blood 72:667–674.

    Google Scholar 

  79. Montagnier L, Gruest J, Chamaret S, et al. 1984. Adaption of LAV to replication in EBV transformed B lymphoblastomatoid cell lines. Science 225:63–66.

    PubMed  CAS  Google Scholar 

  80. Schittman SM, Lane HC, Higgins SE, et al. 1986. Direct polyclonal activation of B lymphocytes by AIDS virus. Science 233:1084–1095.

    Google Scholar 

  81. Jelinek DF, Lipsky PE. 1987. Enhancement of human B cell proliferation and differentiation by tumor necrosis factor-alpha and interleukin 1. J Immunol 139:2970–2974.

    PubMed  CAS  Google Scholar 

  82. Paul WE. 1987. Interleukin 4/B cell stimulatory factor 1: one lympholine, many functions. FASEB J 1:456–463.

    PubMed  CAS  Google Scholar 

  83. Zlotnik A, Morre KW. 1991. Interleukin 10. Cytokine 3:366–375.

    PubMed  CAS  Google Scholar 

  84. Klein G. 1989. Multiple phenotypic consequences of the Ig/Myc translocation in B-cell-derived tumors. Genes, Chromosomes Cancer 1:3–9.

    PubMed  CAS  Google Scholar 

  85. Ballerini P, Gaidano G, Gong J, et al. 1993. Multiple genetic lesions in acquired immunodeficiency syndrome-related non-Hodgkin’s lymphoma. Blood 81:166–170.

    PubMed  CAS  Google Scholar 

  86. Meeker TC, Shiramizu B, Kaplan L, et al. 1991. Evidence for molecular subtypes of HIV-associated lymphoma: division into peripheral monoclonal, polyclonal, and central nervous system lymphoma. AIDS 5:669–674.

    PubMed  CAS  Google Scholar 

  87. Chadwick EG, Connor EJ, Hanson CG, et al. 1990. Tumors of smooth-muscle origin in HIV-infected children. JAMA 263:3182–3185.

    PubMed  CAS  Google Scholar 

  88. McClain KL, Leach CT, Jenson HB, et al. 1995. Association of Epstein—Barr virus with leiomyosarcomas in young people with AIDS. N Engl J Med 332:12–18.

    PubMed  CAS  Google Scholar 

  89. Lee ES, Locker J, Nalesnik M, et al. 1995. The association of Epstein—Barr virus with smooth-muscle tumors occurring after organ transplantation. N Engl J Med 332:19–23.

    PubMed  CAS  Google Scholar 

  90. Isaacson P, Wright D. 1983. Malignant lymphoma of mucosa associated lymphoid tissue. A distinctive B-cell lymphoma. Cancer 52:1410–1415.

    PubMed  CAS  Google Scholar 

  91. Pelstring RJ, Essel JH, Kurtin PJ, et al. 1991. Diversity of organ site involvement among malignant lymphomas of mucosa associated lymphoid tissues. Am J Clin Pathol 96:738–741.

    PubMed  CAS  Google Scholar 

  92. Harris NL. 1991. Intranodal lymphoid infiltrates and mucosa associated lymphoid tissue (MALT): a unifying concept. Am J Surg Pathol 15:879–883.

    PubMed  CAS  Google Scholar 

  93. Isaacson PG. 1994. Gastrointestinal lymphoma. Hum Pathol 25:1020–1026.

    PubMed  CAS  Google Scholar 

  94. Joshi VV. 1993. Pathology of pediatric AIDS: overview, update, and future directions. Ann NY Acad Sci 693:71–82.

    PubMed  CAS  Google Scholar 

  95. Joshi VV, Kauffman S, Oleske JM, et al. 1987. Polyclonal polymorphic B-cell lymphoproliferative disorder with prominent pulmonary involvement in children with AIDS. Cancer 59:1455–1459.

    PubMed  CAS  Google Scholar 

  96. Montalvo FW, Casanova R, Clavell LA. 1990. Treatment outcome in children with malignancies associated with human immunodeficieny virus infection. J Pediatr 116:735–742.

    PubMed  CAS  Google Scholar 

  97. Rechavi G, Ben-Bassat I, Berkowicz M. et al. 1987. Molecular analysis of Burkitt’s leukemia in two hemophilic brothers with AIDS. Blood 70:1713–1718.

    PubMed  CAS  Google Scholar 

  98. Ames ED, Conjalka MS, Goldberg AF, et al. 1991. Hodgkin’s disease and AIDS: twenty-three new cases and a review of the literature. Hematol Oncol Clin North Am 5:343–352.

    PubMed  CAS  Google Scholar 

  99. Orlow SJ, Cooper D, Petrea S, et al. 1992. AIDS-associated Kaposi’s sarcoma in Romanian children. J Am Acad Dermatol 28:449–455.

    Google Scholar 

  100. Cook PD, Czerniak B, Chan JKC, et al. 1995. Nodular spindle-cell vascular transformation of lymph nodes: a benign process occurring predominantly in retroperitoneal lymph nodes draining carcinomas that simulates Kaposi’s sarcoma or metastatic tumor. Am J Surg Pathol 19:1010–1014.

    PubMed  CAS  Google Scholar 

  101. LeBoit PE. 1995. Bacillary angiomatosis. Mod Pathol 8:218–223.

    PubMed  CAS  Google Scholar 

  102. Bouquety JC, Siopathis MR, Ravisse PR, et al. 1989. Lymphadenopathic Kaposi’s sarcoma in an African pediatric AIDS case. Am J Trop Med Hyg 40:323–327.

    PubMed  CAS  Google Scholar 

  103. Connor E, Boccon-Gibod L, Joshi VV, et al. 1990. Cutaneous AIDS-associated Kaposi’s sarcoma in pediatric patients. Arch Dermatol 126:791–795.

    PubMed  CAS  Google Scholar 

  104. Maemain M, Fruchter RG, Serur E, et al. 1992. HIV infection and cervical neoplasia. Gynecol Oncol 38:377–381.

    Google Scholar 

  105. Matoras R, Aricela JM, Rementeria A, et al. 1991. HIV induced immunosuppression: a risk factor for human papilloma virus infection. Am J Obstet Gynecol 164:42–46.

    Google Scholar 

  106. Diamond FB, Price LJ, Nelson RP. 1994. Papillary carcinoma of thyroid in a 7 year old HIV positive child. Pediatr AIDS HIV Infect Fet Adolesc 5:232–236.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

McClain, K.L. (1997). Immunodeficiency states and related malignancies. In: Walterhouse, D.O., Cohn, S.L. (eds) Diagnostic and Therapeutic Advances in Pediatric Oncology. Cancer Treatment and Research, vol 92. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5767-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5767-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7643-9

  • Online ISBN: 978-1-4615-5767-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics